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Boundary value problems for the nonlinear Schrödinger equation formulated on the half-line can be analyzed
by the Fokas method. For the Dirichlet problem, the most difficult step of this method is the characterization
of the unknown Neumann boundary value. For the case that the Dirichlet datum consists of a single periodic
exponential, namely, aexp(iωt), a, ω real, it has been shown in [2–4] that if one assumes that the Neumann
boundary value is given for large t by cexp(iωt), then c can be computed explicitly in terms of a and ω . Here,
using the perturbative approach introduced in [16], it is shown that for typical initial conditions, it is indeed
the case that at least up to third order in a perturbative expansion the Neumann boundary value is given by
cexp(iωt) and the value of c is at least up to this order the value found in [2–4].

Keywords: Initial-boundary value problem; Generalized Dirichlet to Neumann map; Nonlinear Schrödinger
equation.
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1. Introduction

A unified method for analyzing boundary value problems, extending ideas of the so-called inverse
scattering transform method, was introduced in [5], see also [6] and the review [7] (as well as the
review [12] for the implementation of the unified method to linear PDEs).

For integrable nonlinear evolution PDEs, the most difficult step in the implementation of this
so-called Fokas method, is the characterization of the Dirichlet to Neumann map. For example, for
the nonlinear Schrödinger equation (NLS) on the half-line with given initial q(x,0) = q0(x) and
Dirichlet q(0, t) = g0(t) data, this involves characterizing the unknown Neumann boundary value
q(0, t) = g1(t) in terms of q0(x) and g0(t). In this respect we note: (i) for certain particular boundary
conditions called linearizable, the above characterization can be achieved via explicit formulas and
hence for these cases the Fokas method is as effective as the inverse scattering transform method. (ii)
If g0(t) vanishes as t→ ∞, it is possible to bypass the characterization of the Dirichlet to Neumann
map and to obtain the asymptotic form of the solution as t→∞ [8–10,15]. (iii) If g0(t) is a periodic
function, then in order to obtain the large t asymptotics of the solution q(x, t), it is first necessary to
determine the asymptotic form of g1(t) as t→ ∞.

Pioneering results regarding (iii) have been obtained in a series of papers by Boutet de Monvel
and co-authors [2–4] . The final result of these authors is the following: Consider the NLS on the
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half-line

iqt +qxx−2λ |q|2q = 0, x > 0, t > 0, (1.1)

with λ =±1 and a single periodic exponential as the Dirichlet datum,

q(0, t) = aeiωt , a, ω real. (1.2)

Assume that the Neumann boundary value is asymptotically periodic, namely,

qx(0, t) = ceiωt +o(1), t→ ∞. (1.3)

Then, c can be obtained explicitly in terms of a and ω:

ω > 0 : c =−a
√

ω +λa2, (1.4a)

ω < 0 : c = ia
√
−ω−2λa2. (1.4b)

An effective characterization of the Dirichlet to Neumann map for the NLS equation on the
half-line was recently presented in [11] and [16] (see also [13, 14] for the application of the sine-
Gordon and the modified Korteweg-de Vries equations formulated on the half-line) using two dif-
ferent formulations, both of which are based on the analysis of the global relation: the formu-
lation in [11] is based on the eigenfunctions involved in the definition of the spectral functions
{A(k),B(k)}, whereas the formulation in [16] is based on an extension of the Gelfand-Levitan-
Marchenko approach first introduced in [1]. In particular, in [16] a perturbative approach was intro-
duced for the explicit construction of the Neumann boundary value as t→ ∞. Using this approach,
we show here that for the Dirichlet datum (1.2) and the initial datum

q(x,0) = ae−ηx, η > 0, 0 < x < ∞, (1.5)

the Neumann boundary value is indeed given up to third order in a by (1.3), where c satisfies, at
least up to this order, equations (1.4).

2. The Main Result

Theorem 2.1. Let

q(x, t) = εq1(x, t)+ ε
2q2(x, t)+ · · · , ε → 0,

be the perturbation solution q(x, t) of the NLS on the half-line with the initial data

q(x,0) = εe−ηx, η > 0 (2.1)

and the Dirichlet boundary data

q(0, t) = εg01(t)+O
(
ε

4) , ε → 0, (2.2)

where

g01(t) = eiωt , ω ∈ R. (2.3)

Then,

qx(0, t) = εg11(t)+ ε
3g13(t)+O

(
ε

4) , ε → 0, (2.4)

where g11 and g13 are given by the following formulas:

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

226



A Perturbative Approach for the Asymptotic Evaluation of Neumann Value for the NLS

(i) ω > 0

g11(t) =−
√

ωeiωt +o(1), t→ ∞, (2.5a)

g13(t) =−
λ

2
√

ω
eiωt +o(1), t→ ∞. (2.5b)

(ii) ω < 0

g11(t) = i
√
−ωeiωt +o(1), t→ ∞, (2.6a)

g13(t) =−
iλ√
−ω

eiωt +o(1), t→ ∞. (2.6b)

Proof. It is shown in [11] that

qx(0, t) =
2
iπ

∫
∂D3

[iq(0, t)+ k (Φ1(t,k)−Φ1(t,−k))]dk

+
2q(0, t)

π

∫
∂D3

(Φ2(t,k)−Φ2(t,−k))dk− 4
iπ

∫
∂D3

ke−4ik2t b(−k)
a(−k)

Φ2(t,−k̄)dk, (2.7a)

where ∂D3 is the oriented boundary of the third quadrant of the complex k-plane and {Φ1,Φ2}
solve the following system of equations:

Φ1(t,k) =
∫ t

0
e4ik2(t−t ′)[− iλ |q(0, t ′)|2Φ1(t ′,k)+

(
2kq(0, t ′)+ iqx(0, t ′)

)
Φ2(t ′,k)

]
dt ′, (2.7b)

Φ2(t,k) = 1+λ

∫ t

0

[(
2kq̄(0, t ′)− iq̄x(0, t ′)

)
Φ1(t ′,k)+ i|q(0, t ′)|2Φ2(t ′,k)

]
dt ′. (2.7c)

Substituting in the above equation (2.2) and (2.4), as well as (2.7b) and (2.7c), we find the following
equations:

g11(t) =
2
iπ

∫
∂D3

{
k[Φ11(t,k)−Φ11(t,−k)]+ ig01(t)

}
dk− 4

iπ

∫
∂D3

ke−4ik2tb1(−k)dk, (2.8)

g13(t) =
2
iπ

∫
∂D3

k
[
Φ13(t,k)−Φ13(t,−k)

]
dk+

2
π

g01(t)
∫

∂D3

[
Φ22(t,k)−Φ22(t,−k)

]
dk

− 4
iπ

∫
∂D3

ke−4ik2tb1(−k)
[
Φ22(t,−k̄)−a2(−k)

]
dk, (2.9)

Φ11(t,k) = e−4ik2t
∫ t

0
e4ik2τ

(
2kg01(τ)+ ig11(τ)

)
dτ, (2.10)

λΦ22(t,k) =
∫ t

0

[
2kḡ01(τ)− iḡ11(τ)

]
Φ11(τ,k)dτ + i

∫ t

0
|g01(τ)|2dτ, (2.11)

λΦ13(t,k) = e−4ik2t
∫ t

0
e4ik2τ

[
− i|g01|2Φ11(τ,k)+

(
2kg01 + ig11

)
λΦ22(τ,k)

+ iλg13(τ)
]
dτ, (2.12)

where the functions b1(k) and a2(k) are given by

b1(k) =−
∫

∞

0
e2ikxe−ηxdx, (2.13)

a2(k) = λ

∫
∞

0
e−ηx

∫
∞

x
e−2ik(x−x′)e−ηx′dx′dx. (2.14)
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Fig. 1. (ω > 0) The deformed contours ∂ D̃3 (left) and ∂ D̃σk
3 (right).

The proof of of Theorem 2.1 is the consequence of several propositions and lemmas given below
in Sections 3 and 4.

3. A Perturbative Approach for ω > 0

Proposition 3.1. For ω > 0,

g11(t) =−
√

ωeiωt +
∫

∂ D̃3

e−4ik2
3tA(k2

3)dk3 +
4
iπ

∫
∂D3

ke−4ik2t

2ik+η
dk, (3.1)

where the contour ∂ D̃3 is depicted in figure 1 and

A(k2) =
8k2

π(4k2 +ω)
. (3.2)

Furthermore, ∫
∂ D̃3

e−4ik2
3tA(k2

3)dk3 = O(t−3/2), t→ ∞, (3.3a)

and ∫
∂D3

ke−4ik2t

2ik+η
dk = O(t−3/2), t→ ∞. (3.3b)

Proof. Using (2.13), we find

b1(−k) =−
∫

∞

0
e−(2ik+η)xdx =− 1

2ik+η
, (3.4)

and then substituting (3.4) into (2.8), we obtain the last terms in (3.1).
Note that equation (2.10) yields

k
[
Φ11(t,k)−Φ11(t,−k)

]
=− 4ik2

4k2 +ω

(
eiωt − e−4ik2t). (3.5)

Inserting the rhs of (3.5) into the rhs of (2.8), we find

2
iπ

∫
∂D3

{
k[Φ11(t,k)−Φ11(t,−k)]+ ig01(t)

}
dk =

2
π

∫
∂D3

4k2e−4ik2t +ωeiωt

4k2 +ω
dk. (3.6)
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Note that the integrand in the rhs of (3.6) has removable singularities at k = −i
√

ω/2. In what
follows it will be necessary to split the integral in (3.6) in two separate integrals. Thus, before
splitting we deform the contour ∂D3 to the contour ∂ D̃3. Hence, (3.6) becomes

g11(t) =
2
π

∫
∂ D̃3

ωeiωt

4k2 +ω
dk+

2
π

∫
∂ D̃3

4k2e−4ik2t

4k2 +ω
dk. (3.7)

The above splitting is consistent with the fact that e−4ik2t decays in the second and fourth quad-
rants of the complex k-plane as t → ∞. Using the residue theorem to compute the first integral in
the rhs of (3.7), we find the first two terms in (3.1).

It is straightforward to estimate the large t behavior of the integrals appearing in the rhs of (3.1).
Indeed, let us denote the integral in (3.1) by 8

π
I. Using the Cauchy theorem, we deform the part of

∂ D̃3 involving the negative real axis along the ray argk = 3π/4, which we denote by C̃1 (cf. figure3),
and along C∞, where C∞ is the limit of CR = {|k|= R, 3π/4≤ argk ≤ π} as R→ ∞:

I =
(∫

C̃1

+
∫

C∞

)
k2e−4ik2t

4k2 +ω
dk. (3.8)

For the first integral in (3.8), letting k = ρe3iπ/4, we find

ie3iπ/4
∫

∞

0

ρ2e−4ρ2tdρ

4iρ2−ω
=−ie−iπ/4

∫
∞

0

ρ2e−4ρ2tdρ

4iρ2−ω
. (3.9)

For the second integral in (3.8), let k = Reiθ with 3π/4≤ θ ≤ π . Thus, for large R, we obtain

∣∣∣∣∫CR

k2e−4ik2t

4k2 +ω
dk
∣∣∣∣≤ ∫ π

3π/4

R3e4R2t sin2θ

4R2−|ω|
dθ =

πR3

16R2−4|ω|
[
I0(4R2t)−L0(4R2t)

]
, (3.10)

where In(z) is the modified Bessel function and Ln(z) is the modified Struve function. Using the
asymptotics

I0(z)−L0(z)∼−
2

πz
, |z| → ∞,

we find that the rhs of (3.10) vanishes as R→∞ and hence the second integral in (3.8) is identically
zero.

Similarly, we can show that the integral along the part of ∂ D̃3 involving the negative imaginary
axis yields the same expression as in (3.9). Thus,

∫
∂ D̃3

k2e−4ik2t

4k2 +ω
dk =−2ie−iπ/4

∫
∞

0

ρ2e−4ρ2tdρ

4iρ2−ω
.

A stationary point calculation implies that the leading order contribution vanishes. The leading order
contribution from integration by parts also vanishes, thus we obtain (3.3a). Equation (3.3b) can be
derived in a similar way.
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We write g11(t) as

g11(t) = g(1)11 (t)+g(2)11 (t), (3.11)

where

g(1)11 (t) =−
√

ωeiωt +
∫

∂ D̃3

e−4ik2
3tA(k2

3)dk3 (3.12a)

and

g(2)11 (t) =
4
iπ

∫
∂D3

ke−4ik2t

2ik+η
dk. (3.12b)

Also, we denote Φ11(t,k) by

Φ11(t,k) = Φ
(1)
11 (t,k)+Φ

(2)
11 (t,k), (3.13)

where

Φ
(1)
11 (t,k) = e−4ik2t

∫ t

0
e4ik2τ

(
2kg01(τ)+ ig(1)11 (τ)

)
dτ (3.14a)

and

Φ
(2)
11 (t,k) = ie−4ik2t

∫ t

0
e4ik2τg(2)11 (τ)dτ. (3.14b)

Lemma 3.1. For ω > 0,

Φ
(1)
11 (t,k) =

i
(
e−4ik2t − eiωt

)
2k+ i

√
ω

+
ie−4ik2t

2σk− i
√

ω
+

1
4

∫
∂ D̃σk

3

e−4ik2
3t

k2− k2
3

A(k2
3)dk3, (3.15)

where the contour ∂ D̃σk
3 is depicted in figure 1 and σ = 1 if k ∈ ∂D3, whereas σ =−1 if−k ∈ ∂D3.

Proof. Substituting the expression for g(1)11 in (3.14a) and integrating with respect to dτ , we obtain

Φ
(1)
11 (t,k) =

i
(
e−4ik2t − eiωt

)
2k+ i

√
ω

+
1
4

∫
∂ D̃3

e−4ik2
3t − e−4ik2t

k2− k2
3

A(k2
3)dk3. (3.16)

The integrand in the rhs of (3.16) has removable singularities at k3 = k and k3 =−k. In what follows
it will be necessary to split the integral in (3.16) in two separate integrals. Thus, before splitting we
deform the contour ∂ D̃3 to the contour ∂ D̃σk

3 shown in figure 1. One of these two integrals can be
computed exactly via the residue theorem:

−2e−4ik2t

π

∫
∂ D̃σk

3

k2
3

(4k2
3 +ω)(k2− k2

3)
dk3

=−4ie−4ik2t
[
− σk

2(4k2 +ω)
+

k3

8(k2− k2
3)

∣∣∣∣
k3=−i

√
ω/2

]
=

ie−4ik2t

2σk− i
√

ω
.

Substituting this expression in (3.16), where ∂ D̃3 is replaced with ∂ D̃σk
3 , we find (3.15).

For k = 0, a separate analysis shows that the above integral equals −1/
√

ω , which agrees with
the limit of the above expression as k→ 0.
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Lemma 3.2. For ω > 0,

Φ
(2)
11 (t,k) =

e−4ik2t

2iσk+η
+

1
iπ

∫
∂ D̃σk

3

k3e−4ik2
3t

(2ik3 +η)(k2− k2
3)

dk3. (3.17)

Moreover,

Φ11(t,−k̄) = Φ
(1)
11 (t,−k̄)− e4ik2t

2iσ̂k−η
+

1
iπ

∫
∂ D̃σ̂k

2

k2e4ik2
2t

(2ik2−η)(k2− k2
2)

dk2, (3.18)

where the contour ∂ D̃σ̂k
2 is depicted in figure 2 and

Φ
(1)
11 (t,−k̄) =

i
(
e4ik2t − e−iωt

)
2k+ i

√
ω

− ie4ik2t

2σ̂k+ i
√

ω
+

1
4

∫
∂ D̃σ̂k

2

e4ik2
2t

k2− k2
2

A(k2
2)dk2. (3.19)

Proof. Substituting (3.12b) into (3.14b) and integrating the resulting expression with respect to dτ ,
we find that Φ

(2)
11 (t,k) is given by

Φ
(2)
11 (t,k) =

e−4ik2t

iπ

∫
∂D3

k3

2ik3 +η

(
e4it(k2−k2

3)−1
k2− k2

3

)
dk3. (3.20)

The integrand in (3.20) has removable singularities at k3 = ±k. Thus, before splitting the integral
we deform the contour ∂D3 into ∂ D̃σk

3 . Note that it is not necessary to avoid k = −i
√

ω/2. Using
the residue theorem, one of these integrals can be computed as

−e−4ik2t

iπ

∫
∂ D̃σk

3

k3

(2ik3 +η)(k2− k2
3)

dk3 =
e−4ik2t

2iσk+η

and then we find Φ
(2)
11 (t,k) given in (3.17).

Regarding Φ11(t,−k̄), we note that

Φ11(t,−k̄) =−e4ik2t
∫ t

0
e−4ik2τ [2ke−iωτ + iḡ11(τ)

]
dτ (3.21)

and ḡ11 is given by

ḡ11(t) = g(1)11 (t)+
4
iπ

∫
∂D2

k2e4ik2
2t

2ik2−η
dk2 (3.22)

with

g(1)11 (t) =−
√

ωe−iωt +
∫

∂ D̃2

e4ik2
2tA(k2

2)dk2, (3.23)

where ∂D2 is the oriented boundary of the second quadrant of the complex k-plane and the con-
tour ∂ D̃2 is depicted in figure 2. Substituting (3.22) and (3.23) into (3.21) and then integrating the
resulting expression with respect to dτ , we find

Φ11(t,−k̄) =
i(e4ik2t − e−iωt)

2k+ i
√

ω
+

1
4

∫
D̃2

A(k2
2)(e

4ik2
2t − e4ik2t)

k2− k2
2

dk2 +
1
iπ

∫
∂D2

k2(e4ik2
2t − e4ik2t)

(2ik2−η)(k2− k2
2)

dk2.

The integrands in the above expression have removable singularities at k2 =±k. Thus, before split-
ting the integrals we deform the contour ∂D2 into ∂ D̃σ̂k

2 , however it is not necessary to avoid
k = i
√

ω/2, and then we find (3.18) by using the residue theorem.
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Fig. 2. (ω > 0) The deformed contours ∂ D̃2 (left) and ∂ D̃σ̂k
2 (right).

Let us denote λΦ22(t,k) by

λΦ22(t,k) = λΦ
(1)
22 (t,k)+λΦ

(2)
22 (t,k), (3.24)

where

λΦ
(1)
22 (t,k) =

∫ t

0

[
2kḡ01(τ)− ig(1)11 (τ)

]
Φ

(1)
11 (τ,k)dτ + i

∫ t

0
|g01(τ)|2dτ, (3.25a)

and

λΦ
(2)
22 (t,k) =−i

∫ t

0
g(2)11 (τ)Φ

(1)
11 (τ,k)dτ +

∫ t

0

[
2kḡ01(τ)− iḡ11(τ)

]
Φ

(2)
11 (τ,k)dτ. (3.25b)

Lemma 3.3. For ω > 0,

λΦ
(1)
22 (t,k) =

iα1(k)
2k− i

√
ω

e−it(4k2+ω)+ c1(k)+
∫

∂ D̃σk
3

c2(k,k3)e−it(4k2
3+ω)dk3

+
∫

∂ D̃σ̂k
2

c3(k,k2)e4it(k2
2−k2)dk2 +

∫
∂ D̃2

c4(k,k2)eit(4k2
2+ω)dk2

+
∫

∂ D̃σk
3

(∫
∂ D̃

σ̃k3
2

c5(k,k2,k3)e4it(k2
2−k2

3)dk2

)
dk3, (3.26)

where the contours ∂ D̃2 and ∂ D̃σ̂k
2 are depicted in figure 2, σ̂ = 1 if k ∈ ∂D2, σ̂ =−1 if −k ∈ ∂D2,

and similarly for ∂ D̃σ̃k3
2 , with σ̃ = 1 if k3 ∈ ∂D3, σ̃ =−1 if −k3 ∈ ∂D3. Furthermore, the functions

α1(k) and {c j}5
1 are defined as follows:

α1(k) =
i

2k+ i
√

ω
+

i
2σk− i

√
ω
, c1(k) = c(1)1 (k)+ c(2)1 (k)+ c(3)1 (k), (3.27)

c2(k,k3) =−
1

4i(k2− k2
3)

A(k2
3)

2k− i
√

ω
, c3(k,k2) =

α1(k)
4

A(k2
2)

(k2− k2
2)
, (3.28)

c4(k,k2) =
iA(k2

2)

(2k+ i
√

ω)(4k2
2 +ω)

, c5(k,k2,k3) =−
1
16

A(k2
2)A(k

2
3)

(k2
2− k2

3)(k2− k2
3)
, (3.29)
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where

c(1)1 (k) =
2k(σ +1)

(4k2 +ω)(2σk− i
√

ω)
− 1

2i
√

ω

2k+ i
√

ω

(2σk− i
√

ω)2 −
1

2i
√

ω(2k+ i
√

ω)
, (3.30a)

c(2)1 (k) =
1

2σ̂k+ i
√

ω

(
1

2k+ i
√

ω
+

1
2σk− i

√
ω

)
, (3.30b)

c(3)1 (k) =
4k2

iπ(4k2 +ω)2

(
log4− logω

)
+

2k logk
iπ(4k2 +ω)(2k+ i

√
ω)

+
2k log(−k)

iπ(4k2 +ω)(2k− i
√

ω)
− 1

iπ(4k2 +ω)
+

4k2−ω

2(4k2 +ω)2 . (3.30c)

Proof. We note that

−ig(1)11 (τ)+2kḡ01(τ) = (2k+ i
√

ω)e−iωt − i
∫

∂ D̃2

e4ik2
2τA(k2

2)dk2.

Let us denote Φ
(1)
11 by

Φ
(1)
11 = α1(k)e−4ik2t +α2(k)eiωt +

1
4

∫
∂ D̃σk

3

e−4ik2
3t

k2− k2
3

A(k2
3)dk3, (3.31)

with α1(k) defined by the first equation in (3.27) and α2(k) defined by

α2(k) =−
i

2k+ i
√

ω
. (3.32)

Thus,∫ t

0

(
− ig(1)11 (τ)+2kḡ01(τ)

)
Φ

(1)
11 (τ,k)dτ

= (2k+ i
√

ω)
∫ t

0
e−iωτ

[
α1(k)e−4ik2τ +α2(k)eiωτ +

1
4

∫
∂ D̃σk

3

e−4ik2
3τA(k2

3)

k2− k2
3

dk3

]
dτ

− i
∫ t

0

{∫
∂ D̃2

e4ik2
2τA(k2

2)
[
α1(k)e−4ik2τ +α2(k)eiωτ +

1
4

∫
∂ D̃σk

3

e−4ik2
3τA(k2

3)

k2− k2
3

dk3

]
dk2

}
dτ. (3.33)

Integrating with respect to dτ , we find that the rhs of (3.33) equals the following expression:

(2k+ i
√

ω)

{
α1(k)

e−it(4k2+ω)−1
−i(4k2 +ω)

+α2(k)t +
1
4

∫
∂ D̃σk

3

e−it(4k2
3+ω)−1

−i(4k2
3 +ω)

A(k2
3)

k2− k2
3

dk3

}
− iα1(k)

∫
∂ D̃2

e4it(k2
2−k2)−1

4i(k2
2− k2)

A(k2
2)dk2− iα2(k)

∫
∂ D̃2

eit(4k2
2+ω)−1

i(4k2
2 +ω)

A(k2
2)dk2

− i
4

∫
∂ D̃2

(∫
∂ D̃σk

3

e4it(k2
2−k2

3)−1
4i(k2

2− k2
3)

A(k2
2)A(k

2
3)

k2− k2
3

dk3

)
dk2.

Note that

(2k+ i
√

ω)α2(k)t =−it,
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Fig. 3. The oriented contours C1, C2, C̃1 and C̃2.

which cancels the second integral of the rhs in (3.25a)

i
∫ t

0
|g01|2dτ = it.

The single integrals involving ∂ D̃2 have removable singularities at ±k; thus, before splitting these
integrals we deform ∂ D̃2 to ∂ D̃σ̂k

2 .
Using the residue theorem, we find∫

∂ D̃σk
3

A(k2
3)dk3

(k2− k2
3)(4k2

3 +ω)
=− 2√

ω(2σk− i
√

ω)2 := β1(k),∫
∂ D̃σ̂k

2

A(k2
2)dk2

k2− k2
2

=
4i

2σ̂k+ i
√

ω
:= β2(k),

∫
∂ D̃2

A(k2
2)dk2

4k2
2 +ω

=− 1
2
√

ω
.

Regarding the double integral, we deform ∂ D̃2 to ∂ D̃σ̃k3
2 , where σ̃ = 1 if k3 ∈ ∂D3 and σ̃ = −1

if −k3 ∈ ∂D3. Then, using a residue calculation similar to the one used in lemma 3.1, we find the
identity

∫
∂ D̃

σ̃k3
2

A(k2
2)

k2
2− k2

3
dk2 =

{
− 4i

2k3+i
√

ω
if σ̃ = 1,

4i
2k3−i

√
ω

if σ̃ =−1.

Thus, denoting the double integral with β3(k), we find∫
∂ D̃σk

3

(∫
∂ D̃

σ̃k3
2

A(k2
2)A(k

2
3)

(k2
2− k2

3)(k2− k2
3)

dk2

)
dk3 = β3(k) =

32
iπ

(β
(1)
3 −β

(2)
3 ),

where

β
(1)
3 (k) =

∫
C1

k2
3

(4k2
3 +ω)

1
(2k3 + i

√
ω)

1
(k2− k2

3)
dk3,

β
(2)
3 (k) =

∫
C2

k2
3

(4k2
3 +ω)

1
(2k3− i

√
ω)

1
(k2− k2

3)
dk3,

and C1and C2 denote the parts of ∂ D̃σk
3 involving the negative real axis and the negative imaginary

axis respectively (see figure 3). In order to compute β
(1)
3 and β

(2)
3 , it is slightly more convenient
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to deform C1 and C2 to C̃1 and C̃2 respectively (see figure 3). Thus, using k3 = re3iπ/4 = −rα ,
α = e−iπ/4 and k3 = rα for β

(1)
3 and β

(2)
3 , respectively, we find

β
(1)
3 =e−iπ/4

∫
∞

0

ir2

(4ir2−ω)

1
(2re−iπ/4− i

√
ω)

1
(k2 + ir2)

dr,

β
(2)
3 =−β

(1)
3 .

Thus,

β3(k) =
64
iπ

β
(1)
3 (k).

Computing β
(1)
3 (k) explicitly, we find

β3(k) =
64k2

iπ(4k2 +ω)2

(
log4− logω

)
+

32k logk
iπ(4k2 +ω)(2k+ i

√
ω)

+
32k log(−k)

iπ(4k2 +ω)(2k− i
√

ω)
− 16

iπ(4k2 +ω)
+

8(4k2−ω)

(4k2 +ω)2 .

Using the above formulas, we find (3.26), where c1(k) is defined by

c1(k) =
(2k+ i

√
ω)

i(4k2 +ω)
α1(k)+

(2k+ i
√

ω)

4i
β1(k)−

α1(k)
4

β2(k)−
α2(k)
2
√

ω
+

1
16

β3(k). (3.34)

Simplifying the rhs of (3.34), we find that c1(k) is given by the second equation in (3.27) with
(3.30).

Lemma 3.4. For ω > 0,

λΦ
(2)
22 (t,k) =

ie−it(4k2+ω)

(2iσk+η)(2k− i
√

ω)
+d1(k)+

∫
∂ D̃σk

3

d2(k,k3)e−it(4k2
3+ω)dk3

+
∫

∂ D̃σk
2

d3(k,k2)eit(4k2
2+ω)dk2 +

∫
∂ D̃σ̂k

2

d4(k,k2)e−4it(k2−k2
2)dk2

+
∫

∂ D̃σ̃k
2

(∫
∂ D̃σk

3

d5(k,k2,k3)e−4it(k2
2−k2

3)dk3

)
dk2, (3.35)

where the functions {d j}5
1 are defined by

d1(k) = d(1)
1 (k)+d(2)

1 (k)+d(3)
1 (k),

d2(k,k3) =
k3

π(2ik3 +η)(2k− i
√

ω)(k2− k2
3)
, d3(k,k2) =

4k2

π(2k+ i
√

ω)(2ik2−η)(4k2
2 +ω)

,

d4(k,k2) =
k2

iπ(2ik2−η)

(
α1(k)

2ik2−η
+

1
2iσk2 +η

)
+

A(k2
2)

4(2iσk+η)(k2− k2
2)
,

and
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d5(k,k2,k3) =
1

π(k2− k2
3)(k

2
2− k2

3)

[
k3

2ik2 +η

(
k2

π(2ik3−η)
− A(k2

2)

4i

)
−

k2A(k2
3)

4i(2ik2−η)

]
, (3.36)

with

d(1)
1 (k) =− i

η +
√

ω

(
1

2k+ i
√

ω
+

1
2k− i

√
ω

)
, (3.37a)

d(2)
1 (k) =− i

2iσ̂k−η

(
1

2k+ i
√

ω
+

1
2σk− i

√
ω

)
+

i(η−
√

ω)

(2iσk+η)(2iσ̂k−η)(2σ̂k+ i
√

ω)
,

(3.37b)
and

d(3)
1 (k) =

2k2(π +2i)
π(4k2 +η2)2 −

η2(π−2i)
2π(4k2 +η2)2 −

2ik log(−k)
π(2k+ iη)(2k− iη)2 −

2ik logk
π(2k− iη)(2k+ iη)2

− 8ik2 log(2/η)

π(4k2 +η2)2 +
2iω logω

π(4k2 +ω)(η2−ω)
− 4πk2−πη

√
ω−16ik2 log2

π(4k2 +η2)(4k2 +ω)

−
2k(η +

√
ω)
(

log(−k)− logk
)

π(4k2 +η2)(4k2 +ω)
+

8ik2
(

log(−k)+ logk
)

π(4k2 +η2)(4k2 +ω)
− 4iη2 logη

π(4k2 +η2)(η2−ω)
. (3.37c)

Proof. Recalling (3.12b), (3.14a) and (3.14b), as well as (3.1), we find that λΦ
(2)
22 (t,k) is given by

λΦ
(2)
22 (t,k) =

∫ t

0
2ke−iωτ

[
e−4ik2τ

2iσk+η
+

1
iπ

∫
∂ D̃σk

3

k3e−4ik2
3τ

(2ik3 +η)(k2− k2
3)

dk3

]
dτ

− 4
π

∫ t

0

∫
∂D2

k2e4ik2
2τ

2ik2−η

[
Φ

(1)
11 (τ,k)+

e−4ik2τ

2iσk+η
+

1
iπ

∫
∂ D̃σk

3

k3e−4ik2
3τ

(2ik3 +η)(k2− k2
3)

dk3

]
dk2dτ

− i
∫ t

0
g(1)11 (τ)

[
e−4ik2τ

2iσk+η
+

1
iπ

∫
∂ D̃σk

3

k3e−4ik2
3τ

(2ik3 +η)(k2− k2
3)

dk3

]
dτ. (3.38)

Integrating the first line in (3.38) with respect to dτ , we find

2ik
2iσk+η

(
e−it(4k2+ω)−1

4k2 +ω

)
+

2k
π

∫
∂ D̃σk

3

k3
(
e−it(4k2

3+ω)−1
)

(2ik3 +η)(4k2
3 +ω)(k2− k2

3)
dk3. (3.39)

Evaluating one of the integrals with respect to dk3, (3.39) yields

2ike−it(4k2+ω)

2iσk+η
− 2ik

(η +
√

ω)(4k2 +ω)
+

2k
π

∫
∂ D̃σk

3

k3e−it(4k2
3+ω)

(2ik3 +η)(4k2
3 +ω)(k2− k2

3)
dk3, (3.40)

where we have used the identity

∫
∂ D̃σk

3

k3

(2ik3 +η)(4k2
3 +ω)(k2− k2

3)
dk3 =−

iπ
4k2 +ω

(
1

2iσk+η
− 1

η +
√

ω

)
:= β4(k).
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Using (3.31) for Φ
(1)
11 and then integrating the resulting expression with respect to dτ , the second

line in (3.38) becomes

− 4
π

∫
∂D2

k2

2ik2−η

{
α1(k)

e−4it(k2−k2
2)−1

−4i(k2− k2
2)

+α2(k)
eit(4k2

2+ω)−1
i(4k2

2 +ω)

+
1
4

∫
∂ D̃σk

3

A(k2
3)

k2− k2
3

[
e4it(k2

2−k2
3)−1

4i(k2
2− k2

3)

]
dk3−

e−4it(k2−k2
2)−1

4i(2iσk+η)(k2− k2
2)

+
i
π

∫
∂ D̃σk

3

k3

(2ik3 +η)(k2− k2
3)

[
e4it(k2

2−k2
3)−1

4i(k2
2− k2

3)

]
dk3

}
dk2. (3.41)

Substituting (3.23) into (3.38) and integrating with respect to dτ , the third line in (3.38) yields

−
√

ω

2iσk+η

(
e−it(4k2+ω)−1

4k2 +ω

)
+

√
ω

π

∫
∂ D̃σk

3

k3

(2ik3 +η)(k2− k2
3)

[
e−it(4k2

3+ω)−1
−i(4k2

3 +ω)

]
dk3

− i
∫

D̃2

{
A(k2

2)

2iσk+η

[
e−4it(k2−k2

2)−1
−4i(k2− k2

2)

]
+

A(k2
2)

iπ

∫
∂ D̃σk

3

k3

(2ik3 +η)(k− k2
3)

[
e4it(k2

2−k2
3)−1

4i(k2
2− k2

3)

]
dk3

}
dk2.

(3.42)

We can evaluate some of the integrals appearing in (3.41) and (3.42) explicitly. For the single
integrals, from the residue theorem, we find∫

∂ D̃σk
2

k2

(2ik2−η)(k2− k2
2)

dk2 =
iπ

2iσ̂k−η
,∫

∂ D̃σk
2

k2

(2ik2−η)(4k2
2 +ω)

dk2 =
iπ

4(η +
√

ω)
.

Furthermore, we denote the double integrals in (3.41) and (3.42) by∫
∂ D̃

σ̃k3
2

k2

2ik2−η

∫
∂ D̃σk

3

A(k2
3)

(k2− k2
3)(k

2
2− k2

3)
dk3dk2 := β5(k), (3.43a)

∫
∂ D̃

σ̃k3
2

k2

2ik2−η

∫
∂ D̃σk

3

k2
3

(2ik3 +η)(k2− k2
3)(k

2
2− k2

3)
dk3dk2 := β6(k), (3.43b)

∫
∂ D̃

σ̃k3
2

A(k2
2)
∫

∂ D̃σk
3

k2
3

(2ik3 +η)(k2− k2
3)(k

2
2− k2

3)
dk3dk2 := β7(k). (3.43c)

Thus equation (3.41) involves the following explicit terms

− α1(k)
2iσ̂k−η

+
α2(k)

η +
√

ω
− 1

(2iσk+η)(2iσ̂k−η)
+

β5(k)
4iπ

− β6(k)
π2 . (3.44)

Similarly, for (3.42), we find

−
√

ω

2iσk+η

(
e−it(4k2+ω)−1

4k2 +ω

)
+

√
ω

iπ
β4(k)−

β2(k)
4(2iσk+η)

+
β7(k)
4iπ

. (3.45)

The double integrals in (3.43) can be evaluated in a similar way as the term β3(k) in lemma 3.3;
tedious but straightforward calculations yield

1
4iπ

(
β5(k)+β7(k)

)
− β6(k)

π2 = d(3)
1 (k),
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where d(3)
1 is given in (3.37c).

Combining (3.40), (3.44) and (3.45), λΦ
(2)
22 (t,k) is given in (3.35) with (3.36).

Proposition 3.2. For ω > 0,

λg13(t) =−
1

2
√

ω
eiωt +o(1), t→ ∞. (3.46)

Proof. First, note that (2.9) can be written in the form

λg13(t) = λg(1)13 (t)+λg(2)13 (t)+λg(3)13 (t), (3.47)

where

λg(1)13 (t) =
2
iπ

∫
∂D3

k
[
λΦ13(t,k)−λΦ13(t,−k)

]
dk, (3.48)

λg(2)13 (t) =
2
π

eiωt
∫

∂D3

[
λΦ22(t,k)−λΦ22(t,−k)

]
dk (3.49)

and

λg(3)13 (t) =−
4
iπ

∫
∂D3

ke−4ik2tb1(−k)
[
λΦ22(t,−k̄)−λa2(−k)

]
dk. (3.50)

The expression for Φ22(t,k) needed in (3.49) is given by (3.24) with (3.26) and (3.35) with σ = 1;
similarly Φ22(t,−k) can be obtained by evaluating the rhs of (3.24) with (3.26) and (3.35) for
σ =−1 and then replacing k by −k. In what follows, we will determine the terms involving eiωt in
(3.47).

In order to compute λg(3)13 (t) involving eiωt , we will first show that

4
iπ

∫
∂D3

ke−4ik2tb1(−k)λa2(−k)dk = O(t−3/2), t→ ∞. (3.51)

Recalling (2.14), we find

λa2(−k) =
∫

∞

0
e(2ik−η)x

∫
∞

x
e−(2ik+η)x′dx′dx =

1
2η(2ik+η)

.

Thus, the lhs of (3.51) with (3.4) yields

− 2
iηπ

∫
∂D3

ke−4ik2t

(2ik+η)2 dk. (3.52)

Using a similar analysis as in proposition 3.1, we can show that (3.52) is of O(t−3/2) as t→ ∞. We
next consider the following integral

− 4
iπ

∫
∂D3

ke−4ik2tb1(−k)λΦ22(t,−k̄)dk, (3.53)

where from (2.11), λΦ22(t,−k̄) is given by

λΦ22(t,−k̄) =
∫ t

0

[
−2keiωτ + ig11(τ)

]
Φ11(τ,−k̄)dk− i

∫ t

0
|g01|2dτ. (3.54)
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From (3.18), we write Φ11(t,−k̄) as

Φ11(t,−k̄) =α̃1(k)e4ik2t +α2(k)eiωt +
1
4

∫
∂ D̃σk

2

A(k2
2)e

4ik2
2t

k2− k2
2

dk2

+
1
iπ

∫
∂ D̃σk

2

k2e4ik2
2t

(2ik2−η)(k2− k2
2)

dk2, (3.55)

where α2(k) is given in (3.32) and

α̃1(k) =
i

2k+ i
√

ω
− i

2σ̂k+ i
√

ω
− 1

2σ̂k−η
. (3.56)

Substituting (3.55) into (3.54) and using a similar calculation as in lemma 3.3, the term involving
eiωt in (3.54) arises from

iα̃1(k)
2k− i

√
ω

and (3.53) implies that the relevant contribution is

4
π

∫
∂ D̃3

kα̃1(k)
(2k− i

√
ω)(2ik+η)

dk =− 4
π

{∫
C1

k
(2ik−η)(2ik+η)(2k− i

√
ω)

−
∫

C2

k
(2ik+η)(2k− i

√
ω)

(
4ik

4k2 +ω
+

1
2ik+η

)
dk
}
.

Deforming each contour into C̃1 and C̃2 and letting k = −rα and k = rα , respectively, we can
evaluate the rhs of the above equation and we obtain

λg(3)13 (t) =
(
− 1

η +
√

ω
− 2

iπ(η−
√

ω)
+

(η2 +ω) log(η2/ω)

iπ(η−
√

ω)(η2−ω)

)
eiωt +o(1), t→ ∞. (3.57)

We next compute the term in λg(2)13 (t) involving eiωt . Recalling (3.13), the term involving eiωt

arises from
2
π

∫
∂ D̃3

[
c1(k)− c1(−k)

]
dk+

2
π

∫
∂ D̃3

[
d1(k)−d1(−k)

]
dk. (3.58)

Note that c1(k) = c(1)1 (k)+ c(2)1 (k)+ c(3)1 (k) with c(2)1 (−k) = 0 and c(3)1 (k) = c(3)1 (−k). Hence, for
the first term in (3.58) we need to evaluate the integral

2
π

∫
∂ D̃3

[
c(1)1 (k)− c(1)1 (−k)

]
dk+

2
π

∫
∂ D̃3

c(2)1 (k)dk. (3.59)

For the first integral in (3.59), we find

c(1)1 (k)− c(1)1 (−k) =
4ik√

ω(4k2 +ω)
,

which has simple poles at k =−i
√

ω/2 and k = ∞. Hence, the first integral in (3.59) is given by

2
π

∫
∂ D̃3

[
c(1)1 (k)− c(1)1 (−k)

]
dk =− 1√

ω
.

In order to compute the second integral in (3.59), we introduce as before C1 and C2 as the parts
of ∂ D̃3 involving the negative real axis and the negative imaginary axis respectively (cf. figure 3).
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Thus, the second integral in (3.59) can be written in the form

2
π

∫
∂ D̃3

c(2)1 (k)dk =
8
π

(
c̃(1)1 − c̃(2)1

)
,

where

c̃(1)1 =
∫

C1

k
(2k+ i

√
ω)2(2k− i

√
ω)

dk, c̃(2)1 =
∫

C2

k
(2k+ i

√
ω)(2k− i

√
ω)2 dk.

In order to evaluate the above integrals, we deform C1 and C2 to C̃1 and C̃2, respectively and then use
k3 =−rα , α = e−iπ/4 and k3 = rα for c̃(1)1 and c̃(2)1 , respectively (cf. figure 3); this yields c̃(1)1 = c̃(2)1
and hence,

2
π

∫
∂ D̃3

c(2)1 (k)dk = 0.

Thus, we find

2
π

∫
∂ D̃3

[
c1(k)− c1(−k)

]
dk =− 1√

ω
. (3.61)

For the second term in (3.58), we note that d(3)
1 (k) = d(3)

1 (−k), and hence we need to compute

2
π

∫
∂ D̃3

[
d(1)

1 (k)−d(1)
1 (−k)

]
dk+

2
π

∫
∂ D̃3

[
d(2)

1 (k)−d(2)
1 (−k)

]
dk. (3.62)

The integrand of the first integral in (3.62) can be simplified to

d(1)
1 (k)−d(1)

1 (−k) =− 8ik
(η +

√
ω)(4k2 +ω)

,

and then we find

2
π

∫
∂ D̃3

[
d(1)

1 (k)−d(1)
1 (−k)

]
dk =

2
η +
√

ω
, (3.63)

where we have used the fact that the integrand has poles at k =−i
√

ω/2 and at k = ∞. The second
integral in (3.62) can be written as

2
π

∫
∂ D̃3

[
d(2)

1 (k)−d(2)
1 (−k)

]
dk =

8
iπ

{∫
C1

k
(2ik−η)(4k2 +ω)

dk−
∫

C2

k
(2ik+η)(4k2 +ω)

dk
}
.

Deforming each contour into C̃1 and C̃2 and letting k =−rα and k = rα , respectively, we find that
the integral in the rhs of the above equation is identically zero. Thus, from (3.63), we find

2
π

∫
∂ D̃3

[
d1(k)−d1(−k)

]
dk =

2
η +
√

ω
. (3.64)

Therefore, combining (3.64) with (3.61), the coefficient of the term eiωt for λg(2)13 (t) is given by

λg(2)13 (t) =
(
− 1√

ω
+

2
η +
√

ω

)
eiωt +o(1), t→ ∞. (3.65)
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In order to compute the analogous contributions from λg(1)13 (t), we note that according to (2.12),
λΦ13(t,k) involves two contributions. Noting that

∫ t

0
− i|g01|2e4ik2τ

Φ11(τ,k)dτ =−i
∫ t

0
e4ik2τ

[
α1(k)e−4ik2τ +α2(k)eiωτ

+
1
4

∫
∂ D̃σk

3

e−4ik2
3τ

k2− k2
3

A(k2
3)dk3 +

e−4ik2t

2iσk+η
+

1
iπ

∫
∂ D̃σk

3

k3e−4ik2
3t

(2ik3 +η)(k2− k2
3)

dk3

]
dτ,

it follows that the λg(1)13 (t) involves the following explicit terms:

I1(t,k) =− ie−4ik2t
{

α1(k)t +
t

2iσk+η
+α2(k)

eit(4k2+ω)−1
i(4k2 +ω)

}
. (3.66)

Furthermore, noting that

∫ t

0

[
2kg01(τ)+ ig11(τ)

]
e4ik2τ

λΦ22(τ,k)dτ

=
∫ t

0
e4ik2τ

[
2keiωτ − i

√
ωeiωτ + i

∫
∂ D̃3

e−4ik2
3τA(k2

3)dk3 +
4
iπ

∫
∂D3

ke−4ik2t

2ik+η
dk
]

λΦ22(τ,k)dτ,

it follows that λg(1)13 (t) also involves the following explicit terms:

I2(t,k) = e−4ik2t
{

iα1(k)t +
it

2iσk+η
+
(
c1(k)+d1(k)

)eit(4k2+ω)−1
i(2k+ i

√
ω)

}
. (3.67)

The expressions I1 and I2 yield the following asymptotic contributions:

λg(1)13 (t)∼
2
iπ

∫
∂D3

k
[
I1(t,k)

∣∣
σ=1− I1(t,−k)

∣∣
σ=−1

]
dk

+
2
iπ

∫
∂D3

k
[
I2(t,k)

∣∣
σ=1− I2(t,−k)

∣∣
σ=−1

]
dk. (3.68)

We next compute the contribution in (3.68) of terms involving eiωt . These contributions arise from
the third term in I1 and from the third term in I2.

The coefficient of eiωt from the third term of I1 leads to

− α2(k)
4k2 +ω

=
i

(2k+ i
√

ω)(4k2 +ω)

and the relevant contribution in the first term of (3.68) equals

2
iπ

∫
∂ D̃3

k
4k2 +ω

[
i

2k+ i
√

ω
+

i
2k− i

√
ω

]
dk =− 1

2
√

ω
, (3.69)

where we have used the fact that the above integrand has a double poles at k =−i
√

ω/2.
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The coefficient of eiωt from the third term in I2 is given by

c1(k)+d1(k)
i(2k+ i

√
ω)

.

Thus, the relevant contribution equals

2
iπ

∫
∂ D̃3

k
[

c1(k)+d1(k)
i(2k+ i

√
ω)

+
c1(−k)+d1(−k)

i(2k− i
√

ω)

]
dk. (3.70)

Recall that

c1(k) = c(1)1 (k)+ c(2)1 (k)+ c(3)1 (k), d1(k) = d(1)
1 (k)+d(2)

1 (k)+d(3)
1 (k).

For c(1)1 (k), we find

kc(1)1 (k)
2k+ i

√
ω

+
kc(1)1 (−k)
2k− i

√
ω

=
8k2

(4k2 +ω)2 ,

which has a pole at k =−i
√

ω/2, and hence

− 2
π

∫
∂ D̃3

k
[

c(1)1 (k)
2k+ i

√
ω

+
c(1)1 (−k)
2k− i

√
ω

]
dk =

1√
ω
. (3.71)

For c(2)1 (k), we obtain

− 2
π

∫
∂ D̃3

kc(2)1 (k)
2k+ i

√
ω

dk =− 8
π

∫
C1

k2

(4k2 +ω)(2k+ i
√

ω)2 dk+
8
π

∫
C2

k2

(4k2 +ω)2 dk. (3.72)

The integrals in the rhs of (3.72) can be computed in a similar way as before; we find

− 2
π

∫
∂ D̃3

kc(2)1 (k)
2k+ i

√
ω

dk =− π−4i
8π
√

ω
. (3.73)

For the term involving c(3)1 , using c(3)1 (k) = c(3)1 (−k), we find

− 2
π

∫
∂ D̃3

k
[

1
2k+ i

√
ω

+
1

2k− i
√

ω

]
c(3)1 (k)dk =

π−4i
8π
√

ω
, (3.74)

where we have used the fact that the integrand has a pole at k =−i
√

ω/2. Combining (3.61), (3.69),
(3.71), (3.73) and (3.74), we obtain the coefficient of eiωt as

2
iπ

∫
∂ D̃3

k
[

c1(k)
i(2k+ i

√
ω)

+
c1(−k)

i(2k− i
√

ω)

]
dk =

1√
ω
.

We will evaluate the integrals involving the term d1(k) in (3.70). First, noting that

k
[

d(1)
1 (k)

2k+ i
√

ω
+

d(1)
1 (−k)

2k− i
√

ω

]
=− 8

√
ω

(η +
√

ω)

k2

(4k2 +ω)2 ,

we find

− 2
π

∫
∂ D̃3

k
[

d(1)
1 (k)

2k+ i
√

ω
+

d(1)
1 (−k)

2k− i
√

ω

]
dk =− 1

η +
√

ω
, (3.75)

where we have used the fact that the integrand has a double pole at k =−i
√

ω/2.
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For d(2)
1 , we note that

− 2
π

∫
∂ D̃3

k
[

d(2)
1 (k)

2k+ i
√

ω
+

d(2)
1 (−k)

2k− i
√

ω

]
dk

=
8i
π

{∫
C1

k2

(2k+ i
√

ω)(2ik−η)(4k2 +ω)
dk−

∫
C2

k2

(2k+ i
√

ω)(2ik+η)(4k2 +ω)
dk
}

+
8(η−

√
ω)

iπ

{∫
C1

k2

(2ik−η)(2ik+η)(2k+ i
√

ω)(4k2 +ω)
dk

+
∫

C2

k2

(2ik+η)2(2k− i
√

ω)(4k2 +ω)
dk
}
. (3.76)

As before, deforming each contours into C̃1 and C̃2 and letting k =−rα and k = rα , (3.76) yields

− 2
π

∫
∂ D̃3

k
[

d(2)
1 (k)

2k+ i
√

ω
+

d(2)
1 (−k)

2k− i
√

ω

]
dk

=
η

2(η +
√

ω)2 +
2η−

√
ω

iπ(η2−ω)
− η(η2−η

√
ω +ω)

iπ(η2−ω)2 log(η2/ω). (3.77)

Regarding d(3)
1 , using d(3)

1 (k) = d(3)
1 (−k), we find

− 2
π

∫
∂ D̃3

k
[

1
2k+ i

√
ω

+
1

2k− i
√

ω

]
d(3)

1 (k)dk

=− η

2(η +
√

ω)2 −
3i
√

ω

π(η2−ω)
−
√

ω(2η2 +ω)

iπ(η2−ω)2 log(η2/ω), (3.78)

where we have used the fact that the integrand has poles at k = −i
√

ω/2 and at k = −iη/2. Thus,
combining (3.75), (3.77) and (3.78), we obtain

2
iπ

∫
∂ D̃3

k
[

d1(k)
i(2k+ i

√
ω)

+
d1(−k)

i(2k− i
√

ω)

]
dk

=− 1
η +
√

ω
+

2
iπ(η−

√
ω)
− (η2 +ω) log(η2/ω)

iπ(η−
√

ω)(η2−ω)

and then we find

λg(1)13 (t) =
(
− 1

2
√

ω
+

1√
ω
− 1

η +
√

ω
+

2
iπ(η−

√
ω)

− (η2 +ω) log(η2/ω)

iπ(η−
√

ω)(η2−ω)

)
eiωt +o(1), t→ ∞. (3.79)

Therefore, combining equations (3.57), (3.65) and (3.79), we find (3.46).
The computations of the large t asymptotics of the terms involving single integrals with respect

to dk2 and dk3 of e4ik2
2t and e4ik2

3t respectively, as well as double integrals with respect to dk2dk3 of
e4i(k2

2−k2
3)t , are similar with the computations presented in proposition 3.1.
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Fig. 4. (ω < 0) The deformed contours ∂ Ď3 (left) and ∂ Ďσk
3 (right).

4. A Perturbative Approach for ω < 0

In a similar way as in Section 3, we can obtain the analogous results for the case of ω < 0. For
simplicity, here we present the results with a vanishing initial datum, that is, q(x,0) = 0. In this
case, a(k) = 1 and b(k) = 0.

Proposition 4.1. For ω < 0,

g11(t) = i
√
−ωeiωt +

∫
∂ Ď3

e−4ik2
3tA(k2

3)dk3, (4.1)

where the contour ∂ Ď3 is depicted in figure 4 and

A(k2) =
8k2

π(4k2 +ω)
. (4.2)

Lemma 4.1. For ω < 0,

Φ11(t,k) =
i
(
e−4ik2t − eiωt

)
2k+

√
−ω

+
ie−4ik2t

2σk−
√
−ω

+
1
4

∫
∂ Ďσk

3

e−4ik2
3t

k2− k2
3

A(k2
3)dk3, (4.3)

where the contour ∂ Ďσk
3 is depicted in figure 4 and σ = 1 if k ∈ ∂D3, whereas σ =−1 if−k ∈ ∂D3.

Lemma 4.2. For ω < 0,

λΦ22(t,k) =
iα1(k)

2k+
√
−ω

e−it(4k2+ω)+
2i
√
−ω t

2k+
√
−ω

+ c1(k)+
∫

∂ Ďσk
3

c2(k,k3)e−it(4k2
3+ω)dk3

+
∫

∂ Ďσ̂k
2

c3(k,k2)e4it(k2
2−k2)dk2 +

∫
∂ Ď2

c4(k,k2)eit(4k2
2+ω)dk2

+
∫

∂ Ďσk
3

(∫
∂ Ď

σ̃k3
2

c5(k,k2,k3)e4it(k2
2−k2

3)dk2

)
dk3, (4.4)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

244



A Perturbative Approach for the Asymptotic Evaluation of Neumann Value for the NLS
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Fig. 5. (ω < 0) The deformed contours ∂ Ď2 (left) and ∂ Ďσ̂k
2 (right).

where the contours ∂ Ď2 and ∂ Ďσ̂k
2 are depicted in figure 5 and the functions α1(k) and {c j}5

1 are
defined as follows:

α1(k) =
i

2k+
√
−ω

+
i

2σk−
√
−ω

, c1(k) = c(1)1 (k)+ c(2)1 (k)+ c(3)1 (k), (4.5)

c2(k,k3) =−
1

4i(k2− k2
3)

A(k2
3)

2k+
√
−ω

, c3(k,k2) =
α1(k)

4
A(k2

2)

(k2− k2
2)
, (4.6)

c4(k,k2) =
iA(k2

2)

(2k+
√
−ω)(4k2

2 +ω)
, c5(k,k2,k3) =−

1
16

A(k2
2)A(k

2
3)

(k2
2− k2

3)(k2− k2
3)

(4.7)

with

c(1)1 (k) =
2k(σ +1)

(4k2 +ω)(2σk+
√
−ω)

− 1
2
√
−ω

2k−
√
−ω

(2σk−
√
−ω)2 +

1
2
√
−ω(2k+

√
−ω)

, (4.8a)

c(2)1 (k) =
1

2σ̂k−
√
−ω

(
1

2k+
√
−ω

+
1

2σk−
√
−ω

)
, (4.8b)

c(3)1 (k) =
4k2

iπ(4k2 +ω)2

(
log4− log(−ω)

)
+

2k logk
iπ(4k2 +ω)(2k−

√
−ω)

+
2k log(−k)

iπ(4k2 +ω)(2k+
√
−ω)

− 1
iπ(4k2 +ω)

− 1
2(4k2 +ω)

. (4.8c)

Proposition 4.2. For ω < 0,

λg13(t) =
1

i
√
−ω

eiωt +o(1), t→ ∞. (4.9)

Proof. Using (4.1), (4.3) and (4.4), we can derive (4.9). However, λΦ22(t,k) contains the term
involving teiωt . Here, we prove that the contributions from the terms involving teiωt cancel. The
coefficient of teiωt in λg(2)13 arises from the second term of (4.4) and the relevant contribution is

4i
√
−ω

π

∫
∂ Ď3

(
1

2k+
√
−ω

+
1

2k−
√
−ω

)
dk =−2

√
−ω, (4.10)
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where we have used the fact that the integrand has poles at k =−
√
−ω/2 and at k = ∞. Regarding

the coefficient of teiωt in λg(1)13 , we note that I2 for ω < 0 is given by

I2(t,k) =e−4ik2t
{

α1(k)
i(2k−

√
−ω)t

2k+
√
−ω

+ c1(k)
eit(4k2+ω)−1
i(2k+

√
−ω)

+
2i
√
−ω

(2k+
√
−ω)2

(
eit(4k2+ω)−1

4k2 +ω
− iteit(4k2+ω)

)}
. (4.11)

Hence, the coefficient of teiωt in λg(1)13 arises from the last term in (4.11) and the relevant contribu-
tion is

4
√
−ω

iπ

∫
∂ Ď3

k
(

1
(2k+

√
−ω)2 −

1
(2k−

√
−ω)2

)
dk = 2

√
−ω, (4.12)

where we have used the fact that the integrand has poles at k =−
√
−ω/2 and at k = ∞. From (4.10)

and (4.12), it follows that the terms involving teiωt cancel.
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