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In this paper, we construct a new integrable equation which is a generalization of q-Toda equation. Meanwhile
its soliton solutions are constructed to show its integrable property. Further the Lax pairs of the generalized
q-Toda equation and a whole integrable generalized q-Toda hierarchy are also constructed. To show the inte-
grability, the Bi-Hamiltonian structure and tau symmetry of the generalized q-Toda hierarchy are given and this
leads to the tau function.
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1. Introduction

The Toda lattice equation is a completely integrable system which has many important applications
in mathematics and physics including the theory of Lie algebra representation, orthogonal poly-
nomials and random matrix model [3, 19, 20, 23, 24]. Toda system has many kinds of reduction or
extension, for example extended Toda hierarchy (ETH) [2], bigraded Toda hierarchy (BTH) [1]- [8]
and so on. These generalized Toda hierarchies have important application in Gromov-Witten theory
on CP1 and orbiford.

The q-calculus ( also called quantum calculus) traces back to the early 20th century and attracted
important works in the area of q-calculus [6, 7] and q-hypergeometric series. The q-deformation
of classical nonlinear integrable system started in 1990’s by means of q-derivative ∂q instead of
usual derivative with respect spatial variable in the classical system. Several q-deformed integrable
systems have been presented, for example the q-deformed Kadomtsev-Petviashvili (q-KP) hierarchy
is a subject of intensive study in the literatures [16]- [14]. The q-Toda equation was also studied
in [17, 21] but not for a whole hierarchy. This paper will be devoted to the further studies on a
generalized q-Toda equation(GQTE) and generalized q-Toda hierarchy(GQTH).

To show the complete integrability of nonlinear evolution, it is necessary to test whether the
equation has Hirota bilinear equation, three-soliton solution, Lax pair, Bi-Hamiltonian structure
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and even tau symmetry. This paper will show the integrability on the Generalized q-Toda hierarchy
from the above several directions.

2. q-difference operator and its generalization

As we all know, in common sense an integrable equation can always be rewritten in form of a Hirota
bilinear equation using Hirota direct method. Therefore firstly we introduce some basic notation
including Hirota derivatives as a preparation for introducing the Hirota bilinear equation of the
generalized q-Toda equation.

Let F be a space of differentiable functions f ,g : Rn→R. The Hirota D-operator D : F×F→ F
is defined as

[Dm1
x Dm2

t ...] f ·g = [(∂x−∂x′)
m1(∂t −∂t ′)

m2 ...] f (x, t, ...)g(x′, t ′, ...)|x′=x,t ′=t,.... (2.1)

Then one can find the following standard statement holds. Let P(D) be an arbitrary polynomial in
D acting on two differentiable functions f (x, t, ...) and g(x, t, ...),then the following equations hold

P(D) f ·g = P(−D)g · f , (2.2)

P(D) f ·1 = P(∂ ) f ; P(D)1 · f = P(−∂ ) f , (2.3)

where ∂ is the usual differential operator with respect to spatial variable x. The virtue of exponential
identity can appropriately be as following form in terms of the Hirota D-operator

eεDx f (x)g(x) = f (x+ ε)g(x− ε). (2.4)

If ε is parameter and f ,g belong to continuously differentiable functions, like in [17], then define

σε(x) = eεx(x)∂xx. (2.5)

Then

eεx(x)∂xu(x) = u(eεx(x)∂xx) = u(σε(x)), ε > 0. (2.6)

If σε(u(x)) = eε∂xu(x) = u(x+ ε), the system introduced later will lead to original Toda lattice.
If σε(x) = eεx∂xx = eεx, it implies eεx∂xu(x) = u(eεx). Then the system will lead to q-Toda lattice
in [17]. Considering that the vector field of the form x(x)∂x = xn∂x on R, it will be the general
generalized q-Toda lattice. In this paper, we only give the case n = 2, and we just name the leading
system later the generalized q-Toda equation.

Proposition 2.1. The q-exponential identity acts on arbitrary continuous differentiable functions
f (x),g(x) as the rule

eεx2Dx f (x)g(x) = Λε f (x)Λ−1
ε g(x),x ∈ R (2.7)

where the forward and backward shift operators are separately represented by Λε and Λ−1
ε , respec-

tive acting as

Λε f (x) = f (
x

1− xε
), Λ

−1
ε g(x) = g(

x
1+ xε

). (2.8)
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Proof. Making use of the change of variable x2Dx=Dx′ , x′ = −1
x is the idea to prove the identity,

i.e.

eεx2Dx f (x)g(x) = eεDx′ f (− 1
x′
)g(− 1

x′
). (2.9)

Using eq.(2.4) for the right hand side of eq.(2.9), we end up the proof with

eεx2Dx f (x)g(x) = f (− 1
x′+ε

)g(− 1
x′−ε

) = f ( 1
1
x−ε

)g( 1
1
x +ε

) = Λε f (x)Λ−1
ε g(x).

To give the definition of the generalized q-Toda equation, we need the following central gener-
alized difference operator.

Definition 2.1. The central q-difference operator42
x acts on an arbitrary function f (x),x ∈ R,as

42
x f (x) = f (

x
1− xε

)+ f (
x

1+ xε
)−2 f (x), (2.10)

which is easily rewritten as42
x f (x) = (Λε +Λ−1

ε −2) f (x).

In the next section, we will try to use the above defined generalize q-shift operator to define the
generalized q-Toda equation.

3. The generalized q-Toda equation

The well-known Toda equation represents the motion of the one-dimensional particles by

d2yn

dt2 = eyn−1−yn− eyn−yn+1 . (3.1)

By introducing the force

Un = eyn−1−yn−1, (3.2)

the Toda equation eq.(3.1) turns out to be

d2

dt2 log(1+Un) =Un+1 +Un−1−2Un. (3.3)

Similarly as Toda equation, we define the generalized q-Toda equation(GQTE) as follows

ε
2 d2φ(x)

dt2 = eφ( x
1+xε

)−φ(x)− eφ(x)−φ( x
1−xε

). (3.4)

By introducing the force

V = eφ( x
1+xε

)−φ(x)−1, (3.5)

then the GQTE becomes

ε
2 d2

dt2 log(1+V (x, t)) =42
xV (x, t) =V (

x
1− xε

, t)+V (
x

1+ xε
, t)−2V (x, t). (3.6)
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It is necessary to introduce the dependent variable transformation as

V (x, t) =
d2

dt2 log f (x, t). (3.7)

Then the bilinear form for f (x, t) is evolved as

V (x, t) =
ftt f − f 2

t

f 2 =
f ( x

1−xε
, t) f ( x

1+xε
, t)

f 2 −1. (3.8)

Then the generalized q-Toda equation can be rewritten as a Hirota bilinear form in terms of Hirota
D-operator as

P(D) f (x, t) · f (x, t) = [D2
t − (eεx2Dx + e−εx2Dx)−2)] f (x, t) · f (x, t) = 0, (3.9)

by multiplying eq.(3.8) by 2 f 2(x, t) and using the q-exponential identity eq.(2.7). Supposing func-
tion f has finite perturbation expansion around a formal perturbation parameter ε as

f (x, t) = 1+ ε f (1)(x, t)+ ε
2 f (2)(x, t)+ ... (3.10)

Substituting eq.(3.10) into generalized q-Toda equation

P(D) f (x, t) · f (x, t) = 0, (3.11)

we have

P(D) f (x, t) · f (x, t)

= P(D)[1 ·1+ ε1(· f (1)+ f (1) ·1)+ ε
2(1 · f (2)+ f (2) ·1+ f (1) · f (2))

+ ε
3(1 · f (3)+ f (3) ·1+ f (1) · f (2)+ f (2) · f (1))

+ ε
4(1 · f (4)+ f (4) ·1+ f (1) · f (3)+ f (3) · f (1)+ f (2) · f (2))+ ...].

(3.12)

The coefficient of the first term ε0 is trivial. For the coefficient of ε1, we get

P(D)1 · f (1)+ f (1) ·1 = 2P(∂ ) f (1) = 2[∂ 2
t − (eεx2∂x + e−εx2∂x−2)] f (1) = 0. (3.13)

Then the equation f (1) has exponential type solution as

f (1)(x, t) = e−
α

x +β t+η , (3.14)

where α,β ,η are arbitrary constants with the dispersion relation as

β
2 = eαε + e−αε −2. (3.15)

Comparing the coefficients of ε2 in eq.(3.12) will yield

P(D)1 · f (2)+ f (2) ·1+ f (1) · f (1) = 2P(∂ ) f (2)+P(D) f (1) · f (1) = 0, (3.16)

which implies exactly

[D2
t − (eεx2Dx + e−εx2Dx)−2)] f (1)(x, t) · f (1)(x, t) (3.17)

=−2[∂ 2
t − (eεx2∂x + e−εx2∂x−2)] f (2)(x, t).

Since f (1) given in eq.(3.14) satisfies the form of eq.(3.17) by considering eq.(3.15), it is logical to
take all order terms as zero, i.e. f ( j) = 0, j ≥ 2. Therefore without loss of generality, we let ε = 1.
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Then one-q-soliton is constructed by the virtue of eq.(3.14) and eq.(3.15) as

V (x, t) =
β 2e−

α

x +β t+η

(1+ e−
α

x +β t+η)2
. (3.18)

The solution of one-q-soliton V can be seen from Figure 1.

Fig. 1. One-q-soliton solution V of generalized q-Toda equation with eε = 1.25, α1 =−5, β1 =−1.1745.

We pick the starting solution of eq.(3.13) as the assumption of two-soliton solutions.

f (1) = 2cosh(−α1

x
+β1t +η1), (3.19)

where αi,ηi, i = 1,2 are arbitrary constants with the related dispersion relation

β
2
i = eαiε + e−αiε −2, i = 1,2. (3.20)

Apparently the use of vector notation

p1± p2 = (β1±β2,α1±α2,η1±η2), (3.21)

can lead to dispersion relation eq.(3.20) as P(pi) = 0, i = 1,2.... Then we get

−P(∂ ) f (2) = [(β1−β2)
2− (e(α1−α2)ε + e(α2−α1)ε −2)]e−

α1+α2
x +(β1+β2)t+η1+η2 . (3.22)

Therefore, the form of f (2) can be

f (2) = A(1,2)e−
α1+α2

x +(β1+β2)t+η1+η2 . (3.23)

Substituting such f (2) into eq.(3.22) will help us determine the position of two-q-soliton as

A(1,2) =− (β1−β2)
2− (e(α1−α2)ε + e(α2−α1)ε −2)

(β1 +β2)2− (e(α1+α2)ε + e−(α1+α2)ε −2)
=−P(p1− p2)

P(p1 + p2)
. (3.24)

Supposing f (3) = 0, by the use of the dispersion relation eq.(3.20) the coefficient of ε3 vanishes
trivially and so do the rest of ε j, j > 3. That means we have a good truncation up to ε3 which leads
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to the two-q-soliton solution as

f (x, t) = 1+ e−
α1
x +β1t+η1 + e−

α2
x +β2t+η2 +A(1,2)e−

α1+α2
x +(β1+β2)t+η1+η2 . (3.25)

Therefore, we illustrate the collision of two-q-solitons as Figure 2.

Fig. 2. Two-q-soliton solution V of generalized q-Toda equation with eε = 1.25, α1 =−5, α2 = 6.

To further derive three-soliton solution, we choose the starting solution of eq.(3.13) as the
assumption as

f (1) =
3

∑
i=1

e−
αi
x +βit+ηi , (3.26)

where αi,ηi are arbitrary constants for i= 1,2,3. Similarly to the precious arguments, the coefficient
of ε0 vanishes trivially. From the coefficient of ε1, we have the corresponding dispersion relation

β
2
i = eαiε + e−αiε −2, i = 1,2,3. (3.27)

From the coefficient of ε2, we can obtain

−P(∂ ) f (2) =
(3)

∑
i< j

[(βi−β j)
2− (e(αi−α j)ε + e(αi−α j)ε −2)]e−

αi+α j
x +(βi+β j)t+ηi+η j . (3.28)

The equation eq.(3.28) implies the explicit form of f (2)

f (2) =
(3)

∑
i< j

A(i, j)e−
αi+α j

x +(βi+β j)t+ηi+η j , (3.29)

with

A(i, j) =−
P(pi− p j)

P(pi + p j)
=−

(βi−β j)
2− (e(αi−α j)ε + e(αi−α j)ε −2)

(βi +β j)2− (e(αi+α j)ε + e−(αi+α j)ε −2)
. (3.30)
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For the coefficient of ε3, we have

P(D)1 · f (3)+ f (3) ·1+ f (1) · f (2)+ f (2) · f (1) = 0.

We can also rewrite them as

−P(∂ ) f (3) = (A(1,2)P(p3− p1− p2)+A(1,3)P(p2− p1− p3)+A(2,3)P(p1− p2− p3))

×e−
α1+α2+α3

x +(β1+β2+β3)t+η1+η2+η3 . (3.31)

Suppose that f (3) is of the form

f (3) = A(1,2,3)e−
α1+α2+α3

x +(β1+β2+β3)t+η1+η2+η3 , (3.32)

then one can find

A(1,2,3) =−A(1,2)P(p3− p1− p2)+A(1,3)P(p2− p1− p3)+A(2,3)P(p1− p2− p3)

P(p1 + p2 + p3)
. (3.33)

Following the steps, one can find we can suppose the vanishing of f (4) and it is a reasonable trun-
cation to terms of ε4, i.e. the form of the equation (3.12) becomes

2P(D) f (1) · f (3)+P(D) f (2) · f (2) = 0, (3.34)

which means the following condition holds

A(1,2,3) = A(1,2)A(1,3)A(2,3). (3.35)

Then we can express the solution of three-q-soliton(see Figure 3) as

f (x, t) = 1+
3

∑
i=1

e−
αi
x +βit+ηi +

3

∑
i< j

A(i, j)e−
αi+α j

x +(βi+β j)t+ηi+η j

+A(1,2)A(1,3)A(2,3)e−
α1+α2+α3

x +(β1+β2+β3)t+η1+η2+η3 .

(3.36)

The above three-soliton solutions show the great integrable possibility in a certain sense. To deeply
prove the integrability, we will give the Lax pair of the generalized q-Toda equation and further
generalize it to a whole integrable hierarchy in the next section.

4. The generalized q-Toda hierarchy

Now we will consider that the algebra of the shift operator Λε := eεx2∂x . A Left multiplication by
X is as XΛ

j
ε , (XΛ

j
ε)(g)(x) := X(x) ◦ g( x

1− jεx) with defining the product (X(x)Λi
ε) ◦ (Y (x)Λ

j
ε) :=

X(x)Y ( x
1−iεx)Λ

i+ j
ε .

Now we introduce the following free operators W0,W̄0

W0 := e∑
∞
j=0 t j

Λ
j
ε

ε j! , (4.1)

W̄0 := e−∑
∞
j=0 t j

Λ
− j
ε

ε j! , (4.2)

where t j ∈ R will play the role of continuous times.
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Fig. 3. Three-q-soliton solution V of generalized q-Toda equation with eε = 1.25, α1 = −5, α2 = 6, α3 = −7.9141,
β1 =−1.1745, β2 =−1.4411, β3 = 2.0045

We define the dressing operators W,W̄ as follows

W := S◦W0, W̄ := S̄◦W̄0, (4.3)

where S, S̄ have expansions as

S = 1+ω1(x)Λ−1
ε +ω2(x)Λ−2

ε + · · · ,
S̄ = ω̄0(x)+ ω̄1(x)Λε + ω̄2(x)Λ2

ε + · · · .
(4.4)

The inverse operators S−1, S̄−1 of operators S, S̄ have expansions of the form

S−1 = 1+ω
′
1(x)Λ

−1
ε +ω

′
2(x)Λ

−2
ε + · · · ,

S̄−1 = ω̄
′
0(x)+ ω̄

′
1(x)Λε + ω̄

′
2(x)Λ

2
ε + · · · .

(4.5)

The Lax operator L of the generalized q-deformed Toda hierarchy is defined by

L :=W ◦Λε ◦W−1 = W̄ ◦Λ
−1
ε ◦W̄−1, (4.6)

and have the following expansions

L = Λε +U(x)+V (x)Λ−1
ε . (4.7)

In fact the Lax operators L are also be equivalently defined by

L := S◦Λε ◦S−1 = S̄◦Λ
−1
ε ◦ S̄−1. (4.8)

4.1. Lax equations of the GQTH

In this section we will give the Lax equations of the GQTH. Let us firstly introduce some convenient
notation such as the operators B j defined as B j := L j

j! . Now we give the definition of the generalized
q-Toda hierarchy(GQTH).
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Definition 4.1. The generalized q-Toda hierarchy is a hierarchy in which the dressing operators S, S̄
satisfy following Sato equations

ε∂t j S =−(B j)−S, ε∂t j S̄ = (B j)+S̄. (4.9)

Then one can easily get the following proposition about W,W̄ .

Proposition 4.1. The dressing operators W,W̄ are subject to following Sato equations

ε∂t jW = (B j)+W, ε∂t jW̄ =−(B j)−W̄ . (4.10)

From the previous proposition one can derive the following Lax equations for the Lax operators.

Proposition 4.2. The Lax equations of the GQTH are as follows

ε∂t jL = [(B j)+,L ]. (4.11)

To see this kind of hierarchy more clearly, the generalized q-Toda equations as the t1 flow
equations will be given in the next subsection.

4.2. The generalized q-Toda equations

As a consequence Sato equations, after taking into account that S and S̄, the t1 flow of L in the
form of L = Λε +U +V Λ−1

ε is as

ε∂t1L = [Λε +U,V Λ
−1
ε ], (4.12)

which lead to generalized q-Toda equation

ε∂t1U = V (
x

1− εx
)−V (x), (4.13)

ε∂t1V = U(x)V (x)−V (x)U(
x

1+ εx
). (4.14)

From Sato equation we deduce the following set of nonlinear partial differential-difference equa-
tions ω1(x)−ω1(

x
1+ εx

) = ε∂t1(e
φ(x)) · e−φ(x),

ε∂t1ω1(x) =−eφ(x)e−φ( x
1−εx ).

(4.15)

Observe that if we cross the two first equations, then we get the generalized q-Toda equation (3.5).
To give a linear description of the GQTH, we introduce wave functions ψ, ψ̄ defined by

ψ =W ·χ, ψ̄ = W̄ · χ̄, (4.16)

where

χ(z) := z−
1
xε , χ̄(z) := z

1
xε , (4.17)

and the “ · ” means the action of an operator on a function. Note that Λε · χ = zχ and the following
asymptotic expansions can be defined

ψ = (1+ω1(x)z−1 + · · ·)ψ0(z), ψ0 := z−
1
xε e∑

∞
j=1 t j

z j
ε j! ,

ψ̄ = (ω̄0(x)+ ω̄1(x)z+ · · ·) ψ̄0(z), ψ̄0 := z
1
xε e−∑

∞
j=0 t j

z− j
ε j! .

(4.18)
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We can further get linear equations of the GQTH in the following proposition.

Proposition 4.3. The wave functions ψ, ψ̄ are subject to following Sato equations

L ·ψ = zψ, L · ψ̄ = zψ̄, (4.19)

ε∂t j ψ = (B j)+ ·ψ, ε∂t j ψ̄ =−(B j)− · ψ̄. (4.20)

5. Bi-Hamiltonian structure and tau symmetry

To describe the integrability of the GQTH, we will construct the Bi-Hamiltonian structure and tau
symmetry of the GQTH in this section. In this section, we will consider the GQTH on Lax operator

L = Λε +u+ ev
Λ
−1
ε . (5.1)

Then for f̄ =
∫

f dx, ḡ =
∫

gdx, we can define the Hamiltonian bracket as

{ f̄ , ḡ}=
∫

∑
w,w′

δ f
δw
{w,w′} δg

δw′
dx, w,w′ = u or v. (5.2)

The bi-Hamiltonian structure for the GQTH can be given by the following two compatible Poisson
brackets similar as [2, 8]

{v(x),v(y)}1 = {u(x),u(y)}1 = 0,

{u(x),v(y)}1 =
1
ε

[
eε x2∂x−1

]
δ (x− y), (5.3)

{u(x),u(y)}2 =
1
ε

[
eε x2∂xev(x)− ev(x)e−εx2∂x

]
δ (x− y),

{u(x),v(y)}2 =
1
ε

u(x)
[
eε x2∂x−1

]
δ (x− y), (5.4)

{v(x),v(y)}2 =
1
ε

[
eε x2∂x− e−εx2∂x

]
δ (x− y).

For any difference operator A = ∑k AkΛk
ε , define residue ResA = A0. In the following theorem, we

will prove the above Poisson structure can be as the the Bi-Hamiltonian structures of the GQTH.

Theorem 5.1. The flows of the GQTH are Hamiltonian systems of the form

∂u
∂ t j

= {u,H j}1, j ≥ 0. (5.5)

They satisfy the following bi-Hamiltonian recursion relation

{·,Hn−1}2 = n{·,Hn}1.

Here the Hamiltonians have the form

H j =
∫

h j(u,v;ux,vx; . . . ;ε)dx, j ≥ 1, (5.6)

with

h j =
1
j!

ResL j. (5.7)
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Proof. The proof is similar as the proof in [2, 8]. Here we will prove that the flows ∂

∂ tn
are also

Hamiltonian systems with respect to the first Poisson bracket.
Suppose

Bn = ∑
k

an;k Λ
k
ε , (5.8)

and from

∂L

∂ tn
= [(Bn)+,L ] = [−(Bn)−,L ], (5.9)

we can derive equation

ε
∂u
∂ tn

= an;1(
x

1− εx
)−an;1(x), (5.10)

ε
∂v
∂ tn

= an;0(
x

1+ εx
)ev(x)−an;0(x)ev( x

1−εx ). (5.11)

By the following calculation

dhn =
1
n!

d Res [L n] =
1
n!

Res [L ndL ]

= Res
[

an;0(x)du+an;1(
x

1+ εx
)ev(x)dv

]
, (5.12)

it yields the following identities

δHn

δu
= an;0(x),

δHn

δv
= an;1(

x
1+ εx

)ev(x). (5.13)

This agree with Lax equation

∂u
∂ tn

= {u,Hn}1 =
1
ε

[
eε x2∂x−1

]
δHn

δv
=

1
ε
(an;1(

x
1− εx

)−an;1(x)), (5.14)

∂v
∂ tn

= {v,Hn}1 =
1
ε

[
1− eε x2∂x

]
δHn

δu
=

1
ε

[
an;0(

x
1+ εx

)ev(x)−an;0(x)ev( x
1−εx )

]
. (5.15)

From the above identities we see that the flows ∂

∂ tn
are Hamiltonian systems with the first Hamil-

tonian structure. The recursion relation follows from the following trivial identities

n
1
n!

L n = L
1

(n−1)!
L n−1 =

1
(n−1)!

L n−1L .

Then we get,

nan;1(x) = an−1;0(
x

1− εx
)+uan−1;1(x)+ evan−1;2(

x
1+ εx

)

= an−1;0(x)+u(
x

1− εx
)an−1;1(x)+ ev( x

1−2εx )an−1;2(x).

This further leads to
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{u,Hn−1}2 = {
[
Λεev(x)− ev(x)

Λ
−1
ε

]
an−1;0(x)+u(x) [Λε −1]an−1;1(

x
1+ εx

)ev(x)}

= n
[

an;1(x)ev( x
1−εx )−an;1(

x
1+ εx

)ev(x)
]
.

This is exactly the recursion relation on flows for u. The similar recursion flow on v can be similarly
derived. Theorem is proved till now.

Similarly as [2], the tau symmetry of the GQTH can be proved in the following theorem.

Theorem 5.2. The GQTH has the following tau-symmetry property:

∂hm

∂ tn
=

∂hn

∂ tm
, m,n≥ 1. (5.16)

Proof. Let us prove the theorem in a direct way

∂hm

∂ tn
=

1
m!n!

Res[−(L n)−,L
m]

=
1

m!n!
Res[(L m)+,(L

n)−]

=
1

m!n!
Res[(L m)+,L

n] =
∂hn

∂ tm
. (5.17)

Theorem is proved.

This property justifies the definition of the tau function for the GQTH as in the following propo-
sition.

Proposition 5.1. The tau function of the GQTH can also be defined by the following expressions in
terms of the densities of the Hamiltonians:

hn = ε(Λε −1)
∂ logτ

∂ tn
, n≥ 0. (5.18)
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