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The paper is to reveal the direct links between the well known Sylvester equation in matrix theory and
some integrable systems. Using the Sylvester equation KM + MK = rs” we introduce a scalar function
sd) = s"KJ(I +M)~'K'r which is defined as same as in discrete case. s0sd) satisfy some recurrence rela-
tions which can be viewed as discrete equations and play indispensable roles in deriving continuous inte-
grable equations. By imposing dispersion relations on r and s, we find the Korteweg-de Vries equation, mod-
ified Korteweg-de Vries equation, Schwarzian Korteweg-de Vries equation and sine-Gordon equation can be
expressed by some discrete equations of §(iJ) defined on certain points. Some special matrices are used to
solve the Sylvester equation and prove symmetry property §(tJ) = §(4) The solution M provides T function
by T = |+ M|. We hope our results can not only unify the Cauchy matrix approach in both continuous and dis-
crete cases, but also bring more links for integrable systems and variety of areas where the Sylvester equation

appears frequently.
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1. Introduction

The Sylvester equation

AM—-MB=C

is one of the most well-known matrix equations. It appears frequently in many areas of applied
mathematics and plays a central role in particular in systems and control theory, signal process-
ing, filtering, model reduction, image restoration, and so on. J. Sylvester is the first mathematician
who introduced the term “Matrix” to name a matrix of the present form. In the equation (1.1) A, B
and C are known matrices and M is the unknown matrix. It is also known as the Rosenblum equa-
tion in operator theory. We refer the reader to the elegant survey [7] by Bhatia and Rosenthal and
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the references therein for a history of the equation and many interesting and important theoretical
results.

In the paper we will investigate the role of the Sylvester equation (1.1) in the field of integrable
systems. Integrable systems mean the exactly solvable nonlinear partial differential (and difference)
equations with regular solution structures (e.g. N-soliton solutions, etc.). From the glance it is hard
to relate the Sylvester equation (1.1) and an integrable system together.

In fact, the Sylvester equation (1.1) appears in many contexts of integrable systems, for exam-
ple, the Cauchy matrix approach, the operator method and the bidifferential calculus approach.
The Cauchy matrix approach, as a systematic method for constructing discrete integrable equations

together with their solutions, was first proposed by Nijhoff and his collaborators [34, 38]. In this
afk,-)n(bfk,-)m (0)

method, the discrete plain wave factors r; = (a +) G) i satisfy a Sylvester equation
KM+ MK =rs", (1.2)
where
. Fisj T
K:Dlag(klak%"' 7kN)7 M= (Mi,j)NXN> Mi.,j =7, = (1"1,1"2,-" 7rN) 5
ki + kj
and s = (s1,52,---,sy)! and (rgo),réo),~-~ ,rj(\?))T are constant vectors. Then, scalar functions

NEAERY ¢ (I+M)~'K'r obey some recurrence relations, and among them there are closed forms
which give rise to discrete integrable equations. One can view (1.2) as a Sylvester equation contain-
ing an unknown M and a generic constant matrix K. Then, more general solutions can be derived for
discrete systems [56]. The operator method (or trace method in scalar case), based on Marchenko’s
work [30], was first proposed by Aden and Carl [1], and developed by Schiebold and her collabo-
rators [9, 10,45]. In this method, suitable dispersion relations are imposedon M orI' =1+ M (e.g.,
M, = KM, M, = K>M) and solutions of nonlinear partial equations are expressed in the form of log-
arithmic derivative I'"'T; or its trace. This method needs lengthy verification of solutions. For the
review of this method one can see [9, 10]. This method relies on the Sylvester equation (1.1) with C
of rank one so as to get needed trace property. It is remarkable that in [47] Schiebold collected exam-
ples of the correspondence of the Sylvester equation (1.1) and solutions of some integrable systems.
She also derived explicit solutions of (1.1) for the case A, B having Jordan block canonical forms
and extended formulae of Cauchy-type determinants. The operator method for scalar case is also
viewed as a trace method in [8] where we note that operator solutions to the Marchenko’s integral
equation were given. In [2, 3,5, 17] solutions of the Gel’fand-Levitan-Marchenko (GLM) equation
are expressed via a triplet (A, B, C) where matrix A and vectors B and C satisfy some Sylvester equa-
tions. The bidifferential calculus approach (see the review paper [19] and the references therein) is
also related to Sylvester equations. In this approach, integrable equations are derived by introducing
bidifferential operators d and d into graded algebras. Solutions of the obtained integrable equations
can be parameterised in terms of some matrices which satisfy Sylvester equations, (see [20,21] as
more examples). One more example is given in [25], where solutions to the Kadomtsev-Petviashvili
(KP) equation are given in the form w = pT C~!4 and the Sylvester equation also appears in the
solving procedure.

In this paper we would like to reveal more primary links between the Sylvester equation and
integrable equations. We will see that the Sylvester equation plays a basic role in the sense of
constructing integrable equations and their solutions. This is already realized in [47] for continuous
case and in Refs. [43, 54] for discrete integrable equations. In this paper, motivated by the discrete
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The Sylvester equation and integrable equations: 1. KAV system and sG equation

Cauchy matrix approach and the understanding of discrete dispersion relation, we will impose the
dispersion relation on r or s (or both) rather than on M in (1.2), and focus on the evolution of
the scalar function S(:/). We can then not only unify the Cauchy matrix approach in discrete and
continuous cases, but also have chances to find more links between discrete systems and continuous
ones. In this paper, we will start from a Sylvester equation (see (2.1)) and examine the links between
the Sylvester equation and some continuous integrable equations, such as the Korteweg-de Vries
(KdV) equation, modified Korteweg-de Vries (mKdV) equation, Schwarzian Korteweg-de Vries
(SKdV) equation and sine-Gordon equation. We will see that §.J) (defined as (2.2)) compose an
infinite symmetric matrix and S¢:/) obey some recurrence relations as they do in discrete case. These
recurrence relations can be viewed as discrete equations of S\/) with discrete independent variables
i, j. It turns out that the continuous equations considered in our paper (usually are their potential
forms) are equivalent to some discrete equations of § (&:4) sitting on some special points.

The paper is organized as follows. In Sec.2 we introduce the Sylvester equation and some related
properties including solvability, recurrence relations and symmetric property of S¢:/). In Sec.3 we
impose evolution on the elements r,s in the Sylvester equation (2.1) and derive the KdV equation,
mKdV equation and SKdV equation. Sec.4 derives the sine-Gordon equation. In Sec.5 we discuss
the relations between S(+/) and 7 functions, the trace in the operator method, etc. Sec.6 contains
conclusions and further discussions. In addition, we have an Appendix consisting of 5 sections as a
compensation of the paper.

2. The Sylvester equation and some related properties
2.1. Solvability

For the solution of the Sylvester equation (1.1), a well known result, which was proved by Sylvester
[49], is

Proposition 2.1. Let us denote the eigenvalue sets of A and B by &(A) and & (B), respectively.
For the known A,B and C, the Sylvester equation (1.1) has a unique solution M if and only if
E(A)NE(B) = 2.

When the eigenvalues of A and B satisfy certain conditions, the solution of the Sylvester equation
(1.1) can be expressed via series or integration. (See Ref. [7] and the references therein.)

Proposition 2.2. When &(A) C {z:|z| > p} and &(B) C {z: |z| < p} for some p > 0, then the

solution of the Sylvester equation (1.1) is

M=Y A"7"cB/.

oo

j=0

When &(A) and & (B) are contained in the open right half plane and the open left half plane,
respectively, then the solution of the Sylvester equation (1.1) is

M = / e "AceBdr.
0
The Sylvester equation of our interest in this paper is
KM+MK =rs', 2.1)

where K,M € Cyxn, r = (r1,r2, - ,ry)T and s = (s1,52,---,sy)7. This corresponds to A = —B
and C being of rank 1 in (1.1). In light of proposition 2.1, the equation (2.1) is solvable when
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&(K)N&(—K) = &. Under such a condition, an explicit form (neither series nor integration) of
the solution of the Sylvester equation (2.1) was presented in [47,56] The solution is obtained by
factorizing M into M = FGH where F,G,H are some N x N matrices. For the completeness of the
paper, we would like to give the solving procedure and results in Appendix B.

2.2. Infinite matrix S
2.2.1. Recurrence relation of S\

By the Sylvester equation (1.1) we introduce an oo X oo matrix S = (S(i7j))wxo<, where the element
S(J) is defined as (cf. [34,38])

s =g KI(I+M)"'K'r, i,j€Z, (2.2)

where [ is the Nth-order unit matrix. In the paper we call S¢:/) a master function because it is used

to generate integrable equations satisfied by SU/). Here we note that the matrix / + M is always

formally invertible, i.e., one can always write out the inverse of the matrix / + M. We will see that

|I + M| plays the role of 7-function in integrable systems (see Sec.5.1). Those points {(¢,x)} where

|I + M| takes zero value will lead to singularities of solutions. (Examples can be found in Sec.D.2).
In the following let us discuss some properties of the matrix S and the elements S/ ),

Proposition 2.3. For the master function SU) defined by (2.2) with M,K,r,s satisfying the
Sylvester equation (2.1), we have the following relation,

2k—1
Sij+2k) — gli+2k,j) _ Z (_l)lS(Zk—l—lJ)S(iJ)’ (k=1,2,---). (2.3)
=0
Particularly, when k = 1 we have (see also equation (2.16) in [38])

§(:42) — gli+2.0) _ g0 (1) 4 g1 §(05), @4

Proof. First, from the Sylvester equation (2.1) we have the following relation

s—1
KM — (—1)MK* = Y (=1)/K* 'K/ (s=1,2,--+). (2.5)
j=0

In fact, obviously, when s = 1, (2.5) is nothing but the Sylvester equation (2.1) itself. Now left-
multiplying K on (2.1) yields
K>M + KMK = Krs'.

Using the Sylvester equation (2.1) we replace the term KM with —MK + rs” we have

1
K*M —MK?* = —rs’K+Krs'= Y (—1)/K" /rs'K/,
j=0

which is s = 2 in (2.5). Next, repeating the same procedure or using mathematical induction we can
reach (2.5).
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The Sylvester equation and integrable equations: 1. KAV system and sG equation

To prove the relation (2.3), we introduce an auxiliary vector
u = (I+M)"'K'r, i€Z (2.6)
From this we have
Ku + KMu) = K5ty

Then, taking s = 2k and using the relation (2.5), it is not difficult to find

2%—1
(I +M)K2ku(l) — K2k+lr _ Z (_1)ll{zkf1711/_5][{[1/‘(07
1=0
which, then, left-multiplied by s"K/ (I +M)~! yields the relation (2.3). O

In a similar way, we can have the following similar property.

Proposition 2.4. For the scalar function S%J) defined by (2.2) with M, K, r, s satisfying the Sylvester
equation (2.1), we have the following relation,

2%—1
ST = gU=2kd) 1 Y (—1)lsEm gD (k= 1,2,-). (2.7)
=0
When k = 1 one has
§(=2) — §(i=2.j) 4 g(i,=2) g(=1.j) _ g(i=1) g(=2.)) (2.8)

2.2.2. Invariance ofS(i=j)

Let us suppose K is the matrix that is similar to K under the transform matrix 7', i.e.,

K, =TKT " (2.9a)
We also denote
My =TMT ', ri=Tr, s;=5sT"". (2.9b)
It is easy to verify that
MK\ +K M| =rs]. (2.10a)
and
SUD) = K3 (1+M) ' K'r = s{ K} (1+ M) "' Kiry. (2.10b)

Therefore we can say that S(>/) is invariant under the similar transformation (2.9).

2.2.3. Symmetry property of StJ)

Proposition 2.5. Suppose that K,M,r,s satisfy the Sylvester equation (2.1) and &(K)N&(—K) =
@. Then the scalar elements S\"J) defined by (2.2) satisfy the symmetry property

§d) = gl (2.11)
i.e., the infinite matrix S is symmetric.
The proof will be given in Appendix C.
Co-published by Atlantis Press and Taylor & Francis
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3. The KdV system
3.1. Evolution of M

Now we suppose that r,s, M are functions of (x,#) while K is a constant matrix satisfying & (K) N
&(—K) = @, and the evolution of r and s are formulated by

re=Kr, sx:KTs, (3.1a)
ro=4Kr, s, =4(KT)%s. (3.1b)

Taking the derivative of the Sylvester equation (2.1) w.r.t. x and making using of (3.1a) we have
KM, +MK =r.s"+rs, =Krs' +rs'K,
ie.
KMy—rs")+ (M, —rs")K =0.
This immediately yields the relation
M,=rs", (3.2)

by virtue of proposition 2.1. Obviously, the above relation is also written as

M, = KM +MK (3.3)

if using the Sylvester equation (2.1).
In a similar way, for the time evolution of M, we have

KM, + MK = r;s"+rsl = 4(K>rs" 4+ rs'K>).
Then, replacing rs” with KM 4+ MK and making using of proposition 2.1 we find
M, = 4(K>M + MK?). (3.4)
Actually, it can be proved that if
i, =YK'r, s, =y(K")s, jEL (3.5)
with constant 7, then the evolution of M is formulated by
M, = y(K'M +MK). (3.6)

Go back to the relation (3.4). Corresponding to the expression (3.2), (3.4) can be alternatively
expressed as

M, = 4(K*rs" — Krs'K + rs'K?). (3.7)
With the evolution formulas (3.1), (3.2) and (3.7), we can derive the evolution of § (0.9),
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3.2. Evolution of S"/)
Let us recall the auxiliary vector u') defined in (2.6), 1.e.
u = (1+M)'K'r (3.8)

and the connection with §(:/):

S = s KI(IT+M)"'K'r = sKu. (3.9)
Taking x-derivative on (3.8) we have

M + (I—I—M)u)(ci) =K'r,=K"r,
and further,

(I—f—M)u)(f) =K r—rstul®,

where we have substituted (3.2). Then, left-multiplied the above relation by (I +M)~' and also
using the relation (3.9) yield

W) = 1) _ 5(00),,0) (3.10)

which is viewed as evolution of ! in x-direction. In a similar way we derive the evolution of u(?)
in z-direction:

ut(i) = 4(ul3) — §00)(2) _ g(0:2),(0) 4 g0:1), (D) (3.11)

Now, noting that the connection (3.9) between u() and S¢:/), we left-multiply s’K” on relations
(3.10) and (3.11), respectively. After some calculation we obtain the following evolution for S(-/):
St — gli+1.)) 4 glij+1) _ (0 g0.4) (3.12a)
S,(i’j) = 4(sH37) 4 g0g+3) 4 gD g(1LJ) _ g(1:0) §(2.0) _ g(i:2) §(0.7)) (3.12b)
One can repeatedly use (3.12a) and get higher-order derivatives® of S(J) w.r.t x. Here we just list
S)(Cigj ) and S,(é;){), which read
)(CQJ') —g(i+2.) 4 glisj+2) _ o g(i+1,0) g(0.)) _ »g(i:0) g(0:j+1)
4250+ Lj+1) _ ¢(i.0) g(Lj) _ g(i:1) g(0.7) 4 25(&0)5(070)5(@/)’ (3.12¢)
SJ(C;)]C) —§(H3.0)  g(i+3) 4 3gi+2.j+1) 4 3g(i+1,j+2) _ 36(i+2,0) g(0.))
_ 35(10) §(0,j+2) _ gg(i+1,0) g(0,j+1) _ 3¢(i+1,0) g(1.j) _ 3g(i;1) g(0,j+1)
— §(i:2)g0.) _ ¢(i:0) g(2./) __ 3(i+1,1) 6(0./) _ 35(i:0) g(1,j+1)
+65+1.0) §(0.0) §(0.)) 4 (-0 §(0.0) 6(0.j+1) _ 5 g(i:1) g(1.))
+35(0)5(0.0) (L)) 4 66(1:0) §(1,0) 6(0.)) 4 35(i.1) §(0.0) §(0.))
_ 65000 §(0.0)% g(0.)). (3.12d)

4These can be easily derived by means of computer algebra, e.g. Mathematica.
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3.3. Nonlinear evolution equations
3.3.1. The KdV equation

Let us define

u= 800 (3.13)

ie.i=j=0 for S&J). In this case, with symmetric property S(-/) = S()) the evolution relation
(3.12) reduces to

uy =280 2, (3.14a)
up = 4(2839) — 24y5(20) +S(1’0)2), (3.14b)
e = 28G9 16521 — 8,520 _ 14510 _ 6,,5(11) 4 24;,25(10) _ 6y* (3.14¢)

Then by direct substitution we find
Uy — Uy — 612 = 6(SBO) — 21 _ (10?4 g(0.0)g(1.1)y, (3.15)
The right hand side is nothing but the recurrence relation (2.4) with (i, j) = (1,0). Thus we have
Ur — ey — 6U> = 0, (3.16)

which is the potential KdV equation. Taking w = —2u, yields the KdV equation

Wi — Wi +6wwy = 0, (3.17)
of which the solution is given by
w==2(s"(I+M)"'r),. (3.18)
3.3.2. The mKdV equation
Let introduce
v=sC10 (3.19)

In this turn, with (i, j) = (—1,0) in (3.12) and using §/) = SU-) one finds

v =S (3.20a)
vy =4(SC1) —y502) 4 LSO g(=1.2)y), (3.20b)
Vg = — 3pSOD 4 §(=12) 4 02, uS(_l’l), (3.20¢)
Vyxx =S(=13) _4,50.2) _ 3,,5(1.1) + 15uvs©:D)
— 6Py — 58O gL 4 32611y g(=1.2), (3.20d)
Further we find
VxVxx

Vi — Varx + 3
S(7171)

—2u) (ST 4 ysOD _ 1Dy
v
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The Sylvester equation and integrable equations: 1. KAV system and sG equation

where the r.h.s. vanishes in the light of the recurrence relation (2.4) with (i, j) = (—1,0) and (—1,1).
Thus we have

Yy — Ve 4 320 ), (3.21)
1%

This can be viewed as the potential mKdV equation. In fact, by introducing
v=Inv (3.22)
we can write (3.21) as
Vi — Ve +2(v)° =0, (3.23)

which is the familiar form of the potential mKdV equation. Then, taking yt = v, we arrive at the
mKdV equation

e — Mo + 613 1 = 0, (3.24)
of which the solution is given by
w=adIn(sK(1+M)"'r—1). (3.25)

As for the connection with the KdV equation, noting that, with the definition of u and v, the
recurrence relation (2.4) with (i, j) = (—1,0) reads

5(7172) — —VS(O’I) + MS(flﬁl)7 (326)
from (3.20c) we find
Ve = (=480 4242y = —2u,. (3.27)
This implies
Vxx Vy Vx 2
o= = () (B (3.28)
1% v/ x 1%
ie.
—w = et p, (3.29)

which is the Miura transformation between the mKdV equation (3.24) and the KdV equation (3.17).
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3.3.3. The SKdV equation

Let us examine the equation related to SC-1~1). We introduce

z=8C0"D g (3.30)
Setting i = j = —1, then (3.12) gives
Ze = —V?, (3.31a)
Zex = 2uv? — 2vSC LD, (3.31b)
e = =208 1D 2L 4 651D 4 62501 _ 6202 (3.31c)
Z :4(5(—111)2_2‘,5(—1’2))’ (3.31d)

where we have made use of the definition of « and v and the symmetric property S(*/) = §U:4)_ By
forwarding computation we find

372
XX
= Zox T 5

= 6v(uS1) — (=12 _ 50Dy, (3.32)
Tx

of which the r.h.s. obeys the recurrence relation (2.4) with (i, j) = (—1,0), i.e. (3.26). The SKdV
equation reads

372
XX
= Zox T 5 —

=0. 3.33
3 (3.33)

Relation (3.31a) provides the following Miura transformation between the potential mKdV equation
and SKdV equation,

Zxx

“:27)5.

Let us just give a brief summary of this section. We used the Sylvester equation (2.1) to define
an infinite matrix S with scalar elements S(+/). By imposing evolution (3.1) on r,s (which are also
viewed as dispersion relation), we find the potential KdV equation (3.16), the potential mKdV
equation (3.23) and the SKdV equation (3.33) are nothing but the recurrence relation (2.4) on certain
points (i.e. with some choices of (i, j)).

4. The sine-Gordon equation

In this section we will consider the following dispersion relation (or evolution for 7, s):

ry =Kr, sx:KTs7 (4.1a)
1 1
n= K 'r 5= (KT) s (4.1b)

By this we derive the sine-Gordon equation.
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Similar to the treatment in Sec.3.1, for the evolution of M, in addition to (3.2), corresponding to
(4.1b) we find

M, = %K*lrsflrl. 4.2)
For the auxiliary vector u) defined by (2.6), besides (3.10), here we have
! = %(u@”) — Dy (4.3)
Then, for § (i.7) we find
St _gli+ 1)) 4 glij+1) 50 0.4) (4.42)
() :%( Sli=1) 4 gli=1) _ gli=Dg(-1.0)y (4.4b)
i) :%[Zs(i.,j) L gl L) g1 _ gli-1.0)5(0.) _ g(i0) g(0.j-1)

— (SUHL=D 4 g00) _ g(i0) 6(0.=1)) g(=1.))
— S(iﬁl)<5(07j) + LA 5(7170)5(07/'))]7 (4.4¢0)
in which (4.4a) is the same as before.
In order to derive the sine-Gordon equation, we employ the previous definition

u=800 =10 _q (4.5)

)

while we use the dispersion relation (4.1). It then follows from (4.4) and the property S("/) = §(/+)
that

ve =SCELD (4.62)
1

v= (s 020, (4.6b)

Yy = %(1 +3 45072 gD gL 072 gy gLy, (4.6¢)

Then, by calculation we find
4y — ) — v 1 = psthm2) — g(1=Dg(=20) 4 ¢(=1.0), (4.7)

The r.h.s. is nothing but the recurrence relation (2.8) sitting on the point (i, j) = (1,0), which then
vanishes. The reminded equation reads

4(vygv —vevy) = A (4.8)

By the transformation

[T

v=e?, ie. ¢ =—2ilny, 4.9)

the above equation is transformed into the sine-Gordon equation
¢ =sing, (4.10)
of which the solution is given by

¢ = —2iln (S0 —1). 4.11)
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5. Link to the known results

It is well known that in the frame of the famous Sato Theory [33,44], solutions of integrable equa-
tions are provided through the so-called 7 functions which are expressed either in Hirota’s expo-
nential polynomial form or in terms of Wronskians. It is also well known that by the famous IST
solutions of integrable systems are given through the GLM integral equation. In our paper by S(:/)
we defined functions u, v,z and derived the potential KdV equation, potential mKdV equation, SKdV
equation and sine-Gordon equation. At meantime solutions of these equations are given through the
expression of SUJ), i.e.

s = s KT (1 4+ M) K. 5.1)

In the following let us discuss connection of the above S/) with T functions and the trace expression
in the operator method.

5.1. Connection with T function

Proposition 5.1. For the scalar function S©J) defined in (5.1) where K,M,r,s are formulated by
the Sylvester equation (2.1) and r,s obey the evolution (3.1a) in x-direction, we have

500 — B (5.2)
T

where

T=I+M)|. (5.3)
Proof. Noting that S/ is a scalar function, making use of trace we write S0 as

SO0 — (1 + M) 'r =Te(s"(I+M)~'r) = Te(rs" (1 +M) 7).
According to (3.2) we have
rs'=M,=(I+M),,

and consequently,

|1+ M,
+M|

SO = Tr((1 + M), (1 +M)~") (5.4)

For the last step of the above equation we have employed a known result

AL
A

Tr(A,A7Y)

(See theorem 7.3 in Ref. [16].) Besides, A~'A, is used to define logarithmic derivative of A in
operator algebra [30]. 0
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For the S/) with arbitrary i, j € Z, one can have

0 s'K/
S0 = s KI(I+ M)~ K'r = —L”JFM (5.5)
\I+M|
In fact, it is not difficult to see that the numerator can be equally written as
—s"K/(I+M)7'K'r 0 (i)
: =-S"N\I+M,|.
K'r I+M SN+ M
Thus, one can always write S¢:/) in the form
si) = 8 (5.6)

T

with some function g. This copes with the rational expression of solutions of integrable systems. In
fact, both (5.2) and (5.6) are very often used in bilinearization of nonlinear equations. It is possible
for 7 to take zero value on some points {(¢,x)}. Such points provide singularities of solutions of
integrable systems.

5.2. Connection with the operator method

The operator method is based on Marchenko’s work [30], first proposed by Aden and Carl [1],
and developed by Schiebold and her collaborators. The method was reviewed in [9, 10] and the
connection with Cauchy-type matrices determined by the Sylvester equations was investigated by
Schiebold in [47].

Actually, Marchenko’s method, the operator method developed by Jena’s group (Carl,
Schiebold, et.al) and the Cauchy matrix method proposed by Nijhoff, et.al, are closely related each
other. All these methods are direct and need direct verifications of solutions. Taking the (potential)
KdV equation as an example, in the operator method the solution is defined through the trace of the
logarithmic derivative, i.e.

u="Tr((I+M)""(I+M),), (5.7)
while in the Cauchy matrix method the solution is given by

u=S"I; 00 =50 =5 (1+M)"r. (5.8)
We have already seen from the above subsection that both expressions are the same. With regard to
the dispersion relations, in the operator method the dispersion relation is defined on M, e.g., M, =
KM, M, = K°M, (see [1]), while in the Cauchy matrix approach the dispersion is defined through
r,s, 1.e., (3.1). Noting that M can be factorized as M = FGH where F,H and G are respectively
related to r,s and K, (see Appendix B), defining dispersion relations on r and s will provide more
freedom to analyze the evolution of S(:/). Actually, S/) can evolve w.r.t. the discrete coordinates
(i,j) and continuous ones x and ¢. S(J) defined on some adjacent points may form closed forms
which can be viewed as discrete equations. These discrete equations used to play indispensable
roles in our verification.
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5.3. Connection with direct linearization approach

In 1981, Fokas and Ablowitz proposed a linearization approach which allows one to obtain a larger
class of solutions for the KdV equation [22]. The approach starts from an integral equation

kit x) + iel kK1) (&Y 4 oikakn), 59
kit x) S0 4 e) = (59)
where dA(z) and C are an appropriate measure and contour, respectively. If ¢ (k;z,x) solves the
above equation, then

W= —axj{ 0 (ks t,x)dA (K) (5.10)
C

satisfies the KdV equation
W — OWwy, — Wy = 0.

It is hard to find a relation between the linearization approach described in [22] and our approach
based on the Sylvester equation. However, such a relation is visible in the fully discrete case.
Nijhoff and his collaborators developed a more flexible and practical procedure of the lineariza-
tion approach [42]. They also invented the discrete version of this approach [41] and the Cauchy
matrix approach [38]. Tutorial procedures of these two approaches can be found in [35] and [38].
Making a comparison of the two procedures (linearization approach and Cauchy matrix approach)
in [35] and [38] for discrete case and in [42] and the present paper for continuous case, one can
see many correspondences. Here the infinity matrix § is nothing but the main matrix U in direct
linearization approach.

In the direct linearization approach when w(0,x) — 0 rapidly as |x| — e the GLM equation can
be constructed by taking suitable measure dA (k) [22] . Besides, the direct linearization approach
also provides a way to construct Lax pairs of the obtained equations (see [42,57] as examples). In
fact, our procedure can be viewed as a continuous version of the Cauchy matrix approach described
in [38,56]. Due to the correspondence between the direct linearization approach and Cauchy matrix
approach, it would be not difficult to construct Lax pairs in Cauchy matrix approach.

5.4. Deformation of the Sylvester equation and rank one condition

The Sylvester equation (1.1) can be alternatively expressed, for example, as the following,
AXB—-X =C, (5.11)

which was used to generate Toda lattice and 2-dimensional Toda lattice, (see Table 1 in [47]).

Note that the Sylvester equation (2.1) (as well as the generic one (1.1)) can be solved by fac-
torizing M = FGH, see Appendix B. Since r and s can be expressed via F' and H (see (C.1)), and
making use of the property (C.3), one can remove F and H form the Sylvester equation (B.1) and
the remaining reads

IG+ert =r,17, (5.12)
whit /; given in (C.2). This means it is also possible to start from the following Sylvester equation

XY —7ZX =C, (5.13)
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where all the elements are constant square matrices, and one needs to find a suitable way to insert
evolution of x, ¢ or dispersion relations. The following constant Sylvester-type equation

XY—-ZX+I=C (5.14)

is fundamentally related to bispectral differential operators [51] and was used to constructed 7-
function of the KP hierarchy [6,23,24,28]

As we mentioned before, the matrix C in the Sylvester equation (1.1) is required to be of rank
one in the operator method so as to get needed trace property. Actually, the rank one condition
appeared in many literatures (e.g. [1,8-10,23-25,28,45,47,51]). Note that any N-th order rank one
matrix is similar to the product rs” with suitable N-th order vectors r and s. Recalling our master
function S/) = s" K/ (I + M)~ 'K'r, the rank one condition naturally guarantees (or comes from the
fact) S() defines a scaler function. When the vectors r and s are replaced with matrices, the rank
of the product rs” will be higher than one and this will lead to matrix equations or noncommutative
equations.

6. Conclusions and discussions

We have shown the links between the Sylvester equation and some continuous integrable systems.
The Sylvester equation of our interest is (2.1), i.e.,

KM +MK =rs", (6.1)

and it defines the master function S¢:/) (2.2). The recurrence relation satisfied by S(+/) (e.g. (2.4)
and (2.8)) can be viewed as discrete equations of S(+/) with discrete independent variables i, j. After
imposing dispersion relation on r and s, we got evolution (x-, #-derivatives) of S(-/). Then we were
able to derive several continuous integrable equations, including the KdV equation, mKdV equation,
SKdV equation and sine-Gordon equation. These continuous equations cope with the continuous
limit of their discrete counterparts (cf. [39]). The procedure can be viewed as a continuous version
of the Cauchy matrix approach in the discrete case [38,56]. The verification looks more natural than
those in the operator method.

We finish the paper by the following remarks.

First of all, the main purpose of the paper is to display deep links between the Sylvester equation
and integrable systems, as well as to unify the Cauchy matrix approach in both discrete and contin-
uous case. The solution M of the Sylvester equation directly leads to T function through 7 = |[I+M|.
Since the Sylvester equation is widely used in variety of areas such as control theory, signal pro-
cessing, and so forth, we believe there will more links to be found between integrable systems and
these areas.

What’s more, the master function S (i.) shares the same definition in both discrete and continuous
cases. It is interesting that all the continuous equations considered in this paper are reduced to
discrete equations (2.4) or (2.8) sitting on some special points. We also note that the relation (2.4)
first appeared in [38]. It does not play any role in the construction of lattice equations, but it is really
indispensable in continuous case.

In addition, the Sylvester equation (6.1) can be exactly solved by factorizing M into FGH. For
the detailed solving procedure one can refer to [47,56] and here we list out the main results in
Appendix B. We made use of some special matrices and their properties (see Appendix A) to prove
the symmetric property S(-/) = (),
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Besides, it is possible to generalize the Sylvester equation (1.1) so that it admits elliptic func-
tions as solutions [36]. This is being considered elsewhere. Actually, there are already examples of
direct linearization approach [27,40] and of direct verification using dressed Cauchy matrices [52].
Another extension is to replace vectors r and s with matrices. This will lead to matrix equations
or noncommutative equations (see [43] an example) together with their solutions. This extension
corresponds to noncommutative operator-valued soliton equations [11-13,46,48].

Finally, let us pay more attention to solutions. Once an equation is obtained, S/ defined as (2.2)
will automatically provide solutions of the obtained equation. These solutions can be identified by
the canonical forms of K or classified according to the eigenvalues of K. Such solutions admit more
freedom in some aspects compared with the IST and Hirota’s method. Taking the KdV equation
as an example, when &'(K) contains only distinguished real numbers kj,k>,--- ,ky and &(K)N
&(—K) = @, &(K) corresponds to the discrete spectrum of the Schrodinger operator L = —d?2 + w
in the IST procedure and S0 provides solitons. When K is a Jordan block (e.g., (A.2)) with
eigenvalue ki, S0 provides multiple-pole solutions (cf. [50]). If the multiplicity N of the pole is
not high, for example, N = 2, explicit form of the solutions can be derived using a limit procedure
in IST [50] or directly derived from the Hirota method [14, 15] but with tedious calculation. If
considering the arbitrary multiplicity N, obviously solutions expressed via (2.2) or determinants
with Wronskian structure (cf. [53]) provide more compact expressions. In general, such solutions
lead to singularities (cf. [30]). K admits complex eigenvalues (appearing in conjugate pair). In this
case, solutions are referred to as breather-like solutions with singularities [26] or complexitons [29]
(corresponding to the name positons and negatons of the KdV equation [31, 32]). Such solutions
could be explained through a complex perturbation-recovering approach in IST (see [26]). This
case is also related to the reflection coefficient in IST [5]. In general, in IST the reflection coefficient
R(k) are defined only for real k, but for potential satisfying additional decay conditions (e.g., w =0
when x < 0), the reflection coefficient has analytic or meromorphic extensions off the real axis in
the complex k-plane (see [4,18]). In this case, the complex eigenvalues of K correspond to the poles
of the reflection coefficient R(k), and S(**) may provide solutions to the KdV equation in a certain
quadrant of the xz-plane (cf. [5]). An explicit solution of this case is given in Sec.D.2. In fact, the
Cauchy matrix approach exhibits more flexibility in some sense. In addition to these solutions which
have IST background, using the Cauchy matrix approach, the Weierstrass elliptic soliton solutions
have been successfully constructed for integrable lattice equations [37].

This paper will be followed by [58], where the relations between the Sylvester equation of
the generic form (1.1) and coupled continuous integrable equations and semi-discrete integrable
equations will be investigated. We are also interested in the discrete recurrence relation of S/) and
the continuous or semi-discrete equations that are constructed by S:/).
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Appendix A. Some special matrices and properties

We will use some special matrices and their properties. Let us list them below.

e Diagonal matrix:

IY({k;}Y) = Diag(ki,ka, - .., kn), (A.1)
e Jordan block matrix:
a00---00
1a0---00
()= 0la-- 007, (A2)
000---1a

e Lower triangular Toeplitz matrix:®

ag 0 0 00
ay dai 0 00
™({a;})=|® @ a - 00 , (A3)

aN aN-1aN-2 -+ a2 ay J . o
e Skew triangular Toeplitz matrix:

by --- by_2 by_1 by
by ---by_1 by O

HY({bj}{)=| b3~ bv 0 0 , (A4)
by 0 0 0/

The lower triangular Toeplitz matrices and skew triangular Toeplitz matrices defined above have
the following property.

Proposition Appendix A.1. Let

7= 1" a1} (A52)
T = {H" {b})}- (A.5b)
Then we have
(]) AB = BA’ VA’B c y[N];

(2). H=H" ,YH € F™;
(3). HA= (HA)T =ATH, YA c ™ YH ¢ T™,

This proposition can be extended to the following generic case.

bMore properties of this kind of matrices can be found in [53]
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Proposition Appendix A.2. Let

@™ = {Diag(TV' ({a1 ; }1"), 7" ({az ; }1?), T ({az ; }1*), -+, T ({as ;1)) (A.62)
G = {Diag(T0({b1 ;1)) H" ({2, 112), H ({b3,;}1?), -+, HY ({bs ;1)) }, (A.6b)

where 0 < N; <N for j=0,1,--- s and Zj-:]Nj = N. Then we have
(1) AB=BA, VA,B € 4",

(2). H=H", VH € 9",

(3). HA= (HA)T =ATH VA c 9™ VYH c 9™,

Appendix B. Solutions to the Sylvester equation (2.1)
Since S/) is invariant under any similar transformation of K, (see Sec.2.2.2) here we give the
solution of the the Sylvester equation of the following form,

I'M+MT =rs", (B.1)

where I" is the canonical form of K. We note that this equation is already solved in [47] and [56].
For convenience we follow the notations used in [56]. Besides those matrix notations we used in the
previous section, let us list other needed ones below.

N-th order vector : r= (r,ra,---,ry)7, s=(s1,52, - ,sn)7, (B.2a)
N-th order vector : I = (1,1,1,...,1)T, 1""=(1,0,0,...,0)7, (B.2b)
. Ny 1
N x N matrix : G'({k;}\') = (¢ j)vxns  8ij= e (B.2¢)
i TKj
i 1 \J
Ny x Ny matrix = G ({k;1)"5a) = (80 )wixmss 81 = — (k~ +a> ’ (B.2d)
1
N INLNY L[y i—1 (_1)i+j
N] X N2 matrix : GJJ - (a,b) = (gi7j)N1><N27 giJ = Ci‘i’j*zm’ (BZC)
-1 (=D
N x N matrix : G)"(a) = G}"(a;a) = (gi,j)Nxn, &i,j=Ci, (B.2f)

i+j—2 (2a)i+j71 ’

where

- J! o
Ci = > 7).
= ag—ar V=0
The procedure for solving the Sylvester equation (B.1) can be found in [47,56]. The key point
in the solving procedure is to factorize M in to a triplet, i.e. M = FGH. Here we skip the detailed

procedure and directly write out solutions.

Proposition Appendix B.1. (/). When

L =10"({k;}Y), (B.3)
we have
M=FGH = ( id) ) (B.4a)
N N k,‘-i-kj NxN’ '
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where
F=T'({r}1), G=G({k})), H=T({s;}{). (B.4b)
(2). When
T=I7"(k), (B.5)
we have
M =FGH, (B.6a)
where
F=T"({rj}{), G=G(ki), H=H"({s;})). (B.6b)
(3). When
I = Diag (T ({k,; 1), 10 (kny 1), T0 (kv 12), -+ 0 (kv 1. (5-1))) (B.7)

where ):§:1 N; = N (and we note that in this case I € ™), we have

M =FGH, (B.8a)

where
F =Diag (3 ({ry 1), 7 (b 4 T (L ) T (g )s - (BSD)
H = Diag (T ({s; 1) B (s 00 B (s ) HY (3 pyy ). (B8)

and G is a symmetric matrix with block structure
G =G" = (Gij)sxs (B.8d)
with

Gi1 =G ({k;i ), N
IN|.Nj] . .
Gl,j = Gil = Upy ({kj}llakNjfl+l)7 (1 <J < S), (BSC)

IN:N;]

Gi,]':Gii:GN (kNi—1+1;kNj—1+l)7 (1 <l§_]§S)

Appendix C. Proof of proposition 2.5: S(/) = §0)
The generic case of the Sylvester equation corresponds to I being defined in (B.7). In this case,
M =FGH

where F',H,G are given in the item (3) of proposition Appendix B.1, and F',H and r,s are related
through

r=FI;, s=HI,, (C.1)

where

J

L= (e ) (C2)
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Noting that from proposition Appendix B.1 we know that
G=G'", H=H", FT =TF, HT =TTH, HF = (HF)", (C.3)
we have

SUI) = 'L (1+M)~'Tr
=ITHT/(I+FGH)"'T'F1,
=I1" (") H(I+FGH) 'FI'I,
=17 T/ (HF)'+G)~'T'I,
=15(TT{((HF) '+ G)"'TV1I,

= sUd),

where we have made use of the fact (HF) ™! +G = ((HF)~' 4+ G)T. This proves proposition 2.5.

Appendix D. Solutions for the obtained nonlinear equations
D.1. Solutions

We already have solution M for the Sylvester equation (B.1) where M is factorized as
M =FGH,

F is related to r, H is related to s and G is related to I'. Once we find r and s that satisfy suitable
dispersion relations, we can have the explicit form for

S0 = TV (I +M)~'T'r, (D.1)

and then solutions of the corresponding nonlinear evolution equations.
Let us first consider the following x-evolution

re=Ir, s,=I"s (D.2)
and leave the 7-evolution open. We suppose

pi=e5, & =kx+ flki,t)+ éi(o), with constants éi(o), (D.3a)

oi=¢e", n;=kix+ f(ki,t)+ nl-(o), with constants 171-(0), (D.3b)
where for this moment f(k;,t) is some function of (k;,7) and independent of x. Then we have the
following.

(1). When I'is given by (B.3), i.e.

L =13 ({k;}), (D.4)
we have
r= rZ“({kj}]]V) = (ry,rp,- - ,rN)T, with r; = p;, (D.5a)
s =s2({k; 1) = (51,82, ,sw)", withs; = o;. (D.5b)
(2). When I is given by (B.5), i.e.
L =TV(ky), (D.6)
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we have
aifl
r=r(k) = (ri,ra,-,rn)", with ry = 4(.161 Sl,v (D.7a)
1 — .
T 8,?’_"61
s=s"(ki) = (51,52, ,sn) ", withsi:m. (D.7b)
(3). When I'' is given by (B.7), i.e.
I = Diag (T ({k; 1)), 10 (kyy 1), T2 (kg 2), -+ 0 (kg 4 (1)) (D.9)
we have
(k1) sk )
ry? (kny+1) 5, (kny+1)
r=| " (kny+2) . os= | 57 (kwy12) . (D.9)
r (k1. (s-1)) 83" (kny4-(s—1))
Finally, for the time evolution
r=4Kr, s, =4(K")%s, (D.10)
one needs to take f(k;,t) = 4kl-3t in (D.3), and for
r= Lg-1p s :l(KT)—‘s (D.11)
t 4 ) t 4 ’ .

one takes f(k;,t) = 4Lk,- in (D.3).

D.2. Some examples of the KdV equation

As examples we list two solutions to the KdV equation (3.17). The first one comes from the follow-
ing Jordan block,

kO
K_(lk), k€R. (D.12)

In this case,

r=(r;,rn)’, r=e, E=ke+akt+EO, 1=y,
s=(s1,9)7, si=el, n=ke+45t+1, 5= e,

.
F:<’”l 0>, G=| 2 @), H=<s1 ”), M =FGH,
n r (2k)? (2k)3 52 0

and

T =+ M|

1 12k?t)?
=14 —[kax® 4 (243t — 1)x + 144K°1% — 12kt + k] e+ — mez(“"). (D.13a)

2k?
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Solution to the KdV equation (3.17) is given through
w = —Z(IH’E)xx. (D.14)

Such a solution can also be derived as double-pole solution from IST or through a generalized
Hirota’s method (cf. [14, 15]), etc. Since T always has a zero point for arbitrary ¢, there is a moving
singular point in the solution [55].

The second solution is led by

K:<§]?*>, k=a+ibeC, a,beR, (D.15)

and k* is the complex conjugate of k. K is similar to the form (see Case 6 of Sec.3 in Ref. [53])

a—>b
<b 4 ) (D.16)

In this case,

r=(ri,r)7, r1=e>=e"(cos@+isin@), &=hkx+43r+EQ EO =p +iny, ry =1},
s=(s1,5)" =r, y=ax+4(a®—3b*)t] +hy, 0 =bx+4(3a*>—b*)t]+hy,

11
F:<r01r0>, G:<2{< 21a>, H:(s()lf), M =FGH,
1 2a 2k 2

and
i 4y 2y b :
T:‘I+M|:1*W€ +e [az+b20089+m5m9 . (D17)
If taking a = %, b= ?, hy = —}Lln2, hy = %, one gets [5]
T=1 —Eez(kgfuie*g’cos(ﬂﬁ z (D.18)
8 V2 127 '
Then,
w=—=2(InT)y (D.19)

gives a solution to the KdV equation, which is considered to be related to the poles of the reflection
coefficient R(k) and valid in the quadrant {# > 0,x < 0} of the x¢-plane (see [5], with a sign change
X — —X).

Appendix E. Higher order KdV equations

One can obtain higher order nonlinear evolution equations. Let us take the higer order KdV equa-
tions as an example. Consider the following evolution,

ry =Kr, sx:KTs, (E.1a)
=4"K*" Ny, sp,,,, =41 (KT s, (E.1b)

T4
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It then follows that

M, =rs", (E.2a)
2n

My, =4"Y (-1)'K* 'rsK!, (n=1,2,3,...), (E.2b)
=0

and for S(+/), besides those x-derivatives in (3.12),

2n
§li) _ gn <S(i,j+2n+1) 4 glitantly) Z(_l)lS(anJ)S(i,l)> L (n=1,2,---). (E.3)

Dnt1
=0

We still take u = S(©9 and find that
Usty,y — Unxty, | — Sllxlxty, | — Uil | =0 (E.4)

holds for n = 1,2,3,4,5. We check the above relation by means of Mathematica, which is not
complicated. For each n, the Lh.s. of (E.4) reduces to the recurrence relation (2.4) sitting on some
points (i, j). In terms of w = 2, (E.4) is written as

Wiy = Waxty, T dwwp, | + 2Wxax_1wl2n71 =Rwy, |, (E.5a)
where
R =0y +4w+2w,0,! (E.5b)

is known as the recursive operator of the KdV hierarchy.
We note that for the matrix KdV hierarchy a recursion operator has been given and solutions
were verified (cf. [12]).
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