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In this paper, nonlocal symmetry of the (2+1) dimensional modified generalized long dispersive wave sys-
tem and its applications are investigated. The nonlocal symmetry related to the eigenfunctions in Lax pairs is
derived, and infinitely many nonlocal symmetries are obtained. By introducing three potentials, the prolonga-
tion is found to localize the given nonlocal symmetry. Various finite- and infinite-dimensional integrable models
are constructed by using the nonlocal symmetry constraint method. Moreover, applying the general Lie symme-
try approach to the enlarged system, the finite symmetry transformation and similarity reductions are computed
to give novel exact interaction solutions. In particular, the explicit soliton-cnoidal wave solution is obtained for
the modified generalized long dispersive wave system, and it can be reduced to the two-dark-soliton solution in
one special case.

Keywords: (2+1) dimensional modified generalized long dispersive equation; nonlocal symmetry; localization;
nonlocal symmetry constraint; exact interaction solutions.

Mathematics Subject Classification 2010: 17B80, 58J70, 37K10,76B25

1. Introduction

The (2+1) dimensional Long Dispersive Wave (LDW) equation takes the form

λqt +qxx −2qV = 0,

λ rt − rxx +2rV = 0, (1.1)

Vy − (qr)x = 0 ⇒V =

∫ y

−∞
(qr)xdy′.

When λ = i and r = q∗, it is identical to the so-called the simplest (2+1) dimensional integrable
equation proposed by Fokas [8]. In particular, the reduction x = y leads the equation presented by
Fokas to the nonlinear Schrödinger equation [43].
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The real version of (1.1) has been introduced by Chakravarty, Kent and Newman [5] as a partic-
ular reduction of the self-dual Yang-Mills field equation while the complex version of (1.1) has been
discussed by Maccari [32] using the asymptotically exact reduction method with the Kadomtsev-
Petviashili equation as a starting point. The Painlevé property for the equation (1.1) has been studied
by Radha and Lakshmanan [35] for the real version and by Porsezian [34] for the complex case. In
Ref. [35], the bilinear method was applied to obtain some soliton and dromion solutions.

More recently, Cerveró and Estévez [6] have shown that Eq.(1.1) is nothing but the modified
version of the Generalized Long Dispersive Wave (GLDW) equation which has been thoroughly
studied by Boiti, León and Pempinelli [3]. Since a Miura transformation between Eq.(1.1) and the
GLDW equation was directly found by using the singularity analysis in Ref. [6], Eq. (1.1) was
called as the modified GLDW (MGLDW) equation. In a subsequent paper, Estévez [7] constructed
the Darboux transformation of MGLDW equation (1.1) by using Painlevé analysis and the singular
manifold method.

Recently, nonlocal symmetry study have attracted a lot of attention and some effective tech-
niques to find nonlocal symmetries have been proposed and developed [1, 2, 4, 9–29, 33, 36–42].
Nonlocal symmetries for partial differential equations were first studied rigorously from a geo-
metric viewpoint by Vinogradov and Krasil’shchik [21]. By introducing the notion of coverings in
the category of differential equations [22], they constructed the general theory of nonlocal sym-
metries and nonlocal conservation laws for differential equations. The Krasil’shchik-Vinogradov
theory is usually viewed as the most complete and satisfactory theory of nonlocal symmetries
[4, 10, 11, 16–18, 36–38]. In integrable system, one can obtain nonlocal symmetry by inverse recur-
sion operators, the Möbious (conformal) invariant form, Darboux transformation, Bäcklund trans-
formation and so on [2, 4, 9–29, 36–42]. In particular, these nonlocal symmetries were commonly
related to Lax pairs (pseudopotential and Bäcklund transformation) [2,4,9–29,36–42]. In this case,
Lou [19, 27] and Reyes [10, 11, 16] have presented the method how to generate an infinite number
of nonlocal symmetries starting from a parameter-dependent one without using recursion operators.

Moreover, after the derivation of nonlocal symmetry, it is necessary to inquire whether non-
local symmetries can be transformed to local ones. The general localization approach was also
provided in the Krasil’shchik-Vinogradov’s work [21]. Starting from nonlocal symmetries related
to pseudopotential, Galas [9] showed the first non-trivial instances of more explicit localization pro-
cess for several integrable equations (KdV, Harry Dym, and AKNS). He further considered how to
use these local symmetries to obtain the corresponding finite symmetry transformations and spe-
cial solutions. Other interesting results on the localization of nonlocal symmetries were given in
Refs. [11, 15, 20, 23, 24, 29, 37–42]. Considering the application for nonlocal symmetries of the
Camassa-Holm (CH) equation, the associated CH equation and the modified CH Equation, the
localization method was re-taken by Reyes in his work [4, 10, 11, 16, 17, 36].

In the process of localization, one need to extend the space of independent variables by adding
news auxiliary variables and then obtained a enlarged system embedding the original equation.
Searching for the general Lie symmetry of this enlarge system, one can get ‘localized’ nonlocal
symmetries of the augmented system. The full classifications of ‘localized’ nonlocal symmetries
for several integrable equations appeared in [4, 11, 16–18, 42] by computing the corresponding Lie
algebra. To use nonlocal symmetries to generate exact solutions is of great interest: the finite sym-
metry transformation [4,9,15,16,18,20,24,29,37–40,42], which allows one to acquire new solutions
from old ones; and similarity reduction [15, 20, 29, 40, 42], in which the group invariant solution is
deduced directly.
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On the other hand, symmetry constraint method is one of the most powerful tools to give out
new integrable models from known ones. By using general symmetry constraints, one only obtain
the lower dimensional integrable models from higher ones. In nonlocal symmetries case, the higher
dimensional integrable models can also be obtained. For instance, by introducing some inner param-
eters, Lou et al. [28] extended the usual (1+1)-dimensional AKNS system to a (2+1)-dimensional
case, which includes the Davey-Stewartson and asymmetric Nizhnik-Novikov-Veselov systems.
Other examples (Broer-Kaup system, sine-Gordon) were considered in Ref. [26, 28, 29]. Thus the
nonlocal symmetry constraint method is a natural extension of the general one.

In the present paper, we focus on the nonlocal symmetries of the MGLDW system and their
applications. A class of nonlocal symmetry related to the eigenfunctions in Lax pairs is derived, and
infinitely many nonlocal symmetries are obtained. The prolongation of the new nonlocal symmetries
is found after extending the MGLDW system to an auxiliary system with three dependent variables.
Then, various finite- and infinite-dimensional integrable models are constructed by means of the
nonlocal symmetry constraint method. Moreover, applying the general Lie symmetry approach to
the enlarged system, the finite symmetry transformation and similarity reductions are computed to
give novel exact solutions of the MGLDW system. It is worthy to mention that the explicit soliton-
cnoidal wave solution is found for the MGLDW system, and it can degenerate to the two-dark-
soliton solution in one special case.

The organization of this paper is as follows. In Section 2, the nonlocal symmetry is derived for
the MGLDW system and infinitely many nonlocal symmetries are obtained. The nonlocal symme-
try is extended to be equivalent to the Lie point symmetry of some auxiliary prolonged system. In
Section 3, various integrable systems are constructed by means of the nonlocal symmetry constraint
method. Section 4 is devoted to finding some new exact solutions by using the finite symmetry trans-
formations and similar reductions of the prolonged system. The last section contains a summary and
discussion.

2. Nonlocal symmetry and its localization

2.1. Lax pair of the MGLDW equation

In Ref. [7], in order to write down Eq.(1.1) as a system for just one field, one may set V = −mx,
then Eq.(1.1) becomes

qt +qxx +2qmx = 0,

rt − rxx −2rmx = 0, (2.1)

my +qr = 0,

where time is rescaled in the form t → λ t.
Furthermore, considering the following transformation

q =−√
my exp(−

∫
ny

2my
dx), r =

√
my exp(

∫
ny

2my
dx), (2.2)

Eq.(2.1) can be written as one field form

mt −nx = 0, (2.3)

m2
y(nyt −mxxxy)+mxy(n

2
y −m2

xy)+2my(mxymxxy −nynxy)−4m3
ymxx = 0. (2.4)
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It has been shown in Ref. [6] that there exist a Mirua transformation between Eqs.(2.3)-(2.4)
and the GLDW equation proposed by Boiti et al. [3]:

θty +(ηxy +2θθy)x = 0, ηty +(θxy +2θηy)x = 0. (2.5)

Starting from the known Lax pair of the GDLW equation, the lax pairs of the MGLW system (2.1)
and one field form (2.3)-(2.4) were constructed directly via the explicit Mirua transformation.

The MGLDW system (2.3)-(2.4) possesses the Lax pair [6, 7]

ψt −ψxx −2mxψ = 0, (2.6)

2myψxy − (mxy +ny)ψy +2m2
yψ = 0, (2.7)

and the adjoint Lax pair

φt +φxx +2mxφ = 0, (2.8)

2myφxy − (mxy −ny)φy +2m2
yφ = 0. (2.9)

2.2. Nonlocal symmetry

A symmetry σ ≡ (σ m,σ n) of the MGLDW system is defined as a solution of its linearized equations

σ m −σ n = 0, (2.10)

4σ m
xxm3

y +(12mxxσ m
y +σ m

xxxy −σ n
yt)m

2
y −σ m

xyn2
y +(3mxyσ m

xy −2mxxyσ m
y )mxy

+2[mxxxyσ m
y − (mxyσ m

xy)x −nytσ m
y +(nyσ n

y )x]my +2(nxyσ m
y −mxyσ n

y )ny = 0. (2.11)

That is to say, the MGLDW system (2.3)-(2.4) is form invariant under the following transformations

m → m+ εσ m, n → n+ εσ n,

with an infinitesimal parameter ε .
Proposition 1. The MGLDW system (2.3)-(2.4) has a nonlocal symmetry given by

σ ≡ (σ m,σ n) = (ψφ , φψx−ψφx), (2.12)

where ψ and φ satisfy the Lax pair (2.6)-(2.7) and the adjoint one (2.8)-(2.9).
Proof. By direct calculation.
Following the method in Ref. [10, 11, 16, 19, 27], one can get an infinite number of nonlocal

symmetries for the MGLDW system (2.3)-(2.4). To this end, we consider (2.6) and (2.8) in Lax
pairs as

ψt −ψxx −2mxψ −λψ = 0, (2.13)

φt +φxx +2mxφ −λφ = 0, (2.14)

where the eigenfunctions ψ and φ in Lax pairs are λ dependent, and the fields m and n are λ
independent. Then, the nonlocal symmetry for the MGLDW system (2.3)-(2.4) has the form

σ m = e−2λ tψφ , σ n = e−2λ t(φψx−ψφx). (2.15)
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Nonlocal symmetry constraints and exact interaction solutions

Let ψ = ∑∞
k=0 ψ [k]λ k and φ = ∑∞

k=0 φ [k]λ k, one has

∞

∑
k=0

ψt [k]λ k −
∞

∑
k=0

ψxx[k]λ k −
∞

∑
k=0

2mxψ [k]λ k −
∞

∑
k=0

ψ [k]λ k+1 = 0, (2.16)

∞

∑
k=0

φt [k]λ k +
∞

∑
k=0

φxx[k]λ k +
∞

∑
k=0

2mxφ [k]λ k −
∞

∑
k=0

φ [k]λ k+1 = 0. (2.17)

Equating the coefficients of λ k of (2.16) and (2.17) yields the following recursion relation

ψt [0]−ψxx[0]−2mxψ [0] = 0, (2.18)

φt [0]+φxx[0]+2mxφ [0] = 0, (2.19)

(∂t −∂xx −2mx)ψ [k] = ψ [k−1], (2.20)

(∂t +∂xx +2mx)φ [k] = φ [k−1]. (2.21)

By setting L1 = ∂t −∂xx −2mx and L2 = ∂t +∂xx +2mx, Eqs. (2.20) and (2.21) can be solved recur-
sively in terms of ψ [0] and φ [0]:

ψ [k] = L−k
1 ψ [0], (2.22)

φ [k] = L−k
2 φ [0], (2.23)

where ψ [0] and φ [0] satisfy (2.18) and (2.19).
Substituting (2.22) and (2.23) into (2.15), we can obtain

σ m = e−2λ t
∞

∑
k=0

k

∑
j=0

L− j
1 ψ [0] ·L j−k

2 φ [0]λ k, (2.24)

σ n = e−2λ t
∞

∑
k=0

k

∑
j=0

{
∂x(L

− j
1 ψ [0]) ·L j−k

2 φ [0]−L− j
1 ψ [0] ·∂x(L

j−k
2 φ [0])

}
λ k. (2.25)

Further, expanding e−2λ t as a series in λ leads to

σ m =
∞

∑
l=0

l

∑
k=0

[
k

∑
j=0

L− j
1 ψ [0] ·L j−k

2 φ [0]

]
·
[
(−2t)l−k

(l − k)!

]
λ l, (2.26)

σ n =
∞

∑
l=0

l

∑
k=0

[
k

∑
j=0

{
∂x(L

− j
1 ψ [0]) ·L j−k

2 φ [0]−L− j
1 ψ [0] ·∂x(L

j−k
2 φ [0])

}]
·
[
(−2t)l−k

(l− k)!

]
λ l. (2.27)

Finally, the set of the nonlocal symmetries can be obtained

σ m
l =

l

∑
k=0

[
k

∑
j=0

L− j
1 ψ [0] ·L j−k

2 φ [0]

]
·
[
(−2t)l−k

(l − k)!

]
, (2.28)

σ n
l =

l

∑
k=0

[
k

∑
j=0

{
∂x(L

− j
1 ψ [0]) ·L j−k

2 φ [0]−L− j
1 ψ [0] ·∂x(L

j−k
2 φ [0])

}]
·
[
(−2t)l−k

(l − k)!

]
, (2.29)

where l = 0,1,2,3, · · · and ψ [0],φ [0] satisfy (2.18) and (2.19).
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2.3. Localization of the nonlocal symmetry

As we know, the general Lie point symmetries can be applied to construct explicit solutions for
differential equations, whereas the similar calculations seem to be invalid for nonlocal symmetries.
So it is anticipated to turn the nonlocal symmetries into local ones, especially into Lie point symme-
tries. Following this idea [4,9–11,15–17,20,23,24,29,36–42], one may extend the original system
to a closed prolonged system by introducing some additional dependent variables.

In order to localize the nonlocal symmetry (2.12), we introduce ψ1 ≡ ψ1(x,y, t) and φ1 ≡
φ1(x,y, t) by

ψx = ψ1, φx = φ1, (2.30)

which leads the symmetry (2.12) to

σ m = ψφ , σ n = φψ1 −ψφ1. (2.31)

For the local symmetries of the variables ψ ,φ ,ψ1 and φ1, we need to introduce another prolonged
potential p ≡ p(x,y, t) with

px = ψφ , py =−ψyφy

my
, pt = ψxφ −φxψ , (2.32)

which means that the conditions pxt = ptx, pyt = pty and pxy = pyx are satisfied identically. Then the
inclusion of ψ1,φ1 and p yields

σ ψ =−pψ , σ φ =−pφ , σ ψ1 =−pψ1 −ψ2φ , σ φ1 =−pφ1 −φ2ψ , σ p =−p2, (2.33)

where σ ψ ,σ φ ,σ ψ1,σ φ1 and σ p denote the symmetries of ψ ,φ ,ψ1,φ1 and p, respectively.
Finally, the prolongation is closed after covering dependent variables m,n,ψ ,φ ,ψ1,φ1 and p for

the nonlocal symmetry (2.12) with the vector form

V = ψφ
∂

∂m
+(φψ1 −ψφ1)

∂
∂n

− pψ
∂

∂ψ
− pφ

∂
∂φ

− (pψ1 +ψ2φ)
∂

∂ψ1

−(pφ1 +φ2ψ)
∂

∂φ1
− p2 ∂

∂ p
. (2.34)

It is necessary to point out that if we consider the differential equation for the introduced variable
p from above localized procedure, the resulting differential equation is nothing but the Schwartz
form of the MGLDW system (2.1):

( ft
fx

)
ty
− 1

2

( f 2
t

f 2
x

)
xy
+2σ

( ft
fx

)
xxy

+
( fxxx

fx
− 3

2
f 2
xx

f 2
x

)
xy
= 0, σ 2 = 1, (2.35)

The condition (2.32), that the variable p need to satisfy, coincides with the relation between the sin-
gular manifolds and eigenfunctions (Eqs.(3.10)-(3.12) in Ref. [7]). The fact shows us that Darboux
transformation is associated with the Möbious (conformal) transformation [20, 25].
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3. Integrable models from nonlocal symmetry constraints

For a higher dimensional model, its symmetry can be used to reduce the original model to its lower
form. For instance, in Ref. [6], the authors applied the symmetry constraint conditions

nt = mt = 0, nx −ny = mx −my = 0 (3.1)

to reduce the MGLW system (2.3)-(2.4) to the AKNS equation in (1+1) dimensions and to the
nonlocal Boussineq equation, respectively.

In order to get more integrable models from the given integrable equation, one has to use the
nonlocal symmetry constraints as in [26, 28, 29]. From Proposition 1, we can easily obtain a non-
trivial nonlocal symmetry

σN ≡ (σ m
N ,σ n

N) =

(
N

∑
i=1

aiψiφi,
N

∑
i=1

ai(φiψix−ψiφix)

)
, (3.2)

where ai, i = 1,2, ...N are constants and {ψi,φi} are independent solutions the Lax pairs (2.6)-(2.9).

3.1. Finite-dimensional integrable systems

(1) Let us consider the nonlocal symmetry constraints:

mx =
N

∑
i=1

aiψiφi, nx =
N

∑
i=1

ai(φiψix−ψiφix). (3.3)

Substituting the constraint condition (3.3) to the (2.6) and (2.8), we have the usual 2N-component
AKNS system:

ψit −ψixx −2
N

∑
j=1

ajψ jφ jψi = 0, (3.4)

φit +φixx +2
N

∑
j=1

ajψ jφ jφi = 0, (3.5)

Specifically, when N = 1, ψ1 = ψ , φ1 = φ , a1 = −1, system (3.3) and (3.4) is the nonlinear
Schrödinger equation.

Substituting the constraint condition (3.3) to the (2.7) and (2.9), another part of the Lax pair
becomes the (1+1) dimensional 2N-component integrable system:

ψixy −
∑N

j=1 aj(ψ jφ j −∂−1
x ψ jφ jx)y

∑N
j=1 aj∂−1

x (ψ jφ j)y
ψiy +

N

∑
j=1

aj∂−1
x (ψ jφ j)yψi = 0, (3.6)

φixy −
∑N

j=1 aj(∂−1
x ψ jφ jx)y

∑N
j=1 aj∂−1

x (ψ jφ j)y
φiy +

N

∑
j=1

aj∂−1
x (ψ jφ j)yφi = 0. (3.7)
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To obtain the simplest form of (3.6)-(3.7), we set N = 1, ψ1 = ψ , φ1 = φ , a1 = 1. In this special
case, system (3.6)-(3.7) is reduced to

ψxy − mxy +ny

2my
ψy +myψ = 0, (3.8)

φxy − mxy −ny

2my
φy +myφ = 0, (3.9)

m = ∂−1
x ψφ , n = ∂−1

x (φψx −ψφx) (3.10)

(2) In this case, we use

my =
N

∑
i=1

aiψiφi, ny =
N

∑
i=1

ai(φiψix−ψiφix), (3.11)

as the nonlocal symmetry constraint condition of the MGLW equation. Substituting (3.11) to (2.6)
and (2.8) yields the generalized 2N-component (2+1) dimensional AKNS extension:

ψit −ψixx −2
N

∑
i=1

aj∂−1
y (ψ jφ j)xψi = 0, (3.12)

φit +φixx +2
N

∑
i=1

aj∂−1
y (ψ jφ j)xφi = 0. (3.13)

When taking N = 1, ψ1 = ψ , φ1 = φ , a1 =− 1
2 , one can get the asymmetric DS (ADS) system [28]:

ψt −ψxx +ψ∂−1
y (ψφ)x = 0, (3.14)

φt +φxx −φ∂−1
y (ψφ)x = 0, (3.15)

Substituting the nonlocal symmetry constraints (3.11) to (2.6) and (2.8), another part of the Lax
pair becomes the (1+1) dimensional 2N-component integrable system:

ψixy −
∑N

j=1 ajψ jxφ j

∑N
j=1 ajψ jφ j

ψiy +ψi

N

∑
j=1

ajψ jφ j = 0, (3.16)

φixy +
∑N

j=1 ajψ jφ jx

∑N
j=1 ajψ jφ j

φiy +φi

N

∑
j=1

ajψ jφ j = 0. (3.17)

The simplest form of (3.16)-(3.17) is

(ψy

ψ

)
x
+ψφ = 0,

(φy

φ

)
x
+φψ = 0, (3.18)

for N = 1, ψ1 = ψ , φ1 = φ and a1 = 1. The equation (3.18) becomes a coupled Liouville equation
[30]:

Hxy + exp(H +K) = 0, Kxy + exp(H +K) = 0, (3.19)

under the transformations ψ = exp(H) and φ = exp(K).
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3.2. Infinite-dimensional integrable systems

From the known nonlocal symmetries, one can also obtain some higher dimensional integrable
systems. We consider the fields {m,n} in the MGLW equation not only the functions of the explicit
{x,y, t} but also the functions of the inner space variables {z,z1,z2, . . .}. Therefore, some special
types of integrable models in any dimensional case can be derived.

The MGLW system (2.3)-(2.4) is invariant under the inner parameter (z) translation. So

mz =
N

∑
i=1

aiψiφi, nz =
N

∑
i=1

ai(φiψix−ψiφix), (3.20)

can be viewed as a new symmetry constraint condition. Acting (3.20) on the parts of Lax pairs (2.6)
and (2.8) yields the integrable models equivalent to (3.12)-(3.13) only with the variable z instead
of y. Then we can extend the generalized 2N-component AKNS system to the higher dimensional
case.

Similar to the finite dimensional case, considering (3.20) with the other parts of Lax pairs (2.7)
and (2.9) results in the following 2N-component integrable models:

ψixy −
∑N

j=1 aj∂−1
z (ψ jxφ j)y

∑N
j=1 aj∂−1

z (ψ jφ j)y
ψiy +

N

∑
j=1

aj∂−1
z (ψ jφ j)yψi = 0, (3.21)

φixy +
∑N

j=1 aj∂−1
z (ψ jφ jx)y

∑N
j=1 aj∂−1

z (ψ jφ j)y
φiy +

N

∑
j=1

aj∂−1
z (ψ jφ j)yφi = 0. (3.22)

When N = M = 1, ψ1 = ψ , φ1 = φ and a1 = 1, equation system (3.21)-(3.22) is reduced to the
simplest form:

ψxy∂−1
z (ψφ)y −∂−1

z (ψxφ)yψy +[∂−1
z (ψφ)y]

2ψ = 0, (3.23)

φxy∂−1
z (ψφ)y +∂−1

z (ψφx)yφy +[∂−1
z (ψφ)y]

2φ = 0. (3.24)

Here, we simply use the inner parameter translation symmetry (3.20) as the constraint condition
to get the higher dimensional integrable model (3.21)-(3.22). Compared with the lower dimensional
integrable models, we believe that the higher dimensional one also have many nice integrable prop-
erties but its completely integrability need to study in the further work.

4. Exact solutions from nonlocal symmetry

After making the nonlocal symmetry (2.12) be equivalent to Lie point symmetry (2.34) of the related
prolonged system successfully, the exact solutions can be constructed by Lie group theory in two
aspects.
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4.1. Finite symmetry transformation

For the obtained local symmetry in (2.34), it is natural to seek the corresponding finite transforma-
tion [4, 9, 15, 16, 18, 20, 24, 29, 37–40, 42], . By solving the initial value problem,

dm̂
dε

= ψ̂φ̂ ,
dn̂
dε

= φ̂ ψ̂1 − ψ̂φ̂1,
dψ̂
dε

=− p̂ψ̂ ,
dφ̂
dε

=− p̂φ̂ ,

dψ̂1

dε
=− p̂ψ̂1 − ψ̂2φ̂ ,

dφ̂1

dε
=− p̂φ̂1 − φ̂2ψ̂ ,

d p̂
dε

=− p̂2, (4.1)

m̂|ε=0 = m, n̂|ε=0 = n, ψ̂ |ε=0 = ψ , φ̂ |ε=0 = φ , ψ̂1|ε=0 = ψ1, φ̂1|ε=0 = φ1, p̂|ε=0 = p,

one can arrive at the symmetry group transformation theorem as follows:
Theorem 1 If {m,n,ψ ,φ ,ψ1,φ1, p} is the solution of the enlarged system (2.3)-(2.9), (2.30) and

(2.32), so is {m̂, n̂, ψ̂ , φ̂ , ψ̂1, φ̂1, p̂}, where

m̂ = m+
εψφ

1+ ε p
, n̂ = n+

ε(ψ1φ −ψφ1)

1+ ε p
, ψ̂ =

ψ
1+ ε p

, φ̂ =
φ

1+ ε p
,

ψ̂1 =
ψ1

1+ ε p
− εφψ2

(1+ ε p)2 , φ̂1 =
φ1

1+ ε p
− εψφ2

(1+ ε p)2 , p̂ =
p

1+ ε p
, (4.2)

with ε is an arbitrary group parameter.
For the original MGLDW system (2.3)-(2.4), the finite symmetry transformation can generate a

new solution from old one. So we call the transformation (4.2) in Theorem 1 as the Darboux-like
transformation, which is distinct from the Darboux transformation provided in Ref. [7]. Actually,
the transformation (4.2) is equivalent to the so-called Levi transformation [31].

As an example, considering the trivial solution m = c1y and n = c2 of the MGLDW system
(2.3)-(2.4), we can obtain the special solutions for the introduced dependent variables:

ψ = exp(k1x− c1

k1
y+ k2

1t + c10), φ = exp(k2x− c1

k2
y− k2

2t + c20),

ψ1 = k1 exp(k1x− c1

k1
y+ k2

1t + c10), φ2 = k2 exp(k2x− c1

k2
y− k2

2t + c20), (4.3)

p =
1

k1 + k2
exp[(k1 + k2)x− c1(k1 + k2)

k1k2
y+(k2

1 − k2
2)t + c10 + c20].

Substituting (4.3) into (4.2) yields the non-trivial solution of the MGLDW system (2.3)-(2.4):

m = c1y+
ε(k1 + k2)exp(ξ )
k1 + k2 + ε exp(ξ )

, n = c2 +
ε(k2

1 − k2
2)exp(ξ )

k1 + k2 + ε exp(ξ )
, (4.4)

with ξ = (k1 + k2)x− c1(k1+k2)
k1k2

y+(k2
1 − k2

2)t + c10 + c20.

4.2. Similarity reductions

One of the main purposes for calculating symmetries of a differential equation is to use them for
obtaining symmetry reductions and finding exact solutions. In this subsection, we will employ the
classical Lie point symmetry method to study the whole prolonged system (2.3)-(2.9), (2.30) and
(2.32) instead of the MGLDW equations (2.3)-(2.4).
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Accordingly, we consider the one-parameter Lie group of infinitesimal transformation as fol-
lows:

x → x+ εX , y → y+ εY, t → t + εT, m → m+ εM, n → n+ εN,

ψ → ψ + εΨ, φ → φ + εΦ, ψ1 → ψ1 + εΨ1, φ1 → φ1 + εΦ1, p → p+ εP, (4.5)

with a small parameter ε . The vector field associated with the above group of transformations can
be written as

V = X
∂
∂x

+Y
∂
∂y

+T
∂
∂ t

+M
∂

∂m
+N

∂
∂n

+ψ
∂

∂ψ
+φ

∂
∂φ

+ψ1
∂

∂ψ1
+φ1

∂
∂φ1

+ p
∂

∂ p
. (4.6)

Then the invariance of system (2.3)-(2.9), (2.30) and (2.32) under transformation (4.5) leads to the
expressions for the functions:

X =
1
2

f1t x+ f2, Y = g, T = f1,

M =−1
2

f1tm− 1
48

f1ttt x
3 − 1

8
f2tt x

2 + f3tx+ f4 + c1ψφ ,

N = f1tn− 1
2
( f1tt x+2 f2t)m− 1

192
f1tttt x

4 − 1
24

f2ttt x
3 +

1
2

f3tt x
2 + f4tx+ f5+c1(ψ1φ −φ1ψ),

Ψ =−
(1

8
f1tt x

2 +
1
2

f2t x+
1
4

f1t −2 f3 − c2

)
ψ − c1 pψ , (4.7)

Φ =
(1

8
f1tt x

2 +
1
2

f2t x− 1
4

f1t −2 f3 + c3

)
φ − c1 pφ ,

Ψ1 =−
(1

8
f1tt x

2 +
1
2

f2t x+
3
4

f1t −2 f3 − c2

)
ψ1 −

(1
4

f1tt x+
1
2

f2t

)
ψ − c1(pψ1 +φψ2),

Φ1 =
(1

8
f1tt x

2 +
1
2

f2tx− 3
4

f1t −2 f3 + c3

)
φ1 +

(1
4

f1tt x+
1
2

f2t

)
φ − c1(pφ1 +ψφ2),

P =−c1 p2 +(c2 + c3)p+ c4,

where g ≡ g(y) is an arbitrary function of y, f1 ≡ f1(t), f2 ≡ f2(t), f3 ≡ f3(t), f4 ≡ f4(t) and
f5 ≡ f5(t) are arbitrary functions of t and c1,c2,c3 and c4 are arbitrary constants. Especially, when
g = f1 = f2 = f3 = f4 = f5 = c2 = c3 = c4 = 0, the obtained symmetry is just Eq.(2.34), and when
c1 = c2 = c3 = c4 = 0, the related symmetry is only the general Lie point symmetry of the original
MGLDW equations (2.3)-(2.4).

From (4.7), the Lie algebra of infinitesimal symmetries is spanned by the four vector fields

V1 = ψφ
∂

∂m
+(φψ1 −ψφ1)

∂
∂n

− pψ
∂

∂ψ
− pφ

∂
∂φ

− (pψ1 +ψ2φ)
∂

∂ψ1

−(pφ1 +φ2ψ)
∂

∂φ1
− p2 ∂

∂ p
,

V2 = ψ
∂

∂ψ
+ψ1

∂
∂ψ1

+ p
∂

∂ p
, (4.8)

V3 = φ
∂

∂φ
+φ1

∂
∂φ1

+ p
∂

∂ p
,

V4 =
∂

∂ p
,
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and the infinite-dimensional subalgebra

V5( f1) = (−1
2

f1tm− 1
48

f1ttt x
3)

∂
∂m

+( f1tn− 1
2

f1tt xm− 1
192

f1tttt x
4)

∂
∂n

−(
1
8

f1tt x
2 +

1
4

f1t)ψ
∂

∂ψ
+(

1
8

f1tt x
2 − 1

4
f1t)φ

∂
∂φ

−[(
1
8

f1tt x
2 +

3
4

f1t)ψ1 +
1
4

f1tt xψ ]
∂

∂ψ1
+[(

1
8

f1tt x
2 − 3

4
f1t)φ1 +

1
4

f1tt xφ ]
∂

∂φ1
,

V6( f2) =−1
8

f2tt x
2 ∂

∂m
− ( f2tm+

1
24

f2ttt x
3)

∂
∂n

− 1
2

f2t xψ
∂

∂ψ
+

1
2

f2t xφ
∂

∂φ

−(
1
2

f2t xψ1 +
1
2

f2tψ)
∂

∂ψ1
+(

1
2

f2t xφ1 +
1
2

f2tφ)
∂

∂φ1
, (4.9)

V7( f3) = f3tx
∂

∂m
+

1
2

f3tt x
2 ∂

∂n
+2 f3ψ

∂
∂ψ

−2 f3φ
∂

∂φ
+2 f3ψ1

∂
∂ψ1

−2 f3φ1
∂

∂φ1
,

V8( f4) = f4
∂

∂m
+ f4t x

∂
∂n

,

V9( f5) = f5
∂

∂n
,

V10(g) = g
∂
∂y

.

The commutation relations between these vector fields is given by the following table, the entry in
row i and column j representing [Vi,Vj]:

[Vi,Vj] V1 V2 V3 V4 V5( f1) V6( f2) V7( f3) V8( f4) V9( f5) V10(g)
V1 0 −V1 −V1 V2 +V3 0 0 0 0 0 0
V2 0 0 −V4 0 0 0 0 0 0
V3 0 −V4 0 0 0 0 0 0
V4 0 0 0 0 0 0 0

V5( f̃1) V5( f̂1) V6( f̂2) V7( f̂3) V8( f̂4) V9( f̂5) 0
V6( f̃2) V7( f̂6) V8( f̂7) V9( f̂8) 0 0
V7( f̃3) 0 0 0 0
V8( f̃4) 0 0 0
V9( f̃5) 0 0
V10(g̃) V10(ĝ)

where

f̂1 = f1 f̃1t − f̃1 f1t , f̂2 = f̃1 f2t − 1
2

f2 f̃1t , f̂3 = f̃1 f3t , f̂4 = f̃1 f4t +
1
2

f4 f̃1t , f̂5 = ( f̃1 f5)t ,

f̂6 =
1
4
( f̃2 f2t − f2 f̃2t), f̂7 = f̃2 f3t , f̂8 = ( f̃2 f4)t , ĝ = gg̃y − g̃gy.

To find symmetry reductions, i.e., to find group invariant solutions, one need to solve the char-
acteristic equations:

dx
X

=
dy
Y

=
dt
T

=
dm
M

=
dn
N

=
dψ
Ψ

=
dφ
Φ

=
dψ1

Ψ1
=

dφ1

Φ1
=

d p
P
. (4.10)

In the following, only two nontrivial cases are considered in detail to obtain several novel exact
solutions.
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Case 1 Soliton-Cnoidal Waves Solution
For simplicity, we let f1 = f3 = f4 = f5 = 0, f2 = 1 and g = k, and redefine Δ2 = (c2 + c3)

2 +

4c1c4 and Ω0 = c2 − c3. By solving (4.10), the group invariant solutions have the forms

m = M+
2c1

Δ
Ψ0Φ0 tanh[

1
2

Δ(x+P)],

n = N +
2c1

Δ
[exp(

Ω0

2
P)Φ0Ψ1 − exp(−Ω0

2
P)Ψ0Φ1] tanh[

1
2

Δ(x+P)],

ψ = exp(
Ω0

2
x)Ψ0sech[

1
2

Δ(x+P)],

φ = exp(−Ω0

2
x)Φ0sech[

1
2

Δ(x+P)],

ψ1 =
2c1

Δ
exp[

Ω0

2
x− 1

2
Δ(x+P)]Ψ2

0Φ0sech2[
1
2

Δ(x+P)] (4.11)

+exp[
Ω0

2
(x+P)]Ψ1sech[

1
2

Δ(x+P)],

φ1 =
2c1

Δ
exp[−Ω0

2
x− 1

2
Δ(x+P)]Φ2

0Ψ0sech2[
1
2

Δ(x+P)]

+exp[−Ω0

2
(x+P)]Φ1sech[

1
2

Δ(x+P)],

p =
c2 + c3

2c1
+

Δ
2c1

tanh[
1
2

Δ(x+P)],

where M ≡M(ξ ,η), N ≡N(ξ ,η), Ψ0 ≡Ψ0(ξ ,η), Φ0 ≡Φ0(ξ ,η), Ψ1 ≡Ψ1(ξ ,η), Φ1 ≡Φ1(ξ ,η),
P ≡ P(ξ ,η) and the similarity variables ξ = y− kx and η = t.

Substituting Eq.(4.11) into the enlarged system (2.3)-(2.9), (2.30) and (2.32) yields

Ψ0 =
Δ
2

√
1− kPξ

c1
, Φ0 =

Δ
2

√
1− kPξ

c1
,

Ψ1 =
Δ

4c1

√
c1

1− kPξ
exp(−Ω0

2
P)[k2Pξξ −Δ(1− kPξ)

2 −Ω0(1− kPξ )],

Φ1 =
Δ

4c1

√
c1

1− kPξ
exp(

Ω0

2
P)[k2Pξξ −Δ(1− kPξ)

2 −Ω0(1− kPξ )], (4.12)

Mξ =
Ω2

0

8k
+

(1− kPξ )
2Δ2

8k
+

k2

8(1− kPξ )2 (2kPξξξ Pξ − kP2
ξξ −2Pξξξ ),

Mη =−kNξ =
kΩ0Δ2

4
(1− kPξ )Pξ +

Ω0k3P2
ξξ

4(1− kPξ )Pξ
,

with

Pη −Ω0(1− kPξ ) = 0, (4.13)

2k3Pξ (kPξ −1)Pξξξ − k3(3kPξ −2)P2
ξξ +(1− kPξ )

2Pξ [Ω2
0 −Δ2(1− k2P2

ξ )] = 0. (4.14)

From Eqs.(4.13) and (4.14), it is straightforward to derive

P =
ξ
k
+

∫
P2(χ)dχ , χ = η − ξ

kΩ0
, (4.15)
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where P2 ≡ P2(χ) satisfies (dP2

dχ

)2
= a1P2 +a2P2

2 +a3P3
2 +Δ2P4

2 , (4.16)

with

a1 = a3Ω2
0 +Δ2Ω3

0 −Ω5
0, a2 =−2a3Ω0 +2Δ2Ω2

0 +Ω4
0. (4.17)

We take one solution of Eq.(4.16) given by Jacobi elliptic function

P2 =
1

b0 +b2sn2(b2χ , l)
, (4.18)

which leads to the soliton-cnoidal waves solution of the MGLDW system (2.3)-(2.4):

my =
Ω2

0

8k
+

Δ2sech2[ Δ
2k (y+ kX)]

4kΩ0[b0 +b1sn2(b2Y, l)]
+

2Δ2tanh2[ Δ
2k (y+ kX)]−Δ2

8kΩ2
0[b0 +b1sn2(b2Y, l)]2

+
b1b2Δsn(b2Y, l)cn(b2Y, l)dn(b2Y, l)tanh[ Δ

2k (y+ kX)]

kΩ2
0[b0 +b1sn2(b2Y, l)]2

(4.19)

−4b1b2
2[(b1 +3b0l2 +b1l2)sn4(b2Y, l)−2(b1 +b0l2 +b0)sn2(b2Y, l)+b0]

8kΩ2
0[b0 +b1sn2(b2Y, l)]2

,

where

X =

∫ Y

T0

1
b0 +b2sn2(b2T, l)

dT, Y =
kx− y
kΩ0

+ t,

μ = b1(1+ l2)Ω0 + l2, b0 = Ω−1
0 , b2 =

Ω2
0

√
μb1Ω0

2μ
, c4 =−c2

2 + c2
3

2c1
− b2

1Ω4
0

4c1μ
.
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Fig. 1. The wave propagation plots of the MGLDW system given by Eq.(4.19), with the parameters T0 = 0,c2 = b1 =
k = 1,c3 = 1.5 and l = 0.9. (a) The wave propagation pattern of the wave along x axis at t = 0 and y = 0; (b) The
wave propagation pattern of the wave along t axis at t = 0 and x = 0; (c) The two-dimensional perspective view of the
corresponding solution .

The solitons and the cnoidal periodic waves are two types of typical excitations in nonlinear
systems. However, it is quite difficult to find the interaction solutions between solitons and cnoidal
periodic waves, especially the explicit exact expression. From Eq.(4.19), one can see that the final
form of the exact solution which contain the Jacobi elliptic functions and the hyperbolic functions,
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Fig. 2. The wave propagation plots of the MGLDW system given by Eq.(4.19), with the parameters T0 = 0,c2 = b1 =
k = 1,c3 = 7/4 and l = 1. (a) The wave propagation pattern of the wave along x axis at t = 0 and y = 0; (b) The
wave propagation pattern of the wave along t axis at t = 0 and x = 0; (c) The two-dimensional perspective view of the
corresponding solution .

represents the interaction between the soliton and the cnoidal periodic wave. The simulation of
soliton-cnoidal waves solution (4.19) is illustrated in Fig.1 and Fig.2 at two different choices of
the arbitrary parameters. In Fig.1, when the value of the Jacobi elliptic function’s module l �= 1,
the dark soliton propagates on the cnoidal periodic wave background. When the value of module
l = 1, the Jacobi elliptic functions are reduced to the hyperbolic functions, thus the feature of the
two-dark-soliton is exhibited distinctly in Fig.2.

Case 2 Non-travelling Wave Solution
As an another example, we let f3 = f4 = f5 = 0, f1 = k1, f2 = k2 and g = h−1

y with h ≡ h(y), and
redefine Δ2 = (c2 + c3)

2 +4c1c4 and Ω0 = c2 − c3. By solving (4.10), the group invariant solutions
have the forms

m = M+
2c1

Δ
Ψ0Φ0 tanh[

1
2

Δ(h+P)],

n = N +
2c1

Δ
[Φ0Ψ1 −Ψ0Φ1] tanh[

1
2

Δ(h+P)],

ψ = exp[
Ω0

2
(h+P)]Ψ0sech[

1
2

Δ(h+P)],

φ = exp[−Ω0

2
(h+P)]Φ0sech[

1
2

Δ(h+P)],

ψ1 =
2c1

Δ
exp[

Ω0 −Δ
2

(h+P)]Ψ2
0Φ0sech2[

1
2

Δ(h+P)] (4.20)

+exp[
Ω0

2
(h+P)]Ψ1sech[

1
2

Δ(h+P)],

φ1 =
2c1

Δ
exp[−Ω0 +Δ

2
(h+P)]Φ2

0Ψ0sech2[
1
2

Δ(h+P)]

+exp[−Ω0

2
(h+P)]Φ1sech[

1
2

Δ(h+P)],

p =
c2 + c3

2c1
+

Δ
2c1

tanh[
1
2

Δ(h+P)],

where M ≡M(ξ ,η), N ≡N(ξ ,η), Ψ0 ≡Ψ0(ξ ,η), Φ0 ≡Φ0(ξ ,η), Ψ1 ≡Ψ1(ξ ,η), Φ1 ≡Φ1(ξ ,η),
P ≡ P(ξ ,η) and the similarity variables ξ = x− k2h and η = t − k1h.
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Substituting Eq.(4.20) into the enlarged system (2.3)-(2.9), (2.30) and (2.32) yields

P = ωξ +ω2Ω0η , Ψ0 = Φ0 =
Δ
2

√
ω
c1
, Ψ1 =−Φ1 =

Δ(Ω0 −Δ)Ω2

4c1
√

ω/c1
,

M =
Ω2

0 −Δ2

8k1
[k1ω2ξ +ω(2k1Ω0ω2 + k2ω −2)η ]+ω0, (4.21)

which leads to the non-travelling wave solution of the MGLDW system (2.3)-(2.4):

my =−1
4

ω(k1Ω0ω2 + k2ω −1)hy[Ω2
0 −Δ2 tanh2(

1
2

ΔΛ)], (4.22)

with Λ= ωx+Ω0ω2t−(k1Ω0ω2+k2ω−1)h. By choosing the arbitrary function h(y) as the Jacobi
elliptic function, the simulation of the non-travelling waves solution (4.22) is shown in Fig.3. When
the value of the Jacobi elliptic function’s module l �= 1, the periodic dromions are displayed in two
different cases. When l = 1, the periodic behaviours degenerate to one dromion and 2+1 dromion.
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Fig. 3. The wave propagation plots of the MGLDW system given by Eq.(4.22), with the parameters c2 = k2 = 2,c3 = k1 =
ω = Δ = 1 and h = 1

3 [a0sn(y, l)+b0dn(y, l)]: (a) b0 = 0, l = 0.6; (b) b0 = 0, l = 1; (c) a0 = 0, l = 0.6; (d) a0 = 0, l = 1.

5. Discussion and Summary

In this paper, we investigate the nonlocal symmetry of the (2+1) dimensional modified generalized
long dispersive wave system and its application. First, the nonlocal symmetry related to the eigen-
functions in Lax pairs is derived, and infinitely many nonlocal symmetries are obtained directly with
the help of the parameter in Lax pairs. Then, by introducing three potentials, the nonlocal symmetry
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is successfully localized to some local ones. The original MGLDW system also be extended to one
prolonged system. In this procedure, it is shown that the nonlocal symmetry is closely related to the
Möbious transformation invariance of the Schwartz form.

Starting from the known nonlocal symmetry, various types of integrable models are obtained
through the nonlocal symmetry constraints approach. Using the independent variable translation
symmetry and the nonlocal symmetry on the Lax pairs of the MGLDW system, the usual (1+1)-
dimensional AKNS system, multi-component asymmetric DS system and multi-component coupled
Liouville model are constructed. By introducing some inner parameters, we embed the MGLDW
system in higher dimensional case. Considering the inner parameter translation symmetry and the
nonlocal symmetry, some infinite-dimensional integrable systems are given.

For the prolonged system, the general finite symmetry transformations and the corresponding
similarity reductions are considered by applying the Lie point symmetry method. The explicit finite
symmetry transformation is also viewed as the Darboux-like transformation, which can generate
new solutions from old ones. The similarity reductions lead to the novel exact interaction solution
among solitons and periodic cnoidal waves, and some non-travelling wave solution. In particular,
the soliton-cnoidal wave solution may degenerate to the usual two-soliton solution. In fact, it is very
difficult to obtain these types of solutions from the original DT by solving the spectral problem
directly. The reason is that to solve the spectral problem with the seed solution being non-constant
is not usually easy work. Therefore, with the aid of the nonlocal symmetry, an alternative way is
provided to construct some new solutions for the integrable models.

To search for nonlocal symmetries of integrable systems and then to apply them to obtain new
results are both of considerable interest. Using the nonlocal symmetry constraints, one can easily
get various types of integrable models. The other integrability for these multi-component models
need to be further considered. Moreover, localization is viewed as a very important step to extend
applicability of nonlocal symmetry. However, since the prolongation does not close generally, there
is not a universal way to estimate what kind of nonlocal symmetries can be localized to the Lie point
symmetries of some related prolonged system. More details on the results of this paper, especially
on the applications of soliton-cnoidal wave solutions, are worthy of further study.
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