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Casilla 297, Concepcion, Chile

muribe@ucsc.cl

Claudio Vidal‡
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We consider the Hamiltonian polynomial function H of degree fourth given by either H(x,y, px, py) =
1
2 (p2

x +

p2
y) +

1
2 (x

2 + y2) +V3(x,y) +V4(x,y), or H(x,y, px, py) =
1
2 (−p2

x + p2
y) +

1
2 (−x2 + y2) +V3(x,y) +V4(x,y),

where V3(x,y) and V4(x,y) are homogeneous polynomials of degree three and four, respectively. Our main
objective is to prove the existence and stability of periodic solutions associated to H using the classical averag-
ing method.
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1. Introduction

It is known that the periodic orbits are the most simple non-trivial solutions of an ordinary differ-
ential system, and that their study is of particular interest because the motion in a neighborhood
can be determined by their type of stability, [22]. In this paper we study the existence and stability
of periodic solutions in Hamiltonian systems defined for two families of polynomial Hamiltonians
of degree four on the plane. More specifically, we consider the following polynomial Hamiltonian
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functions:

H+ =
1
2
(p2

x + p2
y)+

1
2
(x2 + y2)+V3(x,y)+V4(x,y), (1.1)

and

H− =
1
2
(−p2

x + p2
y)+

1
2
(−x2 + y2)+V3(x,y)+V4(x,y), (1.2)

where the polynomials V3 and V4 are homogeneous polynomials of the third and fourth degree,
respectively and which are given by

V3(x,y) =
A
3

x3 +Bxy2, (1.3)

and

V4(x,y) =
Λ

4
x4 +

m
2

x2y2 +
λ

4
y4, (1.4)

where A,B,Λ,m,λ are real parameters.
In this work we will make use of the averaging method to find families of periodic orbits asso-

ciated to the Hamiltonian given by (1.1) and (1.2), respectively, for appropriate conditions on the
parameters A,B,m,λ and Λ. The essential tools that we use are the definitions and notations on the
averaging method which are given in [6] (see also [27]). Others studies related to the Hénon-Heiles
system can be found in: [1], [2], [4], [5], [8], [9], [10], [12], [13], [14], [15], [18], [19], [23], [26]
and references therein. In [7], the authors study the dynamics associated to (1.1) in a much more
general sense but the case of the cosmological model (case H−) is not considered.

Before to enunciate the main results in this paper, we introduce the appropriate notations
in relation to the parameters of the Hamiltonian (1.1) and (1.2), respectively. For the constants
A,B,m,λ ,Λ, we define

M1 = 10B(A+B)+9(λ −m)

M2 = 10(A−3B)(A+B)−9(λ +Λ−2m)

M3 = 10(A−2B)(A+B)+9(m−Λ)

M4 = 2(A−6B)B+3m

M5 = 14B(A−B)+3(3λ −m)

M6 = 2(5A−9B)(A−B)−9(λ +Λ)+6m

M7 = 2(5A−2B)(A−B)−3(3Λ−m).

Once fixed h > 0 and the parameters A,B,m,λ ,Λ, we consider the following sets:

Λ
1
h =

{
(A,B,m,λ ,Λ) ∈ R5 :

M1

M2
< 0,

M3

M2
> 0,M3M4 6= 0

}

and

Λ
2
h =

{
(A,B,m,λ ,Λ) ∈ R5 :

M5

M6
< 0,

M7

M6
> 0,M4M7 6= 0

}
,

then we get the following result:
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Theorem 1.1. Let h > 0 and H be as in (1.1). Then:

(1) there is at least one family of periodic orbits if (A,B,m,λ ,Λ) ∈ Λ1
h \Λ2

h.
(2) there are at least two families of periodic orbits if (A,B,m,λ ,Λ) ∈ Λ2

h \Λ1
h.

(3) there are at least three families of periodic orbits if (A,B,m,λ ,Λ) ∈ Λ1
h∩Λ2

h.

The next theorem gives information on the stability and unstability of the periodic solutions
obtained in Theorem 1.1.

Theorem 1.2. Under the same hypotheses of Theorem 1.1 we have that:

(i) The family in (a) is linearly stable if M3M4 > 0 and unstable if M3M4 < 0.
(ii) The two families in (b) are linearly stable if M4M7 < 0 and unstable if M4M7 > 0.

(iii) The three families in (c) are linearly stable if M3M4 > 0 and M4M7 < 0, and unstable if
either

(A1) M3M4 > 0 and M4M7 > 0, or
(A2) M3M4 < 0 and M4M7 > 0, or
(A3) M3M4 < 0 and M4M7 < 0.

In a similar way, for A,B,m,λ ,Λ, we define the following expressions:

N1 = 10B(A−B)+9(λ +m)

N2 = 10(A−B)(A+3B)+9(λ +Λ+2m)

N3 = 10(A−B)(A+2B)+9(Λ+m)

N4 = 2B(A+6B)−3m

N5 = 14B(A+B)+3(3λ +m)

N6 = 2(A+B)(5A+9B)+9(λ +Λ)+6m

N7 = 2(A+B)(5A+2B)+3(3Λ+m).

Fixed h 6= 0 small and the parameters A,B,m,λ ,Λ, we consider the following sets:

Ω
1
h =

{
(A,B,m,λ ,Λ) ∈ R5 :−2h

N1

N2
> 0,2h

N3

N2
> 0,N3N4 6= 0

}
and

Ω
2
h =

{
(A,B,m,λ ,Λ) ∈ R5 :−2h

N5

N6
> 0,2h

N7

N6
> 0,N4N7 6= 0

}
,

then we get the following result:

Theorem 1.3. For any h 6= 0, the Hamiltonian system associated to (1.2) has at least:

(a) one family of period orbits if (A,B,m,λ ,Λ) ∈Ω1
h \Ω2

h.
(b) two families of period orbits if (A,B,m,λ ,Λ) ∈Ω2

h \Ω1
h.

(c) three families of period orbits if(A,B,m,λ ,Λ) ∈Ω1
h∩Ω2

h.

The next theorem gives us information on the stability or unstability of the periodic orbits given
in Theorem 1.3.

Theorem 1.4. Under the same hypotheses of Theorem 1.3 we have that:
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(i) The family in (a) is linearly stable if h N3N4 > 0 and unstable if h N3N4 < 0.
(ii) The two families in (b) are linearly stable if h N4N7 < 0 and unstable if h N4N7 > 0.

(iii) The three families in (c) are linearly stable if h N3N4 > 0 and h N4N7 < 0, and unstable if
either

(A1) h N3N4 > 0 and h N4N7 > 0, or
(A2) h N3N4 < 0 and h N4N7 > 0, or
(A3) h N3N4 < 0 and h N4N7 < 0.

Theorems 1.1 and 1.2 are improvement of results given in [18] and Theorems 1.3 and 1.4 are
improvement of results given in [1]. The strategy to add more terms to the classical models of
cosmological scalar fields in [18] is because such perturbation increases the regions of existence of
periodic orbits.

Now, we point out that since our potential V = V3 +V4 is the addition of the homogeneous
polynomials of degree three and four defined in (1.3) and (1.4) they have the property of symmetry,
in fact, the reflection y→−y. Thus, we can apply symmetry arguments, but will not be studied in
this work. On the other hand, since the Hamiltonian function H+ (and H−) has the origin (0,0,0,0)
as an equilibrium point whose eigenvalues of the linearization are ±i with multiplicity two and
the linear part is diagonalizable and the Hessian evaluated at (0,0,0,0) is positive definite. Then
by Weinstein’s Theorem (see [22]) we can prove the existence of at least two (families) periodic
solutions whose periods are close to 2π and the energy level h = H+ is sufficiently close to 0. But,
we cannot apply this theorem for H−.

It is important to observe that the used averaging method is closely reminiscent of the normal
form approach: therefore, methods very similar to those exploited by us have been used in many
occasions before, especially to find periodic orbits, see for example [3], [11], [20], [21] and [28]. On
the other hand, the natural systems with indefinite kinetic energy (the “cosmological Hamiltonian”
in the language of our work) have recently been investigated by [24] and [25].

The organization of the paper is as follows: In Sections 2 and 3, we will describe the motion
equations to apply the Averaging theory. The main results will be proved in Section 4 and 5. Finally,
in Section 6 we will give examples where the conditions of the main results are not empty.

2. Statement of the problem and equations of motion for H+

The equations of motion associated to the system (1.1) and are

ẋ = px,

ẏ = py,

ṗx =−x− ∂V3

∂x
− ∂V4

∂x
,

ṗy =−y− ∂V3

∂y
− ∂V4

∂y
.

(2.1)
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Let x =
√

εX , y =
√

εY , px =
√

ε pX and py =
√

ε pY be the change of variable, which is ε−2-
symplectic, therefore the system (2.1) becomes

Ẋ = pX ,

Ẏ = pY ,

ṗX = −X− ε
∂V3

∂X
− ε2 ∂V4

∂X
,

ṗY = −Y − ε
∂V3

∂Y
− ε2 ∂V4

∂Y
.

(2.2)

The Hamiltonian function associated to (2.1) and (2.2) is

K+ =
1
2
(p2

X + p2
Y )+

1
2
(X2 +Y 2)+ εV3 + ε

2V4, (2.3)

where K+ = ε−2H+ = h.
By the standard theory of Hamiltonian dynamical systems, for all ε different from zero, the orig-

inal system (2.1) and the new system (2.2) have essentially the same phase portrait, and additionally
the system (2.2), for ε sufficiently small, is close to an integrable system.

Now, we introduce the change of variables (r,ρ,θ ,α) by the relations

X = r cosθ , Y = ρ cos(θ +α), pX = r sinθ , pY = ρ sin(θ +α).

Recall that this is a well defined change of variables when r > 0 and ρ > 0. Clearly this change
of variables is not canonical, so we lose the Hamiltonian structure of the system of differential
equations. Next, differentiating directly and using the expressions given in (2.2) we obtain

ṙ = −ε sinθ
∂V3

∂X
− ε2 sinθ

∂V4

∂X
,

θ̇ = −1− ε
cosθ

r
∂V3

∂X
− ε2 cosθ

r
∂V4

∂X
,

ρ̇ = −ε sin(θ +α)
∂V3

∂Y
− ε2 sin(θ +α)

∂V4

∂Y
,

α̇ = ε

[
cosθ

r
∂V3

∂X
− cos(θ +α)

ρ

∂V3

∂Y

]
+ ε2

[
cosθ

r
∂V4

∂X
− cos(θ +α)

ρ

∂V4

∂Y

]
,

(2.4)

where the partial derivatives of V3 and V4 are evaluated at the point (r cosθ ,ρ cos(θ +α)). Moreover
note that

∂Vk

∂ r
= cosθ

∂Vk

∂X
∂Vk

∂θ
= −r sinθ

∂Vk

∂X
−ρ sin(θ +α)

∂Vk

∂Y
∂Vk

∂ρ
= cos(θ +α)

∂Vk

∂Y
∂Vk

∂α
= −ρ sin(θ +α)

∂Vk

∂Y
.
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for k = 3,4. Therefore (2.4) can be written as

ṙ = ε
1
r

(
∂V3

∂θ
− ∂V3

∂α

)
+ ε2 1

r

(
∂V4

∂θ
− ∂V4

∂α

)
,

θ̇ = −1− ε
1
r

∂V3

∂ r
− ε2 1

r
∂V4

∂ r
,

ρ̇ = ε
1
ρ

∂V3

∂α
+ ε2 1

ρ

∂V4

∂α
,

α̇ = ε

(1
r

∂V3

∂ r
− 1

ρ

∂V3

∂ρ

)
+ ε2

(1
r

∂V4

∂ r
− 1

ρ

∂V4

∂ρ

)
.

(2.5)

We observe that for a fixed value h of K+, in polar coordinates, it assumes the form

h =
1
2
(r2 +ρ

2)+ εV3(r cosθ ,ρ cos(θ +α))+ ε
2V4(r cosθ ,ρ cos(θ +α)). (2.6)

In order to put our system as a periodic ordinary differential equation, we introduce the θ variable
as independent (new time), and we use the notation prime to denote the derivative with respect to θ .
It is observed that the angular variable α cannot be used as the independent variable, since the new
differential system do not have the appropriate form in order to apply the averaging method. Now,
note that

dr
dθ

=−
ε

(
∂V3

∂θ
− ∂V3

∂α

)
+ ε2

(
∂V4

∂θ
− ∂V4

∂α

)
r+ ε

∂V3

∂ r
+ ε2 ∂V4

∂ r

.

Remember that the function

f (ε) =
1

1+a1ε +a2ε2 = 1−a1ε +(a2
1−a2)ε

2 +O(ε3),

by developing a Taylor series in powers of ε around ε = 0. Replacing a1 =
1
r

∂V3

∂ r
and a2 =

1
r

∂V4

∂ r
we get

1

1+
1
r

∂V3

∂ r
ε +

1
r

∂V4

∂ r
ε2

= 1− 1
r

∂V3

∂ r
ε +
[(1

r
∂V3

∂ r

)2
− 1

r
∂V4

∂ r

]
ε

2 +O(ε3).

Therefore,

r′ =−1
r

(
∂V3

∂θ
− ∂V3

∂α

)
ε +

1
r

[1
r

∂V3

∂ r

(
∂V3

∂θ
− ∂V3

∂α

)
−
(

∂V4

∂θ
− ∂V4

∂α

)]
ε2 +O(ε3).

Moreover,

dρ

dθ
=−

ε
1
ρ

∂V3

∂α
+ ε2 1

ρ

∂V4

∂α

1+ ε
1
r

∂V3

∂ r
+ ε2 1

r
∂V4

∂ r

,
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thus

ρ
′ =− 1

ρ

∂V3

∂α
ε +
[ 1

rρ

∂V3

∂ r
∂V3

∂α
− 1

ρ

∂V4

∂α

]
ε2 +O(ε3).

Also

dα

dθ
=−

ε

(1
r

∂V3

∂ r
− 1

ρ

∂V3

∂ρ

)
+ ε2

(1
r

∂V4

∂ r
− 1

ρ

∂V4

∂ρ

)
1+ ε

1
r

∂V3

∂ r
+ ε2 1

r
∂V4

∂ r

,

then

α
′ =−

(
1
r

∂V3
∂ r −

1
ρ

∂V3
∂ρ

)
ε +
[

1
r

∂V3
∂ r

(
1
r

∂V3
∂ r −

1
ρ

∂V3
∂ρ

)
−
(

1
r

∂V4
∂ r −

1
ρ

∂V4
∂ρ

)]
ε2 +O(ε3).

If we write the previous system as a Taylor series in powers of ε , we have that

(2.7)

r′ = −1
r

(
∂V3

∂θ
− ∂V3

∂α

)
ε +

1
r

[1
r

∂V3

∂ r

(
∂V3

∂θ
− ∂V3

∂α

)
−
(

∂V4

∂θ
− ∂V4

∂α

)]
ε

2 +O(ε3)

ρ
′ = − 1

ρ

∂V3

∂α
ε +
[ 1

rρ

∂V3

∂ r
∂V3

∂α
− 1

ρ

∂V4

∂α

]
ε

2 +O(ε3),

α
′ = −

(1
r

∂V3

∂ r
− 1

ρ

∂V3

∂ρ

)
ε +
[1

r
∂V3

∂ r

(1
r

∂V3

∂ r
− 1

ρ

∂V3

∂ρ

)
−
(1

r
∂V4

∂ r
− 1

ρ

∂V4

∂ρ

)]
ε

2 +

O(ε3)

In order to apply the averaging theory we will fix the value of the first integral of K = h > 0. We
write the Taylor expansion of the function ρ of second order in ε and rewrite the system (2.7) in the
variables r and α . The function ρ in its Taylor form is

ρ(ε) = ρ(0)+ρ
′(0)ε +O(ε2). (2.8)

Regarding (2.8), we obtain for ε = 0,

ρ(0) =
√

2h− r2. (2.9)

Derivating (2.8) with respect to ε , we have

0 = ρρ
′+V3(r cosθ ,ρ cos(θ +α))+ ε

∂V3

∂Y
ρ
′ cos(θ +α)+

2εV4(r cosθ ,ρ cos(θ +α))+ ε
2 ∂V4

∂Y
ρ
′ cos(θ +α)

and evaluating at ε = 0, we obtain

ρ
′(0) =− 1√

2h− r2
V3

(
r cosθ ,

√
2h− r2 cos(θ +α)

)
. (2.10)

Thus, from (2.8), (2.9) and (2.10) the development of the function ρ in Taylor series has the form

ρ(ε) =
√

2h− r2− 1√
2h− r2

V3(r cosθ ,
√

2h− r2 cos(θ +α))ε +O(ε2).
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Since V3 depends on the variables (r,ρ,θ ,α), the derivatives of V3 respect to their variables in the
Taylor series are:

• ∂V3

∂θ
=

∂V3

∂θ
+ρ ′(0)

∂ 2V3

∂ρ∂θ
ε +O(ε2),

• ∂V3

∂α
=

∂V3

∂α
+ρ ′(0)

∂ 2V3

∂ρ∂α
ε +O(ε2),

• ∂V3

∂ r
=

∂V3

∂ r
+ρ ′(0)

∂ 2V3

∂ρ∂ r
ε +O(ε2),

• ∂V3

∂ρ
=

∂V3

∂ρ
+ρ ′(0)

∂ 2V3

∂ρ2 ε +O(ε2).

Moreover,

• 1
ρ
=

1
ρ(0)

− ρ ′(0)
ρ2(0)

ε +O(ε2),

• 1
ρ

∂V3

∂ρ
=

1
ρ(0)

∂V3

∂ρ
+
[

ρ ′(0)
ρ(0)

∂ 2V3

∂ρ2 −
ρ ′(0)
ρ2(0)

∂V3

∂ρ

]
ε +O(ε2).

Recall that the function V3 and its partial derivatives are evaluated at the point (r cosθ ,ρ(0)cos(θ +
α)), with ρ(0) as in (2.9). Therefore,

1
r

(
∂V3
∂θ
− ∂V3

∂α

)
= 1

r

(
∂V3
∂θ
− ∂V3

∂α

)
+ ρ ′(0)

r

(
∂ 2V3
∂ρ∂θ

− ∂ 2V3
∂ρ∂α

)
ε

(
1
r

∂V3
∂ r −

1
ρ

∂V3
∂ρ

)
=
(

1
r

∂V3
∂ r −

1
ρ(0)

∂V3
∂ρ

)
+
[

ρ ′(0)
r

∂ 2V3
∂ρ∂ r −

(
ρ ′(0)
ρ(0)

∂ 2V3
∂ρ2 −

ρ ′(0)
ρ2(0)

∂V3
∂ρ

)]
ε

(2.11)

Then substituting the latter expression into equation (2.7), we obtain the two differential equations

(2.12)

r′ = −1
r

(
∂V3

∂θ
− ∂V3

∂α

)
ε +

1
r

[1
r

∂V3

∂ r

(
∂V3

∂θ
− ∂V3

∂α

)
−ρ

′(0)
(

∂ 2V3

∂ρ∂θ
− ∂ 2V3

∂ρ∂α

)
−(

∂V4

∂θ
− ∂V4

∂α

)]
ε

2 +O(ε3)

α
′ = −1

r

(
∂V3

∂ r
− r

ρ(0)
∂V3

∂ρ

)
ε +
[
− ρ ′(0)

r
∂ 2V3

∂ρ∂ r
+
(

ρ ′(0)
ρ(0)

∂ 2V3

∂ρ2 −
ρ ′(0)
ρ2(0)

∂V3

∂ρ

)
+

1
r

∂V3

∂ r

(1
r

∂V3

∂ r
− 1

ρ

∂V3

∂ρ

)
−
(1

r
∂V4

∂ r
− 1

ρ

∂V4

∂ρ

)]
ε

2 +O(ε3),

where the partial derivatives of V3 and V4 are evaluated at the point ρ = ρ(0) (as in (2.9) and
(r cosθ ,ρ(0)cos(θ +α)).

The system (2.12) has the general form

(2.13)

r′ = F11ε +F21ε
2 +O(ε3),

α
′ = F12ε +F22ε

2 +O(ε3),
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where

(2.14)

F11 = −1
r

(
∂V3

∂θ
− ∂V3

∂α

)
,

F12 = −1
r

(
∂V3

∂ r
− r

ρ(0)
∂V3

∂ρ

)
,

F21 =
1
r

[1
r

∂V3

∂ r

(
∂V3

∂θ
− ∂V3

∂α

)
−ρ

′(0)
(

∂ 2V3

∂ρ∂θ
− ∂ 2V3

∂ρ∂α

)
−(

∂V4

∂θ
− ∂V4

∂α

)]
,

F22 =
[
− ρ ′(0)

r
∂ 2V3

∂ρ∂ r
+
(

ρ ′(0)
ρ(0)

∂ 2V3

∂ρ2 −
ρ ′(0)
ρ2(0)

∂V3

∂ρ

)
+

1
r

∂V3

∂ r

(1
r

∂V3

∂ r
− 1

ρ

∂V3

∂ρ

)
−
(1

r
∂V4

∂ r
− 1

ρ

∂V4

∂ρ

)]
.

Also, we denote

f1(r,α) := ( f11, f12) =
1

2π

∫ 2π

0
(F11,F12)dθ (2.15)

and

f2(r,α) := ( f21, f22)

=
1

2π

∫ 2π

0
[DrαF1(θ ,r,α).

∫
θ

0
F1(t,r,α)dt +F2(θ ,r,α)]dθ ,

(2.16)

where F1 = (F11,F12), F2 = (F21,F22) and DrαF1(θ ,r,α) is the Jacobian matrix given by

DrαF1(θ ,r,α) =


∂F11

∂ r
∂F11

∂α

∂F12

∂ r
∂F12

∂α

 . (2.17)

The following lemma is related to the expressions (2.13), (2.15), (2.16) and will be very useful
for future computations.

Lemma 2.1. f1(r,α) = (0,0)

Proof. Note that

F11 =
[
B
(
2h− r2)cos2(α +θ)+Ar2 cos2

θ
]

sinθ ,

F12 = −
[
B
(
2h−3r2

)
cos2(α +θ)+Ar2 cos2 θ

]
cosθ

r
.

As each of the integrals in (2.15) involves the presence of combinations of the functions cos3(θ),
cos2(θ)sin(θ), cos(θ)sin2(θ), sin3(θ), we arrive to the equation f1(r,α)≡ (0,0).
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3. Statement of the problem and equations of motion for H−

The equations of motion associated to the system (1.2) are

ẋ =−px,

ẏ = py,

ṗx = x− ∂V3

∂x
− ∂V4

∂x
,

ṗy =−y− ∂V3

∂y
− ∂V4

∂y
.

(3.1)

Let x =
√

εX , y =
√

εY , px =
√

ε pX and py =
√

ε pY be the change of variable, which is ε−2-
symplectic, therefore the system (3.1) becomes

Ẋ = −pX ,

Ẏ = pY ,

ṗX = X− ε
∂V3

∂X
− ε2 ∂V4

∂X
,

ṗY = −Y − ε
∂V3

∂Y
− ε2 ∂V4

∂Y
.

(3.2)

The Hamiltonian function associated to (3.1) and (3.2) is

K− =
1
2
(−p2

X + p2
Y )+

1
2
(−X2 +Y 2)+ εV3 + ε

2V4, (3.3)

where K− = ε−2H− = h.
By the standard theory of Hamiltonian dynamical systems, for all ε different from zero, the orig-

inal system (3.1) and the new system (3.2) have essentially the same phase portrait, and additionally
the system (3.2), for ε sufficiently small, is close to an integrable system.

Now, analogously to the previous case we introduce the convenient change of coordinates
(r,ρ,θ ,α) by the relations

X = r cosθ , Y = ρ cos(−θ +α), pX = r sinθ , pY = ρ sin(−θ +α).

Recall that this is a well defined change of variables when r > 0 and ρ > 0. We observe that for a
fixed value h of K, in polar coordinates,

h =
1
2
(−r2 +ρ

2)+ εV3(r cosθ ,ρ cos(−θ +α))+ ε
2V4(r cosθ ,ρ cos(−θ +α)). (3.4)
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Differentiating directly, we arrive to the fact that the equations of motion assume the form

ṙ = −ε sinθ
∂V3

∂X
− ε2 sinθ

∂V4

∂X
,

θ̇ = 1− ε
cosθ

r
∂V3

∂X
− ε2 cosθ

r
∂V4

∂X
,

ρ̇ = ε sin(−θ +α)
∂V3

∂Y
+ ε2 sin(−θ +α)

∂V4

∂Y
,

α̇ = ε

[
−cosθ

r
∂V3

∂X
− cos(−θ +α)

ρ

∂V3

∂Y

]
+ ε2

[
−cosθ

r
∂V4

∂X
− cos(−θ +α)

ρ

∂V4

∂Y

]
.

(3.5)

Moreover, note that

∂Vk

∂ r
= cosθ

∂Vk

∂X
,

∂Vk

∂θ
= −r sinθ

∂Vk

∂X
+ρ sin(−θ +α)

∂Vk

∂Y
,

∂Vk

∂ρ
= cos(−θ +α)

∂Vk

∂Y
,

∂Vk

∂α
= −ρ sin(−θ +α)

∂Vk

∂Y
.

for k = 3,4. Therefore (2.4) can be written as

ṙ = ε
1
r

(
∂V3

∂θ
+

∂V3

∂α

)
+ ε2 1

r

(
∂V4

∂θ
+

∂V4

∂α

)
,

θ̇ = 1− ε
1
r

∂V3

∂ r
− ε2 1

r
∂V4

∂ r
,

ρ̇ = −ε
1
ρ

∂V3

∂α
− ε2 1

ρ

∂V4

∂α
,

α̇ = ε

(
− 1

r
∂V3

∂ r
− 1

ρ

∂V3

∂ρ

)
+ ε2

(
− 1

r
∂V4

∂ r
− 1

ρ

∂V4

∂ρ

)
,

(3.6)

where the partial derivatives of V3 and V4 are evaluated at the point (r cosθ ,ρ cos(−θ +α)). In
order to put our system as a periodic system of ordinary differential equations, we introduce the
θ variable as independent (new time), and we use the notation prime to denote the derivative with
respect to θ . It is observed that the angular variable α cannot be used as the independent variable,
since the new differential system does not have the appropriate form in order to apply the averaging
method. Now, note that

dr
dθ

=
ε

(
∂V3

∂θ
+

∂V3

∂α

)
+ ε2

(
∂V4

∂θ
+

∂V4

∂α

)
r− ε

∂V3

∂ r
− ε2 ∂V4

∂ r

.

Remember that the function

f (ε) =
1

1−a1ε−a2ε2 = 1+a1ε +(a2
1 +a2)ε

2 +O(ε3),
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by developing a Taylor series in powers of ε around ε = 0. Replacing a1 =
1
r

∂V3

∂ r
and a2 =

1
r

∂V4

∂ r
we get

1

1− 1
r

∂V3

∂ r
ε− 1

r
∂V4

∂ r
ε2

= 1+
1
r

∂V3

∂ r
ε +
[(1

r
∂V3

∂ r

)2
+

1
r

∂V4

∂ r

]
ε

2 +O(ε3).

Therefore,

r′ =
1
r

(
∂V3

∂θ
+

∂V3

∂α

)
ε +

1
r

[1
r

∂V3

∂ r

(
∂V3

∂θ
+

∂V3

∂α

)
+
(

∂V4

∂θ
+

∂V4

∂α

)]
ε2 +O(ε3).

Moreover,

dρ

dθ
=−

ε
1
ρ

∂V3

∂α
+ ε2 1

ρ

∂V4

∂α

1− ε
1
r

∂V3

∂ r
− ε2 1

r
∂V4

∂ r

,

thus

ρ
′ =− 1

ρ

∂V3

∂α
ε−
[ 1

rρ

∂V3

∂ r
∂V3

∂α
+

1
ρ

∂V4

∂α

]
ε2 +O(ε3).

Also

dα

dθ
=

ε

(
− 1

r
∂V3

∂ r
− 1

ρ

∂V3

∂ρ

)
+ ε2

(
− 1

r
∂V4

∂ r
− 1

ρ

∂V4

∂ρ

)
1− ε

1
r

∂V3

∂ r
− ε2 1

r
∂V4

∂ r

,

then

α
′ =
(
− 1

r
∂V3
∂ r −

1
ρ

∂V3
∂ρ

)
ε +
[

1
r

∂V3
∂ r

(
− 1

r
∂V3
∂ r −

1
ρ

∂V3
∂ρ

)
+
(
− 1

r
∂V4
∂ r −

1
ρ

∂V4
∂ρ

)]
ε2 +O(ε3).

If we write the previous system as a Taylor series in powers of ε , we have that

(3.7)

r′ =
1
r

(
∂V3

∂θ
+

∂V3

∂α

)
ε +

1
r

[1
r

∂V3

∂ r

(
∂V3

∂θ
+

∂V3

∂α

)
+
(

∂V4

∂θ
+

∂V4

∂α

)]
ε

2 +O(ε3),

ρ
′ = − 1

ρ

∂V3

∂α
ε−
[ 1

rρ

∂V3

∂ r
∂V3

∂α
+

1
ρ

∂V4

∂α

]
ε

2 +O(ε3),

α
′ =
(
− 1

r
∂V3

∂ r
− 1

ρ

∂V3

∂ρ

)
ε +
[1

r
∂V3

∂ r

(
− 1

r
∂V3

∂ r
− 1

ρ

∂V3

∂ρ

)
+
(
− 1

r
∂V4

∂ r
− 1

ρ

∂V4

∂ρ

)]
ε

2 +

O(ε3).

In order to apply the averaging theory we will fix the value of the first integral of K = h > 0. We
write the Taylor expansion of the function ρ of second order in ε and rewrite the system (3.7) in the
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variables r and α . The function ρ in its Taylor form is

ρ(ε) = ρ(0)+ρ
′(0)ε +O(ε2). (3.8)

Regarding (3.4), we obtain for ε = 0,

ρ(0) =
√

2h+ r2. (3.9)

Derivating (3.4) with respect to ε , we have

0 = ρρ
′+V3(r cosθ ,ρ cos(−θ +α))+ ε

∂V3

∂Y
ρ
′ cos(−θ +α)+

2εV4(r cosθ ,ρ cos(−θ +α))+ ε
2 ∂V4

∂Y
ρ
′ cos(−θ +α)

and evaluating at ε = 0, we obtain

ρ
′(0) =− 1√

2h+ r2
V3

(
r cosθ ,

√
2h+ r2 cos(−θ +α)

)
. (3.10)

Thus, from (3.8), (3.9) and (3.10) the development of the function ρ in a Taylor series has the form

ρ(ε) =
√

2h+ r2− 1√
2h+ r2

V3(r cosθ ,
√

2h+ r2 cos(−θ +α))ε +O(ε2).

Since V3 depends on the variables (r,ρ,θ ,α), the derivatives of V3 respect to their variables in the
Taylor series are:

• ∂V3

∂θ
=

∂V3

∂θ
+ρ ′(0)

∂ 2V3

∂ρ∂θ
ε +O(ε2),

• ∂V3

∂α
=

∂V3

∂α
+ρ ′(0)

∂ 2V3

∂ρ∂α
ε +O(ε2),

• ∂V3

∂ r
=

∂V3

∂ r
+ρ ′(0)

∂ 2V3

∂ρ∂ r
ε +O(ε2),

• ∂V3

∂ρ
=

∂V3

∂ρ
+ρ ′(0)

∂ 2V3

∂ρ2 ε +O(ε2).

Moreover,

• 1
ρ
=

1
ρ(0)

− ρ ′(0)
ρ2(0)

ε +O(ε2),

• 1
ρ

∂V3

∂ρ
=

1
ρ(0)

∂V3

∂ρ
+
[

ρ ′(0)
ρ(0)

∂ 2V3

∂ρ2 −
ρ ′(0)
ρ2(0)

∂V3

∂ρ

]
ε +O(ε2).
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Recall that all the previous functions are evaluated at the point (r cosθ ,ρ(0)cos(−θ +α)). There-
fore,

1
r

(
∂V3
∂θ

+ ∂V3
∂α

)
= 1

r

(
∂V3
∂θ

+ ∂V3
∂α

)
+ ρ ′(0)

r

(
∂ 2V3
∂ρ∂θ

+ ∂ 2V3
∂ρ∂α

)
ε,

(
− 1

r
∂V3
∂ r −

1
ρ

∂V3
∂ρ

)
=
(
− 1

r
∂V3
∂ r −

1
ρ(0)

∂V3
∂ρ

)
−
[

ρ ′(0)
r

∂ 2V3
∂ρ∂ r +

(
ρ ′(0)
ρ(0)

∂ 2V3
∂ρ2 −

ρ ′(0)
ρ2(0)

∂V3
∂ρ

)]
ε.

(3.11)

Then substituting the latter expression into equation (3.7), we obtain the two differential equations

(3.12)

r′ =
1
r

(
∂V3

∂θ
+

∂V3

∂α

)
ε +

1
r

[1
r

∂V3

∂ r

(
∂V3

∂θ
+

∂V3

∂α

)
+ρ

′(0)
(

∂ 2V3

∂ρ∂θ
+

∂ 2V3

∂ρ∂α

)
+(

∂V4

∂θ
+

∂V4

∂α

)]
ε

2 +O(ε3),

α
′ =

1
r

(
− ∂V3

∂ r
− r

ρ(0)
∂V3

∂ρ

)
ε +
[
− ρ ′(0)

r
∂ 2V3

∂ρ∂ r
−
(

ρ ′(0)
ρ(0)

∂ 2V3

∂ρ2 −
ρ ′(0)
ρ2(0)

∂V3

∂ρ

)
+

1
r

∂V3

∂ r

(
− 1

r
∂V3

∂ r
− 1

ρ(0)
∂V3

∂ρ

)
+
(
− 1

r
∂V4

∂ r
− 1

ρ(0)
∂V4

∂ρ

)]
ε

2 +O(ε3),

where the last system is evaluated at the point ρ = ρ(0) as in (3.9) and (r cosθ ,ρ(0)cos(−θ +α)).
The system (3.12) has the general form

(3.13)

r′ = F11ε +F21ε
2 +O(ε3),

α
′ = F12ε +F22ε

2 +O(ε3),

where

(3.14)

F11 =
1
r

(
∂V3

∂θ
+

∂V3

∂α

)
,

F12 = −1
r

(
∂V3

∂ r
+

r
ρ(0)

∂V3

∂ρ

)
,

F21 =
1
r

[1
r

∂V3

∂ r

(
∂V3

∂θ
+

∂V3

∂α

)
+ρ

′(0)
(

∂ 2V3

∂ρ∂θ
+

∂ 2V3

∂ρ∂α

)
+(

∂V4

∂θ
+

∂V4

∂α

)]
,

F22 =
[
− ρ ′(0)

r
∂ 2V3

∂ρ∂ r
−
(

ρ ′(0)
ρ(0)

∂ 2V3

∂ρ2 −
ρ ′(0)
ρ2(0)

∂V3

∂ρ

)
+

1
r

∂V3

∂ r

(
− 1

r
∂V3

∂ r
− 1

ρ

∂V3

∂ρ

)
+
(
− 1

r
∂V4

∂ r
− 1

ρ

∂V4

∂ρ

)]
.

Also, we denote

f1(r,α) := ( f11, f12) =
1

2π

∫ 2π

0
(F11,F12)dθ (3.15)
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and

f2(r,α) := ( f21, f22)

=
1

2π

∫ 2π

0
[DrαF1(θ ,r,α).

∫
θ

0
F1(t,r,α)dt +F2(θ ,r,α)]dθ ,

(3.16)

where F1 = (F11,F12), F2 = (F21,F22) and DrαF1(θ ,r,α) is the jacobian matrix given by

DrαF1(θ ,r,α) =


∂F11

∂ r
∂F11

∂α

∂F12

∂ r
∂F12

∂α

 . (3.17)

As the expression given in F11 and F22 involves the presence of combinations of the functions cos3 θ ,
cos2 θ sinθ , cosθ sin2

θ , sin3
θ , we arrive to the equation f1(r,α) = (0,0). This result is the same

as in Lemma 2.1.

4. Proof of Theorem 1.1 and Theorem 1.2, the case H+

Proof. We use the same notation as in [6] to apply the averaging method. Let H be as in (1.1) such
that h be any small positive number. Moreover, the expressions of f21 and f22 given by (2.16) are of
the form:

f21 =
1

24
r
(
r2−2h

)[
2AB+3

(
m−4B2)]sin(2α)

f22 =
1

24

[
10A2r2 +24AB(h− r2)−2B2(2h+3r2)−3

(
h(4m−6λ )+ r2(−4m+3(λ +Λ))

)
−

2(2(A−6B)B+3m)(h− r2)cos(2α)
]
.

Let M j, for j = 1, . . . ,7 be the expressions given in Section 1. In order to apply the averaging
method, first we solve the system f21 = 0 and f22 = 0 for the variables r and α . Therefore, we
obtain the solutions (r j,α j), for j = 1,2,3, given by

(r1,α1) =
(√
−2h

M1

M2
,0
)
,

(r2,α2) =
(√
−2h

M5

M6
,−π

2

)
,

(r2,α2) =
(

r2,
π

2

)
.

Remember that ρ j =
√

2h− r2
j , for j = 1,2,3. Therefore, this expressions are

ρ1 =

√
2h

M3

M2
,

ρ2 =

√
2h

M7

M6
.

ρ3 = ρ2
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The next step is to find the region of the parameters where the determinant J j of the Jacobian
matrix, Dr,α( f1, f2) evaluated in the zeros (r j,α j) is non null. We find that

J1 =
hr2

1
72

M3M4,

J2 = −hr2
2

72
M4M7,

J3 = J2.

Now, we finish the proof of Theorem 1.1. Indeed, if (A,B,m,λ ,Λ)∈Λ1
h \Λ2

h, then r1 > 0, ρ1 > 0
and J1 6= 0 and therefore we obtain at least one-family of period orbits. If (A,B,m,λ ,Λ) ∈ Λ2

h \Λ1
h,

then r2 > 0, ρ2 > 0 and J2 6= 0, so we get at least two-families of periodic orbits. Finally, if
(A,B,m,λ ,Λ) ∈ Λ1

h ∩Λ2
h, then r1 > 0, r2 > 0, ρ1 > 0, ρ2 > 0, J1 6= 0 and J2 6= 0, so we get at

least three-families of periodic orbits. This completes the proof of Theorem 1.1.

For the proof of Theorem 1.2. Observe that if we denote by λ 1
1 and λ 1

2 the eigenvalued of the
Jacobian matrix Dr,α( f1, f2) evaluate in (r1,α1), we have that

λ
1
1 =− 1

6
√

2
r1
√

h
√
−M3M4, λ

1
2 =−λ

1
1 .

Moreover, as J1 = λ 1
1 λ 1

2 , we obtain that J1 =−(λ 1
1 )

2. Therefore, for (A,B,m,λ ,Λ) ∈ Λ1
h \Λ2

h such
that M3M4 > 0 we obtain at least one-family linearly stable and linearly unstable if M3M4 < 0. This
proves the first part of Theorem 1.2. For the second part of Theorem 1.2, we denote by λ 2

1 and λ 2
2

the eigenvalues of the Jacobian matrix Dr,α( f1, f2) evaluated in (r2,α2), we have that

λ
2
1 =− 1

6
√

2
r2
√

h
√

M4M7, λ
2
2 =−λ

2
1 .

Moreover, as J2 = λ 2
1 λ 2

2 , we obtain that J2 =−(λ 2
1 )

2. Therefore, for (A,B,m,λ ,Λ) ∈ Λ2
h \Λ1

h such
that M4M7 < 0 we obtain at least two-families linearly stable and linearly unstable if M4M7 > 0.
Finally, for the proof of the third part of Theorem 1.2, for (A,B,m,λ ,Λ)∈Λ1

h∩Λ2
h such that M3M4 >

0 and M4M7 < 0, we obtain three-families linearly stable and three-families linearly unstable in the
other conditions. Therefore, the proof is completed.

5. Proof of Theorem 1.3 and Theorem 1.4, the case H−

Proof. We use the same notation as in [6] to apply the averaging method. Let H be as in (1.2) such
that h be any small number. Moreover, the functions f21 and f22 given by (3.16) are:

f21 =
1

24
r
(
2h+ r2)(2AB+12B2−3m

)
sin(2α),

f22 =
1

24

[
−10A2r2−24AB(h+ r2)+B2(−4h+6r2)−

3
(

h(4m+6λ )+ r2(4m+3(λ +Λ))
)
+

2
(

2B(A+6B)−3m
)
(h+ r2)cos(2α)

]
.

Let N j be for j = 1, . . . ,7 the expressions given in Section 1. To apply the averaging method, first we
solve the system f21 = 0 and f22 = 0 for the variables r and α . Therefore, we obtain the solutions
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(r j,α j), for j = 1,2,3, given by

(r1,α1) =
(√
−2h

N1

N2
,0
)
,

(r2,α2) =
(√
−2h

N5

N6
,−π

2

)
,

(r3,α3) =
(

r2,
π

2

)
.

Remember that in the case H−, ρ j =
√

2h+ r2
j , for j = 1,2,3. Therefore, these expressions are

ρ1 =

√
2h

N3

N2
,

ρ2 =

√
2h

N7

N6
,

ρ3 = ρ2.

The next step is to find the region of the parameters where the determinant J j of the Jacobian
matrix, Dr,α( f1, f2) evaluated in the zeros (r j,α j) is non null. We find that

J1 =
hr2

1
72

N3N4,

J2 = −hr2
2

72
N4N7,

J3 = J2.

Now, we finish the proof of Theorem 1.3. Indeed, if (A,B,m,λ ,Λ)∈Ω1
h\Ω2

h, then r1 > 0, ρ1 > 0
and J1 6= 0 and therefore we obtain at least one-family of periodic orbits. If (A,B,m,λ ,Λ)∈Ω2

h\Ω1
h,

then r2 > 0, ρ2 > 0 and J2 6= 0, so we get at least two-families of periodic orbits. Finally, if
(A,B,m,λ ,Λ) ∈ Ω1

h ∩Ω2
h, then r1 > 0, r2 > 0, ρ1 > 0, ρ2 > 0, J1 6= 0 and J2 6= 0, so we get at

least three-families of periodic orbits. This completes the proof of Theorem 1.3.

For the proof of Theorem 1.4, observe that if we denote by λ 1
1 and λ 1

2 the eigenvalues of the
Jacobian matrix Dr,α( f1, f2) evaluate in (r1,α1), we have that

λ
1
1 =− 1

6
√

2
r1
√

h
√
−N3N4, λ

1
2 =−λ

1
1 .

Moreover, as J1 = λ 1
1 λ 1

2 , we obtain that J1 =−(λ 1
1 )

2. Therefore, for (A,B,m,λ ,Λ) ∈Ω1
h \Ω2

h such
that N3N4 > 0 we obtain at least one-family linearly stable and linearly unstable if N3N4 < 0. This
proves the first part of Theorem 1.4. For the second part of Theorem 1.4, we denote by λ 2

1 and λ 2
2

the eigenvalues of the Jacobian matrix Dr,α( f1, f2) evaluated in (r2,α2), we have that

λ
2
1 =− 1

6
√

2
r2
√

h
√

N4N7, λ
2
2 =−λ

2
1 .

Moreover, as J2 = λ 2
1 λ 2

2 , we obtain that J2 =−(λ 2
1 )

2. Therefore, for (A,B,m,λ ,Λ) ∈Ω2
h \Ω1

h such
that N4N7 < 0 we obtain at least two-families linearly stable and linearly unstable if N4N7 > 0.
Finally, for the proof of the third part of Theorem 1.4, for (A,B,m,λ ,Λ)∈Ω1

h∩Ω2
h such that N3N4 >
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0 and N4N7 < 0 we obtain three-families linearly stable and three-families linearly unstable in the
other conditions. Therefore, the proof is completed.

6. Numerical Examples on the Existence of Periodic Orbits

6.1. Examples of families of periodic orbits for H+

Taking λ = Λ = m = 0, that is, V4 ≡ 0, we recuperate the results obtained by Jiménez-Lara and
Llibre in [17]. Moreover, we emphasize that adding to the classical Henón-Heiles system a homo-
geneous polynomial of degree four, we obtain periodic orbits outside the region of the existence
of periodic solutions found in [17]. The importance of adding to classical Henón-Heiles system
a homogeneous polynomial of degree fourth, lies in to find another family of periodic orbits in a
region where the conditions given by Llibre and Jiménez-Lara in [17] are not valid.

Indeed, we point out the following examples.
For a one periodic orbit: Taking A = 1,B = 4, m = 1.5 and Λ = −λ = 3, we obtain r1 =

0.780988
√

h, ρ1 = 1.17901
√

h and J1 = 552.774h2 for every h > 0 small. Therefore, the Hamilto-
nian

H =
1
2
(p2

x + p2
y)+

1
2
(x2 + y2)+

1
3

x3 +4xy2 +
3
4

x4 +
3
4

x2y2− 3
4

y4

has at least one family of periodic orbits for every h > 0 small. However, note that

(2B−5A)(2B−A) = 21 > 0,

therefore, A and B do not satisfy the condition given in [17].
For two periodic orbits: Taking A = B = 2, m =−3 and Λ = λ =−3, we obtain r2 = r3 =

√
h,

ρ2 = ρ3 =
√

h and J2 = J3 =
49
4 h2 for every h > 0 small. Therefore, the Hamiltonian

H =
1
2
(p2

x + p2
y)+

1
2
(x2 + y2)+

2
3

x3 +2xy2− 3
4

x4− 3
2

x2y2− 3
4

y4

has at least one family of periodic orbits for every h > 0 small. However, note that

A+B = 4 6= 0,

therefore, A and B do not satisfy the condition given in [17].
For three periodic orbits: Taking A = 5, B = 4, m = −3 and Λ = −λ = 3, we obtain, r1 =

2
√

5
19

√
h, r2 = r3 =

√
19
10

√
h, J1 =

14490
19 h2, J2 = J3 =

3059
360 h2 for every h > 0 small. Therefore, the

Hamiltonian

H =
1
2
(p2

x + p2
y)+

1
2
(x2 + y2)+

5
3

x3 +4xy2 +
3
4

x4− 3
2

x2y2− 3
4

y4

has at least one family of periodic orbits for every h > 0 small. However, note that

B(2B−5A) =−68 < 0,

therefore, A and B do not satisfy the condition given in [17].
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6.2. Examples of family of periodic orbits for H−

Now, we are going to exhibit that the necessary conditions given in Theorem 1.1 are not empty,
in fact, we will consider different particular elections of the parameters A,B,m,Λ,λ such that the
constraints are satisfied.

Firstly, if we take A = B = 4, m = 1.5 and Λ = −λ = 3, then there exist r1 =
√

h, ρ1 =

1.73205
√

h and J1 = 123.469h2 for every h > 0 small, thus the Hamiltonian

H =
1
2
(−p2

x + p2
y)+

1
2
(−x2 + y2)+

4
3

x3 +4xy2 +
3
4

x4 +
3
4

x2y2− 3
4

y4

has at least one family of periodic orbits for every h > 0 small.
Secondly, considering A = 30,B = −10, m = −4 and Λ = λ = −3, we obtain that there is

r2 = r3 = 1
3

√
2839
129

√
h, ρ2 = ρ3 = 1

3

√
5161
129

√
h and J2 = J3 = −249085343

2322 h2 for every h > 0 small.
Therefore, the Hamiltonian

H =
1
2
(−p2

x + p2
y)+

1
2
(−x2 + y2)+

30
3

x3−10xy2− 3
4

x4−2x2y2− 3
4

y4

has at least two families of periodic orbits for every h > 0 small.

Thirdly, taking A = 40,B =−10, m =−4 and Λ = λ =−3, we obtain r1 =
√

5063
2437

√
h, r2 = r3 =

3
√

157
1087

√
h, ρ1 =

√
9937
2437

√
h, ρ2 = ρ2 =

√
3587
1087

√
h, J1 =

5182036193h2

43866 and J2 = J3 =−174016131h2

2174 for
every h > 0 small. Therefore, the Hamiltonian

H =
1
2
(−p2

x + p2
y)+

1
2
(−x2 + y2)+

40
3

x3−10xy2− 3
4

x4−2x2y2− 3
4

y4

has at least three families of periodic orbits for every h > 0 small.
Another important remark is the following which permit us to find regions for the existence of

periodic orbits in a simple sense.

Remark 6.1. Let consider m = λ = Λ and A,B such that m 6=−2
3 B(A−6B), A+B 6= 0, A−2B 6= 0

and 0 < −B
A−3B < 1, Then there exists at least a family of periodic orbits, for all h > 0. Indeed, if

m = λ = Λ then

r1 =
√

2h

√
−B

A−3B
> 0

and

d1 =
5hr2

1
36

(A−2B)(A+B)
(

2B(A−6B)+3m
)
6= 0.

Therefore, there exists at least one family of periodic orbits.
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