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1. Introduction

The derivative nonlinear Schrödinger equation (DNLS), also called the Kaup-Newell (KN) equa-
tion,

iqt +qxx = i(|q|2q)x (1.1)

is completely integrable and is an important model in mathematical physics, especially in space
plasma physics and nonlinear optics [1, 2, 12, 18, 23, 26]. Kaup and Newell [13] solved the initial
value problem for the DNLS equation using the inverse scattering method. The first N-soliton for-
mula for the DNLS equation was obtained by Nakamura and Chen [19] by use of Hirota’s bilinear
transform method. On the basis of Darboux transformation, another alternative method, Huang and
Chen [11] established an N-soliton formula in terms of determinants.

Darboux transformations are an important tool for studying the solutions of integrable sys-
tems. They provide a universal approach that will bring together and extend a number of disparate
results connected with the nonlinear Schrödinger (NLS) equation and its cousin the derivative NLS
equation (DNLS). In recent years, there has been some interest in solutions of the DNLS equation
obtained by means of Darboux-like transformations [9, 15, 24, 27–29]. These solutions are often
written in terms of determinants with a complicated structure. Here, under a gauge transformation,
a one-step Darboux transformation of the KN system (2.1–2.2) is constructed by finding a 2× 2
trial matrix so that the KN spectral problem (Lax pair) [13] is covariant. Then, the determinant
representations of n-fold Darboux transformation are obtained by stating and proving of sequence
of theorems. These determinants are expressed in terms of solutions (eigenfunctions) of the linear
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partial differential equations, where the equations (2.1) and (2.2) are the integrable condition of this
linear KN system. The important point to note here is that Steudel [24] has established a general for-
mulae of the solution of the KN system in terms of Vandermonde-type determinants [25]. He used
solutions of Riccati equations, which are replaced by solutions of the linear KN system, in order to
construct solutions of the DNLS equation. Steudel introduced his seahorse function to write down
general solutions of Riccati equations in terms of this auxiliary function.

On the other hand, in this present paper, we present a systematic approach to the construction of
solutions of (1.1) by means of a standard Darboux transformation and written in terms of quaside-
terminants [4, 5]. Quasideterminants have various nice properties which play important roles in
constructing exact solutions of integrable systems [6–8, 10, 14].

For the sake of clarity we emphasize that the strategy we employ here is based on Darboux’s [3]
and Matveev’s [16, 17] original ideas. Therefore, our approach should be considered on its own
merits.

This paper is organized as follows. In Section 1.1 below, we give a brief review on quasidetermi-
nants. In Section 3, we state and prove a theorem for Darboux transformations of operators with no
derivative term. This has a similar structure to the standard theorem [17] for Darboux transformation
of general operators.

In Sections 3.3 and 4, we show how the quasideterminant solutions of the DNLS equation arise
naturally from the Darboux transformation. Here, the quasideterminants are written in terms of
solutions of Riccati sytems which arise from linear eigenvalue problems.

In Section 5, parametric and soliton solutions of the DNLS equation are given for both zero and
non-zero seed solutions.

1.1. Quasideterminants

In this short section we recall some of the key elementary properties of quasideterminants. The
reader is referred to the original papers [4, 5] for a more detailed and general treatment.

The notion of a quasideterminant was first introduced by Gelfand and Retakh in [4] as a straight-
forward way to define the determinant of a matrix with noncommutative entries. Many equiva-
lent definitions of quasideterminants exist, one such being a recursive definition involving inverse
minors. Let A = (ai j) be an n×n matrix with entries over a usually non commutative ring R , where
i, j = 1, . . . ,n. We define the (i, j)th quasideterminant recursively by |A|i j such that

|A|i j = ai j− r j
i

(
Ai j)−1

ci
j, (1.2)

where r j
i represents the row vector obtained from ith row of A with the jth element removed, ci

j

represents the column vector obtained from jth column of A with the ith element removed and Ai j

is the (n− 1)× (n− 1) submatrix obtained by deleting the ith row and the jth column from A.
Quasideterminants can also be denoted by boxing the entry about which the expansion is made

|A|i j =

∣∣∣∣∣Ai j ci
j

r j
i ai j

∣∣∣∣∣. (1.3)

If A is an n×n matrix over a commutative ring, then the quasideterminant |A|i j reduces to a ratio of
determinants

|A|i j = (−1)i+ j detA
detAi j . (1.4)
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It should be noted that the expansion formula (1.2) is also valid in the case of block matrices pro-
vided the matrix to be inverted is square.

In this paper, we will consider only quasideterminants that expanded about a term in the first

row and the last column. Let M =

(
C B
D E

)
be a block matrix, where D is an invertible square matrix

over R of arbitrary size and C, E are matrices over R of compatible lengths. The quasideterminant
of M expanded about the matrix B is defined by∣∣∣∣C B

D E

∣∣∣∣= B−CD−1E. (1.5)

2. Derivative Nonlinear Schrödinger equations

Let us consider the coupled DNLS equations

iqt +qxx− i(q2r)x = 0, (2.1)

irt − rxx− i(r2q)x = 0, (2.2)

where q = q(x, t) and r = r(x, t) are complex-valued functions. Equations (2.1) and (2.2) reduce to
the DNLS equation (1.1) when r = q∗, where q∗ denotes the complex conjugation of q.

The Lax pair for the coupled DNLS equations (2.1)-(2.2) is given by

L = ∂x + Jλ
2−Rλ (2.3)

M = ∂t +2Jλ
4−2Rλ

3 +qrJλ
2 +Uλ , (2.4)

where J, R and U are the 2×2 matrices

J =

(
i 0
0 − i

)
, R =

(
0 q
r 0

)
and U =

(
0 −iqx− rq2

irx− r2q 0

)
. (2.5)

Here λ is an arbitrary complex number, the eigenvalue (or spectral parameter).

3. Darboux Theorems and Dimensional Reductions

3.1. General Darboux theorems

Theorem 3.1 ( [3, 16, 17]). Consider the linear operator

L = ∂x +
n

∑
i=0

ui∂
i
y (3.1)

where ui ∈ R, where R is a ring, in general non-commutative. Let G = θ∂yθ−1, where θ = θ(x,y)
is an invertible eigenfunction of L, so that L(θ) = 0. Then

∼
L = GLG−1 (3.2)

has the same form as L:

∼
L = ∂x +

n

∑
i=0

ũi∂
i
y (3.3)
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If φ is any eigenfunction of L then

φ̃ = φx−θyθ
−1

φ (3.4)

is an eigenfunction of
∼
L. In other words, if L(φ) = 0 then

∼
L (φ̃) = 0 where φ̃ = G(φ).

This Darboux transformation does not, however, preserve the form of L when u0 = 0. That is,
for L with u0 = 0, ũ0 6= 0 in general. In the scalar case [22] and matrix case [20], it is shown that the
operator (3.1) with u0 = 0 is invariant under the Darboux transformation

G =
[(

θ
−1)

y

]−1
∂yθ

−1. (3.5)

Unfortunately, this transformation acts trivially for the DNLS and we need to consider a slight
generalization.

Theorem 3.2. Consider the linear operator

L = ∂x +
n

∑
i=1

ui∂
i
y (3.6)

where ui ∈ R. Let

G = σ

[(
θ
−1)

y

]−1
∂yθ

−1, (3.7)

where θ = θ(x,y) is an invertible eigenfunction of L and σ ∈ R is invertible and independent of x
and y. Then

∼
L = GLG−1 (3.8)

has the same form as L:

∼
L = ∂x +

n

∑
i=1

ũi∂
i
y (3.9)

If φ is any eigenfunction of L then

φ̃ = σφ −σθ (θy)
−1

φy (3.10)

is an eigenfunction of
∼
L. In other words if L(φ) = 0 then

∼
L (φ̃) = 0 where φ̃ = G(φ).

Proof. The case σ = I is proved in [20]. For the case of general σ , it is sufficient to observe that
under the transformation G→ σG,

∼
L→ σ

∼
L σ−1 and, since σ is constant, ũi→ σ ũiσ

−1. Thus the
structure of L is preserved by G given in (3.7).

3.2. Dimensional reduction of Darboux transformation

Here, we describe a reduction of the Darboux transformation from (2+ 1) to (1+ 1) dimensions.
We choose to eliminate the y-dependence by employing a ‘separation of variables’ technique. The
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reader is referred to the paper [21] for a more detailed treatment. We make the ansatz

φ = φ
r(x, t)eλy, (3.11)

θ = θ
r(x, t)eΛy, (3.12)

where λ is a constant scalar and Λ an N×N constant matrix and the superscript r labels reduced
functions, independent of y. Hence in the dimensional reduction we obtain ∂ i

y (φ) = λ iφ and
∂ i

y (θ) = θΛi and so the operator L and Darboux transformation G become

Lr = ∂x +
n

∑
i=1

uiλ
i, (3.13)

Gr = σ −σθ
r
Λ
−1(θ r)−1

λ , (3.14)

where θ r is a matrix eigenfunction of Lr such that Lr (θ r) = 0, with λ replaced by matrix Λ, that is,

θ
r
x +

n

∑
i=1

uiθ
r
Λ

i = 0. (3.15)

Below we omit the superscript r for a simpler notation.

3.3. Iteration of reduced Darboux Transformations

In this section we shall consider iteration of the Darboux transformation and find closed form
expressions for these in terms of quasideterminants. The reader is referred to [4, 5] for an expla-
nation of the quasideterminant notation.

Let L be an operator, form invariant under the reduced Darboux transformation Gθ = σ −
σθΛ−1θ−1λ discussed above.

Let φ = φ(x, t) be a general eigenfunction of L such that L(φ) = 0. Then

φ̃ = Gθ (φ)

= σ
(
φ −θΛ

−1
θ
−1

λφ
)

= σ

∣∣∣∣∣ θ φ

θΛ λφ

∣∣∣∣∣
is an eigenfunction of

∼
L= Gθ LG−1

θ
so that

∼
L (φ̃) = λ φ̃ . Let θi for i = 1, . . . ,n, be a particular set

of invertible eigenfunctions of L so that L(θi) = 0 for λ = Λi, and introduce the notation Θ =

(θ1, . . . ,θn). To apply the Darboux transformation a second time, let θ[1] = θ1 and φ[1] = φ be a
general eigenfunction of L[1] = L. Then φ[2] = Gθ[1]

(
φ[1]
)

and θ[2] = φ[2]|φ→θ2 are eigenfunctions for
L[2] = Gθ[1]L[1]G

−1
θ[1]

.
In general, for n≥ 1, we define the nth Darboux transform of φ by

φ[n+1] = σ

(
φ[n]−θ[n]Λ

−1
n θ

−1
[n] λφ[n]

)
, (3.16)

in which

θ[k] = φ[k]|φ→θk .

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

282



J. J. C. Nimmo and H. Yilmaz

For example,

φ[2] = σ
(
φ −θ1Λ

−1
1 θ

−1
1 λφ

)
= σ

∣∣∣∣∣ θ1 φ

θ1Λ1 λφ

∣∣∣∣∣ ,
φ[3] = σ

(
φ[2]−θ[2]Λ

−1
2 θ

−1
[2] λφ[2]

)
= σ

2

∣∣∣∣∣∣∣
θ1 θ2 φ

θ1Λ1 θ2Λ2 λφ

θ1Λ2
1 θ2Λ2

2 λ 2φ

∣∣∣∣∣∣∣ .
After n iterations, we get

φ[n+1] = σ
n

∣∣∣∣∣∣∣∣∣∣∣∣

θ1 θ2 . . . θn φ

θ1Λ1 θ2Λ2 . . .θnΛn λφ

θ1Λ2
1 θ2Λ2

2 . . .θnΛ2
n λ 2φ

...
... . . .

...
...

θ1Λn
1 θ2Λn

2 . . .θnΛn
n λ nφ

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.17)

4. Constructing Solutions for DNLS Equation

In this section we determine the specific effect of the Darboux transformation G=σ−σθΛ−1θ−1λ

on the 2× 2 Lax operators L,M given by (2.3), (2.4). Here θ is a eigenfunction satisfying L(θ) =
M(θ) = 0 with 2×2 matrix eigenvalue Λ. From

∼
L G = GL we obtain the three conditions

[J,σθΛ
−1

θ
−1] = 0 (4.1)

∼
R σθΛ

−1
θ
−1 = σθΛ

−1
θ
−1R+[σ ,J] (4.2)

∼
R σ = σR− (σθΛ

−1
θ
−1)x. (4.3)

From (4.1), we see that σθΛ−1θ−1 must be a diagonal matrix and then from (4.2) that [σ ,J] and
hence σ must be off-diagonal. Guided by this, we choose

Λ =

(
1 0
0 −1

)
λ , σ =

(
0 1
1 0

)
. (4.4)

Finally, comparison of (4.2) and (4.3) leads to the requirement that the matrix θ has the structure

θ =

(
θ11 θ12

f θ11 − f θ12

)
, (4.5)

and in turn the linear equations for θ impose conditions of f , namely the Riccati equations

fx +λq f 2−2λ
2i f −λ r = 0 (4.6)

ft +λ
(
iqx + rq2 +2λ

2q
)

f 2−2iλ 2 (2λ
2 +qr

)
f −λ

(
qr2 +2λ

2r− irx
)
= 0 (4.7)

for given q(x, t),r(x, t) solutions in (2.1-2.2) and λ is a constant scalar.
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In summary, the Darboux transformation is

σ
∼
R σ = R−

(
θΛ
−1

θ
−1)

x (4.8)

which can be written in a quasideterminant structure as

σ
∼
R σ = R+

∣∣∣∣∣ θ 02

θΛ I2

∣∣∣∣∣
x

, (4.9)

We rewrite (4.8) as

σR[2]σ = R[1]−
(

θ[1]Λ
−1
1 θ

−1
[1]

)
x

(4.10)

where R[1] = R, R[2] =
∼
R, θ[1] = θ1 = θ , f1 = f , Λ1 = Λ, λ = λ1. Then after repeated n Darboux

transformations, we have

σR[n+1]σ = R[n]−
(

θ[n]Λ
−1
n θ

−1
[n]

)
x

(4.11)

which can be written in quasideterminant form as

σ
nR[n+1]σ

n = R+

∣∣∣∣∣∣∣∣∣∣∣

θ1 θ2 . . . θn 02

θ1Λ1 θ2Λ2 . . .θnΛn I2

θ1Λ2
1 θ2Λ2

2 . . .θnΛ2
n 02

...
... . . .

...
...

θ1Λn
1 θ2Λn

2 . . .θnΛn
n 02

∣∣∣∣∣∣∣∣∣∣∣
x

, (4.12)

where

θiΛ
k
i =

(
φ2i−1 (−1)kφ2i

fiφ2i−1 (−1)k+1φ2i

)
λ

k
i , (4.13)

where i = 1, . . . ,n, k = 0, . . . ,n and fi is a solution of the Riccati equations (4.6)-(4.7).
Let

Θ = (θ1, . . . ,θn) =

(
φ

ψ

)
, (4.14)

where φ = (φ1,φ2, . . . ,φ2n−1,φ2n) and ψ = ( f1φ1,− f1φ2, . . . , fnφ2n−1,− fnφ2n) denote 1× 2n row
vectors. Thus, (4.12) can be rewritten as

σ
nR[n+1]σ

n = R+

∣∣∣∣∣Θ 02

Θ̂ E

∣∣∣∣∣
x

, (4.15)
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where Θ̂ =
(

θiΛ
j
i

)
i, j=1,...,n

and E = (e1,e2) denote 2n×2n and 2n×2 matrices respectively, where

ei represents a column vector with 1 in the ith row and zeros elsewhere. Hence, we obtain

σ
nR[n+1]σ

n = R+



∣∣∣∣∣ φ 0
Θ̂ e1

∣∣∣∣∣
x

∣∣∣∣∣ φ 0
Θ̂ e2

∣∣∣∣∣
x∣∣∣∣∣ψ 0

Θ̂ e1

∣∣∣∣∣
x

∣∣∣∣∣ψ 0
Θ̂ e2

∣∣∣∣∣
x

 , (4.16)

where it can be easily shown that ∣∣∣∣∣ φ 0
Θ̂ e1

∣∣∣∣∣=
∣∣∣∣∣ψ 0
Θ̂ e2

∣∣∣∣∣= 0 . (4.17)

The pair of q[n+1] and r[n+1] are derived from the above matrix expression with respect to n which
is odd (n = 2k−1) or even number (n = 2k), where k ∈ N is a positive integer.

In the case of n odd (n = 2k−1)

q[n+1] = r+

∣∣∣∣∣ψ 0
Θ̂ e1

∣∣∣∣∣
x

, (4.18)

r[n+1] = q+

∣∣∣∣∣ φ 0
Θ̂ e2

∣∣∣∣∣
x

. (4.19)

Thus, we obtain

q[n+1] = r+
∣∣∣∣ f 0
Ωq e1

∣∣∣∣
x
, (4.20)

r[n+1] = q+
∣∣∣∣ 1 0
Ωr e1

∣∣∣∣
x
, (4.21)

where e1 = (1,0, . . . ,0)T , 1= (1,1, . . . ,1), f= ( f1, f2, . . . , fn) and

Ωq =



λ1 λ2 . . . λn

f1λ 2
1 f2λ 2

2 . . . fnλ 2
n

λ 3
1 λ 3

2 . . . λ 3
n

...
...

...
...

f1λ
n−1
1 f2λ

n−1
2 . . . fnλ n−1

n
λ n

1 λ n
2 . . . λ n

n


, Ωr =



f1λ1 f2λ2 . . . fnλn

λ 2
1 λ 2

2 . . . λ 2
n

f1λ 3
1 f2λ 3

2 . . . fnλ 3
n

...
...

...
...

λ
n−1
1 λ

n−1
2 . . . λ n−1

n
f1λ n

1 f2λ n
2 . . . fnλ n

n


. (4.22)
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For n = 1, we obtain the pair of new solutions for the couple DNLS equations (2.1)-(2.2)

q[2] = r+
∣∣∣∣ f1 0
λ1 1

∣∣∣∣
x

= r− 1
λ1

f1,x, (4.23)

r[2] = q+
∣∣∣∣ 1 0

f1λ1 1

∣∣∣∣
x

= q− 1
λ1

(
1
f1

)
x
, (4.24)

where f1 is a solution of the Riccati equations (4.6)-(4.7).

In the case of n even (n = 2k)

q[n+1] = q+

∣∣∣∣∣ φ 0
Θ̂ e2

∣∣∣∣∣
x

, (4.25)

r[n+1] = r+

∣∣∣∣∣ψ 0
Θ̂ e1

∣∣∣∣∣
x

. (4.26)

Thus, we obtain

q[n+1] = q+
∣∣∣∣ 1 0
fq e1

∣∣∣∣
x
, (4.27)

r[n+1] = r+
∣∣∣∣ f 0
fr e1

∣∣∣∣
x
, (4.28)

where e1 = (1,0, . . . ,0)T , 1= (1,1, . . . ,1), f= ( f1, f2, . . . , fn) and

fq =



f1λ1 f2λ2 . . . fnλn

λ 2
1 λ 2

2 . . . λ 2
n

f1λ 3
1 f2λ 3

2 . . . fnλ 3
n

...
...

...
...

f1λ
n−1
1 f2λ

n−1
2 . . . fnλ n−1

n
λ n

1 λ n
2 . . . λ n

n


, fr =



λ1 λ2 . . . λn

f1λ 2
1 f2λ 2

2 . . . fnλ 2
n

λ 3
1 λ 3

2 . . . λ 3
n

...
...

...
...

λ
n−1
1 λ

n−1
2 . . . λ n−1

n
f1λ n

1 f2λ n
2 . . . fnλ n

n


. (4.29)

For n = 2, we have
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q[3] = q+

∣∣∣∣∣∣
1 1 0

f1λ1 f2λ2 1
λ 2

1 λ 2
2 0

∣∣∣∣∣∣
x

, (4.30)

r[3] = r+

∣∣∣∣∣∣
f1 f2 0
λ1 λ2 1

f1λ 2
1 f2λ 2

2 0

∣∣∣∣∣∣
x

. (4.31)

Thus, we obtain the pair of new solutions for the couple DNLS equations (2.1)-(2.2)

q[3] = q+
λ 2

1 −λ 2
2

λ1λ2

(
1

λ2 f1−λ1 f2

)
x
, (4.32)

r[3] = r− λ 2
1 −λ 2

2
λ1λ2

(
f1 f2

λ1 f1−λ2 f2

)
x
, (4.33)

where f1 and f2 are two distinct solutions of the Riccati equations (4.6)-(4.7).

Reduction

The eigenvalues λk have to be real or pairs of complex conjugate values when we choose the reduc-
tion r[k] = q∗[k]. This reduction condition gives the following relations:

fk f ∗k = 1 for real λk, (4.34)

fm =
1
f ∗k

when λm = λ
∗
k (m 6= k), (4.35)

where fi is a solution of the Riccati equations (4.6)-(4.7) (i,k,m ∈ N).

5. Particular solutions

5.1. Solutions for the vacuum

For q = r = 0, the Riccati equations (4.6)-(4.7) transforms into the first-order linear system

fx−2λ
2i f = 0 (5.1)

ft −4iλ 4 f = 0 (5.2)

which has a solution

f = ce2λ 2(x+2λ 2t)i, (5.3)

where c is an arbitrary integration constant.
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Case 1 (n = 1)

For one single Darboux transformation-due to the required reduction r = q∗, we have to take λ1 = λ

real and |c|= 1. By choosing arbitrary constant c = 1, we have

f1 = e2λ 2
1 (x+2λ 2

1 t)i. (5.4)

By substituting f1 into (4.23), we obtain a new solution q[2] for DNLS equation (1.1) as

q[2] =−2iλ1e2λ 2
1 (x+2λ 2

1 t)i, (5.5)

where r[2] =
(
q[2]
)∗.

This, of course, is not a soliton but a periodic solution. It is obvious that
∣∣q[2]∣∣2 = constant so it

satisfies a linear equation iqt + cqx +qxx = 0 obtained from (1.1), where c is a constant. Thus, it is
not an interesting solution we would like to have by the Darboux transformation.

Case 2 (n = 2)

Substituting f1 = e2λ 2
1 (x+2λ 2

1 t)i and f2 = e2λ 2
2 (x+2λ 2

2 t)i into (4.32) and then letting λ1 = ξ +η and
λ2 = ξ −η , we obtain a new solution q[3] for DNLS equation (1.1) as

q[3] = −2i
(
λ

2
1 −λ

2
2
) λ1 f1−λ2 f2

(λ2 f1−λ1 f2)
2 (5.6)

= −4iξ η
(η cosF +ξ isinF)3

(ξ 2 +(η2−ξ 2)cos2 F)2 e−iG, (5.7)

where F = 4ξ η
(
x+4

(
ξ 2 +η2

)
t
)

and G = 2
(
ξ 2 +η2

)
x+4

(
ξ 4 +6ξ 2η2 +η4

)
t.

In order that r[3] = q∗[3], λ1 and λ2 are either real (ξ ,η ∈ R) or complex conjugate eigenvalues
(ξ ∈ R,η ∈ iR). This solution holds in both cases. For real eigenvalues λ1,λ2 ∈ R, both F,G are
real and for the complex case, G is real while F = iH is purely imaginary. For the complex case,
taking λ1,2 = κ± iτ , where ξ = κ and η = iτ , (5.7) gives soliton solution of the DNLS generated
by the two-fold Darboux transformation

q[3] =−4iκτ
(τ coshH + iκ sinhH)3(
κ2− (κ2 + τ2)cosh2 H

)2 e−iG, (5.8)

where G = 2
(
κ2− τ2

)
x+4

(
κ4−6κ2τ2 + τ4

)
t and H = 4κτ

(
x+4

(
κ2− τ2

)
t
)

are real functions.

5.2. Solutions for non-zero seeds

For q,r 6= 0 and r = q∗, we can easily find a periodic solution

q = keia[x−(a−k2)t] (5.9)

of the DNLS equation (1.1), where a and k are real numbers. We use this as the seed solution for
application of Darboux transformations.
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We already know that the solution of (1.1) is given in terms of solutions fi of Riccati system
(4.6)-(4.7). For given q in (5.9), we will solve the Riccati system for the function f (x, t). If we define

f = µ(x, t)e−iα , (5.10)

where α = a
[
x− (a− k2)t

]
, as a solution of the Riccati system (4.6)-(4.7) for given q in (5.9), we

end up with the single Riccati equation with constant coefficients

µx +λkµ
2− i

(
a+2λ

2)
µ−λk = 0, (5.11)

where µt =
(
k2−a+2λ 2

)
µx. By letting

µ =
ux

λku
, (5.12)

the Riccati equation (5.11) transforms into the second-order linear partial differential equation with
constant coefficients

uxx− i
(
a+2λ

2)ux−λ
2k2u = 0, (5.13)

where ut =
(
k2−a+2λ 2

)
ux. Solving this equation and then substituting u into (5.11), we obtain

the general solution of the Riccati equation as

µ(x, t) =
1

2λk

(
Ai+D

c1e
1
2 D(x+Bt)− c2e−

1
2 D(x+Bt)

c1e
1
2 D(x+Bt)+ c2e−

1
2 D(x+Bt)

)
, (5.14)

where

A = a+2λ
2, B = k2−a+2λ

2, D =
√

4λ 2k2−A2, (5.15)

and c1, c2 integration constants, obtained from (5.13).

Case 3 (n = 1)

For single real eigenvalue λ1, substituting r = ke−iα and f1 = µ1(x, t)e−iα into (4.23) gives the
solution

q[2] = µ1 (kµ1−2iλ1)e−iα , (5.16)

where α(x, t) = a
[
x−a

(
a− k2

)
t
]

and µ1 = µ is given in (5.14) with relabeled coefficients A1 =

A, B1 = B, D1 = D such that |µ1|= 1 and A1 = a+2λ 2
1 , B1 = k2−a+2λ 2

1 , D1 =
√

4k2λ 2
1 −A2

1 .
It is such that ∣∣q[2]∣∣2 = |kµ1−2iλ1|2 . (5.17)

We show below that D2
1 < 0 and D2

1 > 0 produce the periodic and soliton solutions respectively.
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Periodic solution

For D2
1 = 4k2λ 2

1 −
(
a+2λ 2

1
)2

< 0, (5.14) gives us

µ1(x, t) = i

(
ke

1
2 iβ1 +2λ1e−

1
2 iβ1

2λ1e
1
2 iβ1 + ke−

1
2 iβ1

)
(5.18)

in which have chosen k2 = 2a, where β1(x, t) =
(
a−2λ 2

1
)[

x+
(
a+2λ 2

1
)

t
]
. It can be easily seen

that the relation µ1µ∗1 = 1 holds. By substituting µ1 into (5.17), we obtain

∣∣q[2]∣∣2 = 2
(
a−2λ 2

1
)

a+2λ 2
1 +2kλ1 cosβ1

, (5.19)

which is a periodic solution.

Soliton solution

For D2
1 = 4k2λ 2

1 −
(
a+2λ 2

1
)2

> 0, (5.17) gives soliton solution as

∣∣q[2]∣∣2 = k2−2a− D2
1

(a+2λ 2
1 )/2+δλ1k coshγ1

, (5.20)

where γ1(x, t) = D1
[
x+
(
k2−2a+2λ 2

1
)

t
]

and δ =±1.

Case 4 (n = 2)

In this case, we have two eigenvalues λ1 and λ2. For solutions such that r = q∗, these eigenvalues
are either real or complex conjugate to each other and satisfy the relations | f1|= | f2|= 1 or f1 f ∗2 =

1 respectively, where f1 and f2 are two distinct solutions for the Riccati system (4.6)-(4.7). By
substituting q = keiα and f1 = µ1(x, t)e−iα , f2 = µ2(x, t)e−iα into (4.32), we have the following
solution

q[3] =
(

kF2−2iΛ
F2

1

)
F2eiα , (5.21)

where α(x, t)= a
[
x−
(
a− k2

)
t
]
, Λ= λ 2

1 −λ 2
2 , F1(x, t)= λ2µ1−λ1µ2, F2(x, t)= λ1µ1−λ2µ2. Here

µ1(x, t) and µ2(x, t) are two distinct solutions, given by (5.14), for the Riccati equation with constant
coefficients (5.11). The functions µ1,µ2 with the eigenvalues λ1,λ2 either hold (R1) µ1µ∗1 = µ2µ∗2 =

1 for λ1,λ2 ∈ R and so Λ is real or (R2) µ1µ∗2 = 1 for λ2 = λ ∗1 and so Λ is pure imaginary. The
solution above can be rewritten as ∣∣q[3]∣∣2 = ∣∣∣∣k+2

Λ

Ω1

∣∣∣∣2 , (5.22)

where Ω1 = iF2 and Ω2 = iF1. This holds for both (R1) and (R2). This result is consistent with [24].
This can be rewritten as ∣∣q[3]∣∣2 = k2±2

Λ

|Ω1|2
[2Λ+ k (Ω1±Ω

∗
1)] , (5.23)

which holds for (R1) and (R2) respectively. An example for (R1) is given below.
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Periodic solution

We have periodic solution for the choice (R1) with k2 = 2a as∣∣q[3]∣∣2 = k2 +
m0 +m1 cosβ1 +m2 cosβ2

n0 +n1 cosβ1 +n2 cosβ2 +n3 cosβ3
, (5.24)

where

β1 =
(
a−2λ

2
1
)[

x+
(
a+2λ

2
1
)

t
]
,

β2 =
(
a−2λ

2
2
)[

x+
(
a+2λ

2
2
)

t
]
,

β3 = 2Λ
[
x+2

(
λ

2
1 +λ

2
2
)

t
]
,

and

m0 = 4Λ

[(
a−2λ

2
1
)2 (

a+2λ
2
2
)
−
(
a+2λ

2
1
)(

a−2λ
2
2
)2
]
,

m1 = −8kλ1Λ
(
a−2λ

2
2
)2
,

m2 = 8kλ2Λ
(
a−2λ

2
1
)2
,

n0 =
(
a−2λ

2
1
)2 (

a+2λ
2
2
)
+
(
a+2λ

2
1
)(

a−2λ
2
2
)2− k2 (a−2λ

2
1
)(

a−2λ
2
2
)
,

n1 = 4kλ1Λ
(
a−2λ

2
2
)
,

n2 = −4kλ2Λ
(
a−2λ

2
1
)
,

n3 = −4λ1λ2
(
a−2λ

2
1
)(

a−2λ
2
2
)
.

In the second case (R2), a similar result is obtained expressed in terms of sines-cosines and hyper-
bolic sines-cosines.

6. Conclusion

In this paper, we have established and proved a new theorem for Darboux transformation of oper-
ators with no derivative term. This has a similar structure to the theorem on the standard Darboux
transformation for general operators. We have constructed solutions in quasideterminant forms for
the DNLS equation. These quasideterminants are expressed in terms of fi functions, where fi(i∈N)
are solutions of Riccati systems. It should be pointed out that these solutions are derived from lin-
ear eigenvalue problems L(Φ) = M(Φ) = 0, where Φ = (φ ,ψ)T and the linear operators L, M are
given in (2.3)-(2.4). By letting fi = ψi/φi in (4.20)-(4.22) and (4.27)-(4.29), we easily write down
the quasideterminant solutions in terms of solutions φi,ψi of linear partial differential equations
(eigenvalue problems) as given in [28].

It should be emphasised that these solutions arise naturally from the Darboux transformation we
present here. Our theorem provides a natural and universal approach for operators with no derivative
term. Furthermore, for the DNLS equation, parametric and soliton solutions for zero and non-zero
seeds have been presented here. Finally, it is important to point out that our approach can be applied
to other integrable systems in which their Lax operators have no derivative term.
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