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1. Introduction

The Camassa-Holm (CH) equation

mt +umx +2uxm = 0, m = u−uxx, (1.1)

was derived by Camassa and Holm from an approximation to the incompressible Eluer equa-
tions [3], and found to be completely integrable with a Lax pair and associated bi-Hamiltonian
structure [4]. The CH equation has been studied in a large number of papers [1,2,5,6,9,10,14–18].
Interestingly, the CH equation is linked with the first negative flow of the KdV hierarchy by recip-
rocal transformation [10]. But unlike KdV equation, the CH equation admits peaked soliton solu-
tions [1–4]. Besides the CH equation, many other systems with peaked soliton solutions have been
constructed.

In 1999, Degasperis-Procesi presented a new equation with peaked solutions

mt +umx +3uxm = 0, m = u−uxx, (1.2)

which is known as DP equation [7]. The DP equation is integrable with a bi-Hamiltonian structure
and a Lax pair associated with a third-order spectral problem [8]. Both CH equation and DP equation
have nonlinear terms that are quadratic.

Recently, Vladimir Novikov found a new equation with cubic nonlinearity

mt +u2mx +3uuxm = 0, m = u−uxx, (1.3)

from his symmetry classification study of nonlocal partial differential equations [20]. In [12], Hone
and Wang gave a matrix Lax pair, infinitely many conserved quantities as well as a bi-Hamiltonian
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structure of the Eq. (1.3) which is also named Novikov equation. Very recently, Geng and Xue
constructed a two-component generalization for the Novikov equation (1.3)

mt +3uxvm+uvmx = 0,

nt +3vxun+uvnx = 0, (1.4)

m = u−uxx, n = v− vxx,

which was associated with a 3× 3 matrix spectral problem, they also gave the N peakons, infinite
sequence of conserved quantities and a Hamiltonian structure [11]. In 2013, Li and Liu showed the
system (1.4) was indeed a bi-Hamiltonian structure and got the Hamiltonian operators found by
Hone and Wang for the Novikov equation (1.3) using the proper Dirac reduction [19].

The purpose of this paper is to construct the bi-Hamiltonian system for the multi-component
Novikov equation

qit =
n

∑
j=1

[−2qiu jxv j−qiu jv jx−qixu jv j−uixq jv j +uiq jv jx],

rit =
n

∑
j=1

[−2riu jv jx− riu jxv j− rixu jv j− vixr ju j + vir ju jx], (1.5)

qi = ui−uixx, ri = vi− vixx, i = 1,2, ...,n,

where qit =
∂qi(x,t)

∂ t ,rit =
∂ ri(x,t)

∂ t ,u jx =
∂u j(x,t)

∂x ,v jx =
∂v j(x,t)

∂x , i, j = 1,2, ...,n, and so on. When n =

1,q = m,r = n the Eq. (1.5) reduces to the two-component system (1.4). Moreover the system (1.5)
can reduce to the Eqs. (1.2) and (1.3) as n = 1,q = m,v = 1 and n = 1,q = m,v = u respectively.
It’s worthwhile to note that there is also research on other multi-component CH-type equations
[13, 22, 23].

2. Bi-Hamiltonian structure of multi-component Novikov equation

Possession of the bi-Hamiltonian structure is an important property of soliton equations and all
soliton equations are turn out to be bi-Hamiltonian systems. In this section, we derive the bi-
Hamiltonian structure of multi-component Novikov equation (1.5).

The multi-component Novikov equation (1.5) has the equivalent form

Qt =−2〈Ux,V 〉Q−〈U,Vx〉Q−〈U,V 〉Qx−〈Q,V 〉Ux + 〈Q,Vx〉U,

Rt =−2〈U,Vx〉R−〈Ux,V 〉R−〈U,V 〉Rx−〈R,U〉Vx + 〈R,Ux〉V, (2.1)

where 〈,〉 denotes the inner product and Q,R,U,V are the n-component vector potentials defined as

Q = (q1,q2, ...,qn)
T , R = (r1,r2, ...,rn)

T , U = (u1,u2, ...,un)
T , V = (v1,v2, ...,vn)

T ,

Q =U−Uxx, R =V −Vxx,

and T is the transpose of a vector, and UT
x = ∂UT

∂x as well.
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The system (2.1) arises as a zero-curve equation

Mt −Nx +[M, N] = 0, (2.2)

this being the compatibility condition of the (n+2)× (n+2) matrix spectral problem

ϕx = Mϕ, ϕt = Nϕ, (2.3)

with

M =

 0 λQT 1
0T 0n×n λR
1 0 0

 , N =

−UT
x V UT

x
λ
−λUTV QT UT

x Vx
V
λ
− In

λ 2 +VUT
x −VxUT −Vx

λ
−λUTV R

−UTV UT

λ
UTVx

 , (2.4)

where 0 and 0n×n are respectively n dimension row vector and n× n zero matrix, λ is a constant
spectral parameter and In denotes the n×n identity matrix. It is worth noting that the matrix spectral
problem (2.3) is the vector prolongation of the spectral problem in [11], so the system (2.1) is also
a negative flow in the hierarchy.

To compute the bi-Hamiltonian structure of the system (2.1), we consider an integrable hierarchy
which consists of (2.1), i.e., the N in time part of (2.3) is

N =

 N1,1 A N1,n+2

B S C
Nn+2,1 D Nn+2,n+2

 , (2.5)

where B, C and A, D are respectively n dimension column and row vectors depending on vector
potentials Q, R and spectral parameter λ . S and the remaining entries are respectively n×n matrix
and functions depending on vector potentials Q, R and spectral parameter λ .

Substituting M and N respectively in (2.4) and (2.5) into (2.2), we get

C =−Bx +λRNn+2,1, A = Dx +λNn+2,1QT , N11 = (Nn+2,1)x +Nn+2,n+2,

S = λ∂
−1(RD−BQT ), Nn+2,1 = λ (∂ 3−4∂ )−1(3QT Bx +QT

x B+3DxR+DRx),

(N1,n+2)x +(Nn+2,1)x +λ (QT Bx +DxR) = 0, Nn+2,n+2 =−
1
2
(Nn+2,1)x +

1
2

λ∂
−1(QT B−DR),

and (
Q
R

)
t
= (λ−1K +λJ )

(
B

DT

)
, (2.6)

where

K =

(
0 (∂ 2−1)In

(1−∂ 2)In 0

)
, (2.7)

J = J1 +J2, (2.8)

with

J1 =

( 3
2 Q∂ +Qx
3
2 R∂ +Rx

)
(∂ 3−4∂ )−1 (3QT ∂ +QT

x 3RT ∂ +RT
x
)
,

J2 =

( 1
2 Q∂−1QT +(Q∂−1QT )T −1

2 Q∂−1RT −QT ∂−1RIn

−1
2 R∂−1QT −RT ∂−1QIn

1
2 R∂−1RT +(R∂−1RT )T

)
.
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Obviously, the operators K and J are skew-symmetric, furthermore the operator K is a
Hamiltonian operator. In the following, we show how the Jacobi identity for the operator J and
compatibility for the operators K and J may be checked by the multivector approach to Hamil-
tonian systems in infinite dimensions, as described in the work of Olver [21].

Our main results are summarized as

Theorem 2.1. The multi-component Novikov system (2.1) may be reformulated as a bi-Hamiltonian
system (

Q
R

)
t
= K

(
δH0
δm
δH0
δn

)
= J

(
δH1
δm
δH1
δn

)
(2.9)

where the operators K and J are given by (2.7) and (2.8) respectively, and

H0 =
1
2

∫
〈Q,V 〉〈Ux,V 〉−〈R,U〉〈Vx,U〉+(〈R,Ux〉−〈Q,Vx〉)〈U,V 〉dx,

H1 =
1
2

∫
〈Q,V 〉+ 〈R,U〉dx.

Before the proof of the Theorem 2.1, please allow us give a brief explanation of the Olver’s tech-
nique [21]. Let θ denote the basic uni-vector corresponding to potential, D is any skew-symmetry
operator depending on a spatial variable x and the potential. In the proof procedure, we have mainly
used the following three properties:

• the basic property of wedge product∫
ξ ∧ηdx = (−1)mn

∫
η ∧ξ dx, (2.10)

for any m-form ξ and n-form η .
• the skew-symmetry of the operator D∫

ξ ∧Dηdx =−
∫
(Dξ )∧ηdx. (2.11)

• the prolongation

−PrVDθ (θ ∧Dθ) = θ ∧PrVDθ (D)∧θ , (2.12)

the minus sign coming from the fact that we have interchanged a wedge product of θ ’s
using the formula (2.10).

Proof. Assume that θ1 = (θ11,θ12, · · · ,θ1n)
T ,θ2 = (θ21,θ22, · · · ,θ2n)

T are the basic uni-vectors
corresponding to Q and R respectively. We know that the operator J is the Hamiltonian if and
only if

PrVJ θ (ΘJ ) = PrVJ θ (ΘJ1)+PrVJ θ (ΘJ2) = 0, (2.13)

where θ =

(
θ1

θ2

)
and

ΘJ =
1
2

∫
(θ ∧J θ)dx = ΘJ1 +ΘJ2 =

1
2

∫
(θ ∧J1θ)dx+

1
2

∫
(θ ∧J2θ)dx,

is the associated bi-vector of J .
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To check whether K and J form a bi-Hamiltonian pair, we only need to prove

PrVK θ (ΘJ ) = PrVK θ (ΘJ1)+PrVK θ (ΘJ2) = 0. (2.14)

The proof of the Theorem 2.1 is rather technical and lengthy, so are given in Appendix A.

According to the bi-Hamiltonian theory, the Hamiltonian pair K ,J gives rise to the hereditary
recursion operator R = J K −1. The recursion operator acting on a seed symmetry of the soliton
equation can generate an infinite sequence of symmetries. Assume the seed symmetry of (2.1) is
(0,0)T , then we get the sequence of symmetries

σn = Rn(0,0)T , n = 0,1,2, · · · . (2.15)

As n = 1, the above expression (2.15) is the local symmetry

σ1 =

(
−2〈Ux,V 〉Q−〈U,Vx〉Q−〈U,V 〉Qx−〈Q,V 〉Ux + 〈Q,Vx〉U
−2〈U,Vx〉R−〈Ux,V 〉R−〈U,V 〉Rx−〈R,U〉Vx + 〈R,Ux〉V

)
which is just the right side of the equality (2.1). This is natural.

But when n = 2, the recursion formula (2.15) leads to the nonlocal symmetry

σ2 =

(
σ21

σ22

)
, (2.16)

where

σ21 = (
3
2

Q∂ +Qx)(∂
3−4∂ )−1(3〈Q,Φ1x〉+ 〈Qx,Φ1〉−3〈R,Φ2x〉−〈Rx,Φ2〉)

+
1
2

Q∂
−1(〈Q,Φ1〉+ 〈R,Φ2〉)+(Q∂

−1QT )T
Φ1 +QT

∂
−1RInΦ2,

σ22 = (
3
2

R∂ +Rx)(∂
3−4∂ )−1(3〈Q,Φ1x〉+ 〈Qx,Φ1〉−3〈R,Φ2x〉−〈Rx,Φ2〉)

−1
2

R∂
−1(〈Q,Φ1〉+ 〈R,Φ2〉)− (R∂

−1RT )T
Φ2−RT

∂
−1QInΦ1,

and Φ1, Φ2 are nonlocal variables defined by

Φ1 = (1−∂
2)−1Rt , Φ2 = (1−∂

2)−1Qt .

For example, let us consider the reduction: the Q and R are both one-dimensional scalar func-
tions, and R = Q as well. A local symmetry under the reduction must be local. We will demonstrate
the symmetry σ2 under the reduction is nonlocal. Set the symmetry σ2 in (2.16) under the constraint
is σ̂2, then

σ̂2 =

(
3Q∂−1(QΨ)

−3Q∂−1(QΨ)

)
,

where Ψ = (1− ∂ 2)−1Qt with Qt = −4u2ux + u2uxxx + 3uuxuxx. If σ̂2 is local, Ψ must be a local
variable, i.e., there is a function f (x,u,ux) that satisfies

(1−∂
2)−1(−4u2ux +u2uxxx +3uuxuxx) = f (x,u,ux). (2.17)

But after calculation, we find there is no function f (x,u,ux) that satisfies the equality (2.17), so σ̂2

is nonlocal and then σ2 is a nonlocal symmetry.
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Therefore, from the recursion formula (2.15), we can obtain an infinite sequence of higher order
nonlocal symmetries of the system (2.1).
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Appendix A.

First, we prove that the operator J is Hamiltonian, namely to verify (2.13). To simplify the pre-
sentation and calculations, we introduce Q̃ and R̃ as

Q̃ = (∂ 3−4∂ )−1(3QT
θ1x +QT

x θ1), R̃ = (∂ 3−4∂ )−1(3RT
θ2x +RT

x θ2). (A.1)

From (2.8), we have

J1θ =

(
3
2 Q(Q̃+ R̃)x +Qx(Q̃+ R̃)
3
2 R(Q̃+ R̃)x +Rx(Q̃+ R̃)

)
=



3
2 q1(Q̃+ R̃)x +q1x(Q̃+ R̃)

...
3
2 qn(Q̃+ R̃)x +qnx(Q̃+ R̃)
3
2 r1(Q̃+ R̃)x + r1x(Q̃+ R̃)

...
3
2 rn(Q̃+ R̃)x + rnx(Q̃+ R̃)


, (A.2)

and

J2θ =

( 1
2 Q∂−1(QT θ1−RT θ2)+(Q∂−1QT )T θ1−QT ∂−1RInθ2

−1
2 R∂−1(QT θ1−RT θ2)−RT ∂−1QInθ1 +(R∂−1RT )T θ2

)

=



1
2 q1∂−1(QT θ1−RT θ2)+∑

n
i=1 qi∂

−1(q1θ1i− riθ21)
...

1
2 qn∂−1(QT θ1−RT θ2)+∑

n
i=1 qi∂

−1(qnθ1i− riθ2n)

−1
2 r1∂−1(QT θ1−RT θ2)−∑

n
i=1 ri∂

−1(qiθ11− r1θ2i)
...

−1
2 rn∂−1(QT θ1−RT θ2)−∑

n
i=1 ri∂

−1(qiθ1n− rnθ2i)


. (A.3)

Then the associated bi-vectors for J1 and J2 are respectively

ΘJ1 =
1
2

∫
(θ ∧J1θ)dx

=
1
2

∫ (
θ1

θ2

)
∧

(
3
2 Q(Q̃+ R̃)x +Qx(Q̃+ R̃)
3
2 R(Q̃+ R̃)x +Rx(Q̃+ R̃)

)
dx

=
1
2

n

∑
j=1

∫
[
3
2
(θ1 j ∧q j +θ2 j ∧ r j)(Q̃+ R̃)x +(θ1 j ∧q jx +θ2 j ∧ r jx)(Q̃+ R̃)]dx

=−1
4

n

∑
j=1

∫
(q jxθ1 j +3q jθ1 jx + r jxθ2 j +3r jθ2 jx)∧ (Q̃+ R̃)dx, (A.4)
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and

ΘJ2 =
1
2

∫
(θ ∧J2θ)dx

=
1
2

∫ (
θ1

θ2

)
∧
( 1

2 Q∂−1(QT θ1−RT θ2)+(Q∂−1QT )T θ1−QT ∂−1RInθ2

−1
2 R∂−1(QT θ1−RT θ2)−RT ∂−1QInθ1 +(R∂−1RT )T θ2

)
dx

=
1
2

∫
[
1
2
(θ1∧Q−θ2∧R)∂−1(QT

θ1−RT
θ2)+θ1∧ (Q∂

−1QT )T
θ1−θ1∧QT

∂
−1RInθ2

+θ2∧ (R∂
−1RT )T

θ2−θ2∧RT
∂
−1QInθ1]dx

=
1
2

n

∑
i, j=1

∫
[
1
2
(θ1 j ∧q j−θ2 j ∧ r j)∂

−1(qiθ1i− riθ2i)+θ1 j ∧qi∂
−1q jθ1i +θ2 j ∧ ri∂

−1r jθ2i

−θ1 j ∧qi∂
−1riθ2 j−θ2 j ∧ ri∂

−1qiθ1 j]dx

=
1
2

n

∑
i, j=1

∫
[
1
2
(θ1 j ∧q j−θ2 j ∧ r j)∂

−1(qiθ1i− riθ2i)+θ1 j ∧qi∂
−1(q jθ1i− riθ2 j)

+θ2 j ∧ ri∂
−1(r jθ2i−qiθ1 j)]dx. (A.5)

In the equality (A.4), we have applied integration by parts which is a special case of (2.11) to the
terms which contain explicitly (Q̃+ R̃)x.

We calculate

PrVJ θ (ΘJ1) =
n

∑
j=1

∫
[−3

2
θ1 jx∧ (

3
2

q j(Q̃+ R̃)x +q jx(Q̃+ R̃)+
1
2

q j∂
−1(QT

θ1−RT
θ2)

+
n

∑
i=1

qi∂
−1(q jθ1i− riθ2 j))−

1
2

θ1 j ∧ (
3
2

q j(Q̃+ R̃)x +q jx(Q̃+ R̃)

+
1
2

q j∂
−1(QT

θ1−RT
θ2)+

n

∑
i=1

qi∂
−1(q jθ1i− riθ2 j))x

−3
2

θ2 jx∧ (
3
2

r j(Q̃+ R̃)x + r jx(Q̃+ R̃)− 1
2

r j∂
−1(QT

θ1−RT
θ2)

−
n

∑
i=1

ri∂
−1(qiθ1 j− r jθ2i))−

1
2

θ2 j ∧ (
3
2

r j(Q̃+ R̃)x + r jx(Q̃+ R̃)

−1
2

r j∂
−1(QT

θ1−RT
θ2)−

n

∑
i=1

ri∂
−1(qiθ1 j− r jθ2i))x]∧ (Q̃+ R̃)dx

=
n

∑
j=1

∫
[(−9

4
q jθ1 jx−

5
4

q jxθ1 j−
9
4

r jθ2 jx−
5
4

r jxθ2 j)∧ (Q̃+ R̃)x

+(−3
4

q jθ1 j−
3
4

r jθ2 j)∧ (Q̃+ R̃)xx−
1
4
(q jθ1 j− r jθ2 j)∧ (QT

θ1−RT
θ2)

+(−3
4

q jθ1 jx−
1
4

q jxθ1 j +
3
4

r jθ2 jx +
1
4

r jxθ2 j)∧∂
−1(QT

θ1−RT
θ2)

+
n

∑
i=1

((−3
2

qiθ1 jx−
1
2

qixθ1 j)∧∂
−1(q jθ1i− riθ2 j)−

1
2

qiθ1 j ∧q jθ1i

+(
3
2

riθ2 jx +
1
2

rixθ2 j)∧∂
−1(qiθ1 j− r jθ2i)−

1
2

riθ2 j ∧ r jθ2i)]∧ (Q̃+ R̃)dx
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=
n

∑
j=1

∫
[(−9

4
q jθ1 jx−

5
4

q jxθ1 j−
9
4

r jθ2 jx−
5
4

r jxθ2 j)∧ (Q̃+ R̃)x

+(
3
4

q jxθ1 j +
3
4

q jθ1 jx +
3
4

r jxθ2 j +
3
4

r jθ2 jx)∧ (Q̃+ R̃)x

+(−3
4

q jθ1 jx−
1
4

q jxθ1 j +
3
4

r jθ2 jx +
1
4

r jxθ2 j)∧∂
−1(QT

θ1−RT
θ2)

+
n

∑
i=1

((−3
2

qiθ1 jx−
1
2

qixθ1 j)∧∂
−1(q jθ1i− riθ2 j)

+(
3
2

riθ2 jx +
1
2

rixθ2 j)∧∂
−1(qiθ1 j− r jθ2i))]∧ (Q̃+ R̃)dx.

In the above, we have used the formula (2.12) and dropped some terms through (2.10), as well as
the expression ∑

n
j=1(q jθ1 j− r jθ2 j) = QT θ1−RT θ2. Moreover, we have integrated the terms which

contain explicitly (Q̃+ R̃)xx by parts.
Owing to

n

∑
j=1

∫
[(−9

4
q jθ1 jx−

5
4

q jxθ1 j−
9
4

r jθ2 jx−
5
4

r jxθ2 j)∧ (Q̃+ R̃)x

+(
3
4

q jxθ1 j +
3
4

q jθ1 jx +
3
4

r jxθ2 j +
3
4

r jθ2 jx)∧ (Q̃+ R̃)x]∧ (Q̃+ R̃)dx

=
n

∑
j=1

∫
[−1

2
(3q jθ1 jx +q jxθ1 j +3r jθ2 jx + r jxθ2 j)∧ (Q̃+ R̃)x]∧ (Q̃+ R̃)dx

=
∫
−1

2
(∂ 3−4∂ )(Q̃+ R̃)∧ (Q̃+ R̃)x∧ (Q̃+ R̃)dx

= 0, (A.6)

we obtain

PrVJ θ (ΘJ1) =
n

∑
j=1

∫
[(−3

4
q jθ1 jx−

1
4

q jxθ1 j +
3
4

r jθ2 jx +
1
4

r jxθ2 j)∧∂
−1(QT

θ1−RT
θ2)

+
n

∑
i=1

((−3
2

qiθ1 jx−
1
2

qixθ1 j)∧∂
−1(q jθ1i− riθ2 j)

+(
3
2

riθ2 jx +
1
2

rixθ2 j)∧∂
−1(qiθ1 j− r jθ2i))]∧ (Q̃+ R̃)dx. (A.7)

On the other hand, we have

PrVJ θ (ΘJ2) =
n

∑
j=1

∫
{1

2
[θ1 j ∧ (

3
2

q j(Q̃+ R̃)x +q jx(Q̃+ R̃)+
1
2

q j∂
−1(QT

θ1−RT
θ2)

+
n

∑
k=1

qk∂
−1(q jθ1k− rkθ2 j))−θ2 j ∧ (

3
2

r j(Q̃+ R̃)x + r jx(Q̃+ R̃)

−1
2

r j∂
−1(QT

θ1−RT
θ2)+

n

∑
k=1

rk∂
−1(r jθ2k−qkθ1 j))]∧∂

−1(QT
θ1−RT

θ2)

+θ1 j ∧
n

∑
i=1

[
3
2

qi(Q̃+ R̃)x +qix(Q̃+ R̃)+
1
2

qi∂
−1(QT

θ1−RT
θ2)
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+
n

∑
k=1

qk∂
−1(qiθ1k− rkθ2i)]∧∂

−1(q jθ1i− riθ2 j)

+θ2 j ∧
n

∑
i=1

[
3
2

ri(Q̃+ R̃)x + rix(Q̃+ R̃)− 1
2

ri∂
−1(QT

θ1−RT
θ2)

−
n

∑
k=1

rk∂
−1(qkθ1i− riθ2k)]∧∂

−1(r jθ2i−qiθ1 j)}dx. (A.8)

In order to understand, we divide the equality (A.8) into two parts I and II. The part I is the terms
which contain explicitly only Q̃+ R̃ or (Q̃+ R̃)x, i.e.,

I =
n

∑
j=1

∫
[((

3
4

q jθ1 j−
3
4

r jθ2 j)∧ (Q̃+ R̃)x +(
1
2

q jxθ1 j−
1
2

r jxθ2 j)∧ (Q̃+ R̃))∧∂
−1(QT

θ1−RT
θ2)

+
n

∑
i=1

((
3
2

qiθ1 j ∧ (Q̃+ R̃)x +qixθ1 j ∧ (Q̃+ R̃))∧∂
−1(q jθ1i− riθ2 j)

+(
3
2

riθ2 j ∧ (Q̃+ R̃)x + rixθ2 j ∧ (Q̃+ R̃))∧∂
−1(r jθ2i−qiθ1 j))]dx

=
n

∑
j=1

∫
[(−3

4
q jθ1 jx−

1
4

q jxθ1 j +
3
4

r jθ2 jx +
1
4

r jxθ2 j)∧ (Q̃+ R̃)∧∂
−1(QT

θ1−RT
θ2)

+
n

∑
i=1

((−3
2

qiθ1 jx−
1
2

qixθ1 j)∧ (Q̃+ R̃)∧∂
−1(q jθ1i− riθ2 j)

+(
3
2

riθ2 jx +
1
2

rixθ2 j)∧ (Q̃+ R̃)∧∂
−1(qiθ1 j− r jθ2i))]dx. (A.9)

The rest of (A.8) is as follows

II =
n

∑
j=1

∫
{1

2

n

∑
k=1

[θ1 j ∧qk∂
−1(q jθ1k− rkθ2 j)+θ2 j ∧ rk∂

−1(qkθ1 j− r jθ2k)]∧∂
−1(QT

θ1−RT
θ2)

+θ1 j ∧
n

∑
i=1

[
1
2

qi∂
−1(QT

θ1−RT
θ2)+

n

∑
k=1

qk∂
−1(qiθ1k− rkθ2i)]∧∂

−1(q jθ1i− riθ2 j)

−θ2 j ∧
n

∑
i=1

[−1
2

ri∂
−1(QT

θ1−RT
θ2)−

n

∑
k=1

rk∂
−1(qkθ1i− riθ2k)]∧∂

−1(qiθ1 j− r jθ2i)}dx

=
n

∑
j=1

∫
[θ1 j ∧

n

∑
i,k=1

qk∂
−1(qiθ1k− rkθ2i)∧∂

−1(q jθ1i− riθ2 j)

+θ2 j ∧
n

∑
i,k=1

rk∂
−1(qkθ1i− riθ2k)∧∂

−1(qiθ1 j− r jθ2i)]dx

=
n

∑
i, j,k=1

∫
[qkθ1 j ∧∂

−1(qiθ1k− rkθ2i)∧∂
−1(q jθ1i− riθ2 j)

−r jθ2k∧∂
−1(qiθ1k− rkθ2i)∧∂

−1(q jθ1i− riθ2 j)

+rkθ2 j ∧∂
−1(qkθ1i− riθ2k)∧∂

−1(qiθ1 j− r jθ2i)

+r jθ2k∧∂
−1(qiθ1k− rkθ2i)∧∂

−1(q jθ1i− riθ2 j)]dx
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=
n

∑
i, j,k=1

∫
(qkθ1 j− r jθ2k)∧∂

−1(qiθ1k− rkθ2i)∧∂
−1(q jθ1i− riθ2 j)dx

= 0. (A.10)

From (A.9) and (A.10), we have

PrVJ θ (ΘJ2) = I. (A.11)

Combining (A.7) and (A.11) gives

PrVJ θ (ΘJ ) = 0, (A.12)

so the operator J is Hamiltonian.
Secondly, we will show the compatibility of the operators K and J , i.e., the equality (2.14).
Notice that

K θ =

(
θ2xx−θ2

θ1−θ1xx

)
, (A.13)

so from the equalities (A.4) and (A.5), we obtain

PrVK θ (ΘJ1) =
n

∑
j=1

∫
[−3

2
θ1 jx∧ (θ2 jxx−θ2 j)−

1
2

θ1 j ∧ (θ2 jxx−θ2 j)x

−3
2

θ2 jx∧ (θ1 j−θ1 jxx)−
1
2

θ2 j ∧ (θ1 j−θ1 jxx)x]∧ (Q̃+ R̃)dx

=
n

∑
j=1

∫
[−1

2
(∂ 3−4∂ )(θ1 j ∧θ2 j)∧ (Q̃+ R̃)]dx

=
1
2

n

∑
j=1

∫
(θ1 j ∧θ2 j)∧ (3QT

θ1x +QT
x θ1 +3RT

θ2x +RT
x θ2)dx

=
1
2

n

∑
i, j=1

∫
(θ1 j ∧θ2 j)∧ (3qiθ1ix +qixθ1i +3riθ2ix + rixθ2i)dx, (A.14)

and

PrVK θ (ΘJ2) =
n

∑
i, j=1

∫
[
1
2
(θ1 j ∧ (θ2 jxx−θ2 j)−θ2 j ∧ (θ1 j−θ1 jxx))∧∂

−1(qiθ1i− riθ2i)

+θ1 j ∧ (θ2ixx−θ2i)∧∂
−1(q jθ1i− riθ2 j)

+θ2 j ∧ (θ1i−θ1ixx)∧∂
−1(r jθ2i−qiθ1 j)]dx

=
n

∑
i, j=1

∫
[
1
2
(θ1 j ∧θ2 jxx−θ1 jxx∧θ2 j)∧∂

−1(qiθ1i− riθ2i)

+(θ1 j ∧θ2ixx−θ1 jxx∧θ2i)∧∂
−1(q jθ1i− riθ2 j)]dx

=
n

∑
i, j=1

∫
[−1

2
(θ1 j ∧θ2 jx−θ1 jx∧θ2 j)∧ (qiθ1i− riθ2i)

−(θ1 j ∧θ2ix−θ1 jx∧θ2i)∧ (q jθ1i− riθ2 j)]dx

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

519



H.M. Li, Y.Q .Li and Y. Chen

=
n

∑
i, j=1

∫
[
1
2
(θ1 j ∧θ2 jx +θ1 jx∧θ2 j)∧ (qiθ1i + riθ2i)

−θ1 j ∧θ2 j ∧ (qiθ1ix + riθ2ix)]dx

=−1
2

n

∑
i, j=1

∫
[(θ1 j ∧θ2 j)∧ (3qiθ1ix +qixθ1i +3riθ2ix + rixθ2i)]dx. (A.15)

The Eqs. (A.14) and (A.15) lead to

PrVK θ (ΘJ ) = PrVK θ (ΘJ1)+PrVK θ (ΘJ2) = 0, (A.16)

so the operators K and J are compatible Hamiltonian operators.
Thus, we complete the proof of the Theorem 2.1.
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