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With the aid of symbolic computation by Maple, a class of third-order nonlinear evolution equations admitting
invariant subspaces generated by solutions of linear ordinary differential equations of order less than seven is
analyzed. The presented equations are either solved exactly or reduced to finite-dimensional dynamical sys-
tems. A number of concrete examples admitting invariant subspaces generated by power, trigonometric and
exponential functions are computed to illustrate the resulting theory.
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1. Introduction

In this paper, we analyze a class of third-order nonlinear evolution equations (NLEEs) with the
following form

ut = f (u)uxxx +g(u)uxxux +h(u)u3
x +q1(x)q2(u)+q3(u), (1.1)

which admit invariant subspaces defined by linear ordinary differential equations (ODEs). For the
sake of convenience, we set

Q(x,u) = q1(x)q2(u)+q3(u). (1.2)

The class of equations (1.1) includes some important equations of mathematical physics. For exam-
ple, if we take

f (u) =−1
2

u−
3
2 , g(u) =

9
4

u−
5
2 , h(u) =−15

8
u−

7
2 , Q(x,u) = 0,
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Eq.(1.1) becomes the famous Harry Dym equation:

ut =

(
1√
u

)
xxx

,

whose extended hierarchy of soliton flows, including the Harry Dym hierarchy with self-consistent
sources and the k-constrained Harry Dym hierarchy, was presented in [11].

Many researchers engaged in the development of the invariant subspace method, a very effective
approach for constructing various types of exact solutions [2,4–7]. Kamran, Milson and Olver have
provided the rigorous foundations for the invariant subspace method and the fundamental problem
of maximal dimension of invariant subspaces is established first by Galaktionov and Svirshchevskii
for the scalar case. Various invariant subspaces to NLEEs of the form

ut = f (u,ux)uxx +g(u,ux)

with certain functions f and g have been obtained, which yield a number of interesting exact solu-
tions of the corresponding equations. For example, an exact solution of the quasi-linear heat equa-
tion

ut =
(

u−
4
3 ux

)
x
−u−

1
3

can be constructed based on the 5-dimensional trigonometric invariant subspace

L
{

1,sin(2/
√

3x),cos(2/
√

3x),sin(4/
√

3x),cos(4/
√

3x)
}
.

The fast diffusion equation

ut =
(

u−
3
2 ux

)
x

has an exact solution which belongs to the 4-dimensional polynomial invariant subspace

L
{

1,x,x2,x3} .
It is also shown that multi-soliton solutions of integrable equations derived by Hirota’s bilinear
method belong to invariant subspaces of exponential functions in the sense of change of variables.
So many different types of exact solutions to NLEEs can be obtained through the invariant subspace
method.

The invariant subspace method can also be used to construct exact solutions to systems of
NLEEs (see, e.g, [8]). In Ref. [16], authors have provided a classification to systems with two-
component nonlinear diffusion equations based on the invariant subspaces defined by linear ODEs.
In Refs. [17, 18, 21], authors have generalized the estimation of maximal dimension of invariant
subspaces to the vector operators. Noting that a solution to an nth-order linear ODE may not satisfy
another linear ODE of order less than n, the invariant subspace method has been refined for the
unity and diversity of invariant subspaces and exact solutions in [9]. The refined invariant subspace
method has been used to classify a class of systems of nonlinear dispersive evolution equations
and determine their invariant subspaces and exact solutions [10]. In addition, the invariant subspace
method has also been modified to deal with fractional order differential equations in Ref. [3]. It
allows one to reduce a fractional order partial differential equation to a fractional order dynamical
system.
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Let us give a brief account of the invariant subspace method. We consider a kth-order NLEE of
the form

ut = F(x,u,ux,uxx, ⋅ ⋅ ⋅ ,ukx)≡ F [u], (1.3)

where F [u] is a given sufficiently smooth function of the indicated variables. Let { fi(x), i= 1, ⋅ ⋅ ⋅ ,n}
be a finite set of n (≥ 1) linearly independent functions, and Wn denote their linear span

Wn = L { f1(x), ⋅ ⋅ ⋅ , fn(x)} ≡
{

c1 f1(x)+ ⋅ ⋅ ⋅+ cn fn(x)
∣∣∀ci ∈ ℝ

}
. (1.4)

The given operator F (or the given evolution equation (1.3)) admits an invariant space Wn, i.e., the
subspace Wn is said an invariant subspace of the given operator F , if the invariance condition

F [Wn]⊆Wn (1.5)

holds. Concretely speaking, this invariance condition means

F

[
n

∑
i=1

ci fi(x)

]
=

n

∑
i=1

Ψi(c1, ⋅ ⋅ ⋅ ,cn) fi(x) for any (c1, ⋅ ⋅ ⋅ ,cn) ∈ ℝn, (1.6)

where the expansion coefficients {Ψi} of F [u] ∈ Wn in the basis { fi} are a set of functions of
c1,c2, ⋅ ⋅ ⋅ ,cn. Now it is obvious that if a linear subspace Wn is invariant under F , then Eq. (1.3) has
solutions of the form

u(x, t) =
n

∑
i=1

ci(t) fi(x), (1.7)

where the coefficients {ci(t)} satisfy an n-dimensional dynamical system

c′i(t) = Ψi(c1(t), ⋅ ⋅ ⋅ ,cn(t)), 1 ≤ i ≤ n. (1.8)

Assume that an invariant subspace Wn is determined by the space of solutions of an nth-order linear
ODE

L[y]≡ y(n)+a1(x)y(n−1)+ ⋅ ⋅ ⋅+an−1(x)y′+an(x)y = 0. (1.9)

If the operator F [u] admits the invariant subspace defined by the linear ODE (1.9), then the invari-
ance condition with respect to F becomes

L
[
F [u]

]∣∣
[H]

≡ 0, (1.10)

where [H] denotes the equation L[u] = 0 and its differential consequences with respect to x. The
invariance condition (1.10) implies that the invariant subspace method is closely related to the con-
ditional Lie-Bäcklund symmetry method and the differential constraint method [1, 6, 15, 20].

It has been known that the estimate of the dimension of invariant subspaces for differential oper-
ators plays an important role in the corresponding theory. Once the maximal dimension of invariant
subspaces is identified, we can determine a complete classification of invariant subspaces for the
equations under consideration. For the scalar case, the maximal dimension of invariant subspaces is
not greater than 2k+1, where k is the differential order of the operator F [u] with respect to x. This
makes it possible to search for a complete list of invariant subspaces. Consequently, we only need
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to consider invariant subspaces determined by linear ODEs (1.9) of order less than seven for Eq.
(1.1).

The remainder of this paper is organized as follows. In section 2, equations of the form (1.1)
admitting invariant subspaces generated by Eq.(1.9) are obtained by means of symbolic computation
(Maple). Reductions and exact solutions of some concrete examples are used to illustrate the method
in section 3. The last section is devoted to conclusions and discussions.

2. Symbolic computation for invariant subspaces

We first consider the case of W2 generated by

L[y]≡ y′′+a1(x)y′+a2(x)y = 0, (2.1)

where a1 and a2 are assumed to be real elementary functions. A direct computation by using the
symbolic computation software, Maple, from the invariance condition (1.10) yields

L
[
F [u]

]∣∣
[H]

= h′′u5
x − (g′′+6h′)a1u4

x +

[
(4g′+ f ′′+6h)a2

1 − (2h+ f ′′+2g′+g′′u+7h′u)a2

−( f ′′+3h+2g′)a′1

]
u3

x +

{
−2( f ′+g)a3

1 +[( f ′′+7g′+12h)u+3g+4 f ′]a1a2

−[(3h+2g′+ f ′′)u+4 f ′+2g]a′2 +(5g+6 f ′)a1a′1 +Quu − (2 f ′+g)a′′1

}
u2

x

+

[
− (3 f ′+4g)a2

1a2u−3(a1a′1 −a′′1) f a1 +(3gu+2 f ′u+3 f )a1a′2

+3(g+2hu+ f ′+g′u)ua2
2 +(5gu+5 f ′u+3 f )a′1a2 − (2 f ′u+gu+3 f )a′′2

+3a′21 f +2Qxu − f a′′′1

]
ux −

[
(2g+ f ′)u2a2

2 +3 f a′1a2u−Qx
]

a1

+
[
(3g+ f ′)a′2u2 +(3 f a′2 +3 f a′′1 −Qu)u+Q

]
a2 − f a′′′2 u+3 f a′1a′2u+Qxx

= 0,

where the prime and the subscript denote the derivative and the partial derivative with respect to the
indicated variables respectively. To vanish all the coefficients of the above equation, we obtain the
following overdetermined system,

h′′ = 0,

(g′′+6h′)a1 = 0,

(4g′+ f ′′+6h)a2
1 − (2h+ f ′′+2g′+g′′u+7h′u)a2 − ( f ′′+3h+2g′)a′1 = 0,

[( f ′′+7g′+12h)u+3g+4 f ′]a1a2 −2( f ′+g)a3
1 − [(3h+2g′+ f ′′)u+4 f ′+2g]a′2

+(5g+6 f ′)a1a′1 +Quu − (2 f ′+g)a′′1 = 0,

(3gu+2 f ′u+3 f )a1a′2 +3(g+2hu+ f ′+g′u)ua2
2 +(5gu+5 f ′u+3 f )a′1a2

− (2 f ′u+gu+3 f )a′′2 +3a′21 f − (3 f ′+4g)a2
1a2u−3(a1a′1 −a′′1) f a1 +2Qxu − f a′′′1 = 0,[

(3g+ f ′)a′2u2 +(3 f a′2 +3 f a′′1 −Qu)u+Q
]

a2 −
[
(2g+ f ′)u2a2

2 +3 f a′1a2u−Qx
]

a1

+3 f a′1a′2u− f a′′′2 u+Qxx = 0.

(2.2)
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Invariant subspaces of third-order nonlinear evolution equations

From the first equation of the above system (2.2), it is apparent that h(u) = au+b. And the solution
can be divided into two cases a1(x) = 0 and a1(x) ∕= 0.
Case 1: a1(x) = 0.

Substituting h(u) and a1(x) into system (2.2), then the third equation becomes

−a2( f ′′+g′′u+2g′+9au+2b) = 0. (2.3)

Subcase 1.1: a2 = 0.
Substituting all these into Eq.(2.2), the corresponding solution can be easily obtained and listed

as the first entry in Table 1 with arbitrary functions f (u) and g(u).
Subcase 1.2: a2 ∕= 0.

From Eq. (2.3), it is apparent f (u) = −ug(u)− 3a
2 u3 − bu2 + cu + d. Substituting f (u) into

system (2.2), comparing the forth and fifth equations in (2.2) and using the compatibility condition
Quux = Qxuu, we have

15a
2

u2 (a′′2 +3a2
2
)−3c

(
a′′2 +a2

2
)
= 0.

∙ If a′′2 +3a2
2 = a′′2 +a2

2 = 0, a2 should be zero, which leads to a contradiction.
∙ If a′′2 +3a2

2 ∕= 0, a′′2 +a2
2 ∕= 0, a = c = 0, from the forth equation, we can derive

Q(x,u) = a′2

(
−g(u)u2 − 7

6
u3b+

3
2

du
)
+ pu.

Substituting Q(x,u) into the last equation of Eq.(2.2), we obtain

−1
6

b(a′′′2 +16a′2a2)u3 +
1
2

d(a′′′2 +6a′2a2)u = 0.

If b = d = 0, the corresponding solution is listed as the second entry in Table 1 with arbitrary a2(x).
If a′′′2 + 16a′2a2 = a′′′2 + 6a′2a2 = 0, we have a2 = s and the corresponding solution is listed as the
third entry in Table 1. If a′′′2 + 16a′2a2 = d = 0 , a′′′2 + 6a′2a2 ∕= 0, consequently we can have one
special choose of a2 = − 3

4x2 with the corresponding solution listed as the forth entry in Table 1. If
a′′′2 +16a′2a2 ∕= 0, a′′′2 +6a′2a2 = 0, one choose is a2 =− 2

x2 , which contradicts to a′′2 +3a2
2 ∕= 0.

∙ If a′′2 +a2
2 = a = 0, a′′2 +3a2

2 ∕= 0, we obtain a2 =− 6
x2 . Furthermore, we derive

Q(x,u) =
1
x3

(−12g(u)u2 −14u3b+24cu2 + eu
)
+ pu

from the forth equation. Substituting Q(x,u) into the last equation of (2.2), we derive b = d = e = 0
with the corresponding solutions listed as the fifth entry in Table 1.

∙ By the similar calculation, if a′′2 + 3a2
2 = c = 0, a′′2 + a2

2 ∕= 0, we have a special choose of
a2 =− 2

x2 and the further solution listed as the sixth entry in Table 1.
Case 2: a1(x) ∕= 0.

It is apparent that g(u) =−3au2 + cu+d. Consequently, the third equation can be simplified to(
a2

1 −a2 −a′1
)

f ′′+9a
(
a2 −2a2

1 +a′1
)

u+(6b+4c)a2
1 −2(b+ c)a2 − (2c+3b)a′1 = 0. (2.4)

The possibility should be divided into two subcases.
Subcase 2.1: a2 = a2

1 −a′1.
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Substituting a2 into Eq.(2.4), it arrives at

−9aa2
1u+(4b+2c)a2

1 −ba′1 = 0,

which yields a = 0, b ∕= 0 or a = b = c = 0.
∙ When b ∕= 0, 4b+ 2c ∕= 0, we obtain a special choose of a1 = − b

(4b+2c)x . Renaming a1 =
s
x ,

a2 =
s2+s

x2 , from (2.2) it is easy to see that

Q(x,u) =
1
x3 q2(u)+ pu+q.

Substituting it into the fifth equation, we can find the relation between q2(u) and f (u). Furthermore,
substituting q2(u) into Eq.(2.2), taking account of the assumption b ∕= 0, we can single out nonzero
s =−2, −5±√

13
4 with the corresponding results presented as the 7-8th entries of Table 1.

∙ When b ∕= 0, 4b+2c = 0, we derive a1 = s, a2 = s2. Substituting these into Eq.(2.2), we can
derive b = d = 0 from the fifth equation, which contradicts with the assumption b ∕= 0.

∙ When a = b = c = 0, using the compatibility condition Quux = Qxuu, we obtain d = 0 or
d ∕= 0, a1 =

1
x . However if d ∕= 0, a1 =

1
x , it leads to d = 0. When d = 0, by similar calculation, it is

interesting to solve

Q(x,v) = (3a′1a1 −a3
1 −a′′1) f (u)u+ pu,

with arbitrary function a1(x) and f (u), which is represented as the 9th entry in Table 1.
Subcase 2.2: a2 ∕= a2

1 −a′1.
From Eq. (2.4), we derive

f (u) =

(3
2 a2 −3a2

1 +
3
2 a′1
)

au3

a2 −a2
1 +a′1

+

[−(b+ c)a2 +(3b+2c)a2
1 −
(3

2 b+ c
)

a′1
]

u2

a2 −a2
1 +a′1

+µ1u+µ2,

which implies (
3
2

a2 −3a2
1 +

3
2

a′1

)
a = λ1(a2 −a2

1 +a′1),

−(b+ c)a2 +(3b+2c)a2
1 −
(

3
2

b+ c
)

a′1 = λ2(a2 −a2
1 +a′1),

where λ1 and λ2 are two constants. Solving this system, it is easy to see that a1 and a2 have special
chooses: a1 = s1, a2 = s2 or a1 =

s1
x , a2 =

s2
x2 . By similar calculation, we have listed these results in

Table 1 in sequence.
The unknown functions in Table 1 are given as follows:

⎧⎨⎩
θ (1)

1 (x) = 1, θ (1)
2 (x) = x, s = 0,

θ (1)
1 (x) = sin(

√
sx) , θ (1)

2 (x) = cos(
√

sx) , s > 0,
θ (1)

1 (x) = exp
(√−sx

)
, θ (1)

2 (x) = exp
(−√−sx

)
, s < 0;
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⎧⎨⎩
θ (3)

1 (x) = x
9−√

37+
√

30
√

37−170
4 , θ (3)

2 (x) = x
9−√

37−
√

30
√

37−170
4 , a1 =

−7+
√

37
2 ,

θ (3)
1 (x) = x

9+
√

37
4 sin

(√
30

√
37+170
4 lnx

)
, θ (3)

2 (x) = x
9+

√
37

4 cos
(√

30
√

37+170
4 lnx

)
,

a1 =
−7−√

37
2 ;

{
θ (4)

1 (x) = x3, θ (4)
2 (x) = x3 lnx, s =−5,

θ (4)
1 (x) = x−

2s+1
3 , θ (4)

2 (x) = x−
s−4

3 , s ∕=−5;

{
θ (5)

1 (x) = x
3
2 , θ (5)

2 (x) = x
3
2 lnx, s =−2,

θ (5)
1 (x) = x−

3s
4 , θ (5)

2 (x) = x−
s
4+1, s ∕=−2;

{
θ (6)

1 (x) = x
3
2 , θ (6)

2 (x) = x
3
2 lnx, s = 9

4 ,

θ (6)
1 (x) = x

3
2 , θ (6)

2 (x) = x
2s
3 , s ∕= 9

4 ;

⎧⎨⎩
θ (7)

1 (x) = x
3
2 , θ (7)

2 (x) = x
3
2 lnx, s = 9

4 ,

θ (7)
1 (x) = x

3
2 sin

(√
4s−9
2 lnx

)
, θ (7)

2 (x) = x
3
2 cos

(√
4s−9
2 lnx

)
, s > 9

4 ;

θ (7)
1 (x) = x

3+
√

9−4s
2 , θ (7)

2 (x) = x
3−√

9−4s
2 , s < 9

4 ;

{
θ (8)

1 (x) = x3, θ (8)
2 (x) = x3 lnx, s =−5,

θ (8)
1 (x) = x3, θ (8)

2 (x) = x−s−2, s ∕=−5.

Moreover, θ (0)
1 (x) and θ (0)

2 (x) listed as the second entry satisfy the equation y′′+ a2y = 0, which

can not be solved for arbitrary function a2 ≡ a2(x). It is the same with
{

θ (2)
1 (x),θ (2)

2 (x)
}

and{
θ (9)

1 (x),θ (9)
2 (x),θ (9)

3 (x)
}

.
By similar calculation, we obtain equations with invariant subspaces Wn,(n = 3,4,5,6) listed in

Table 2. And the unknown functions are given as follows:

θ (10)
1 (x) = x

−3∓√
89

4 sin

(√
±42

√
89+398

4
lnx

)
,

θ (10)
2 (x) = x

−3∓√
89

4 cos

(√
±42

√
89+398

4
lnx

)
;

⎧⎨⎩
θ (11)

2 (x) = x, θ (11)
3 (x) = x2, s = 0,

θ (11)
2 (x) = sin(

√
sx) , θ (11)

3 (x) = cos(
√

sx) , s > 0,
θ (11)

2 (x) = exp
(√−sx

)
, θ (11)

3 (x) = exp
(−√−sx

)
, s < 0.

For W7, we find that the determining system is inconsistent so that there exists no invariant subspace
generated by linear ODEs (1.9) for Eq.(1.1).
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Ta
bl

e
1.

V
ar

io
us

cl
as

si
fic

at
io

ns
of

W
2

ge
ne

ra
te

d
by

lin
ea

rO
D

E
s

(1
.9

)f
or

E
q.

(1
.1

)

N
o.

E
q.

(1
.1

)
O

D
E

(1
.9

)
W

2

1
u t

=
f(

u)
u x

xx
+

g(
u)

u x
xu

x
+
(a

u
+

b)
u3 x

+
pu

+
q

y′
′ =

0
L

{ x
,

1}
2

u t
=
−u

g(
u)

u x
xx
+

g(
u)

u x
xu

x
+

pu
−

g(
u)

u2 a 2
x

y′
′ +

a 2
y
=

0
L
{ θ(0

)
1

(x
),

θ(0
)

2
(x
)}

3
u t

=
(−

ug
(u
)
−

α
u2

+
β
)u

xx
x
+

g(
u)

u x
xu

x
+

α
u3 x

+
pu

s
∕=

0
y′
′ +

sy
=

0
L
{ θ(1

)
1

(x
),

θ(1
)

2
(x
)}

4
u t

=
(−

ug
(u
)
−

α
u2 )

u x
xx
+

g(
u)

u x
xu

x
+

α
u3 x

−
3 2x

3

( g(
u)

u2
+

7 6
α

u3) +
pu

y′
′ −

3 4x
2
y
=

0
L
{ x−

1 2
,

x3 2

}
5

u t
=
(−

ug
(u
)
+

α
u)

u x
xx
+

g(
u)

u x
xu

x
+

12
u2 (

2α
−g

(u
))

x3
+

pu
y′
′ −

6 x2
y
=

0
L
{ x3 ,

x−
2}

6
u t

=
(−

ug
(u
)
−

3 2
α

u3
+

β
)u

xx
x
+

g(
u)

u x
xu

x
+

α
uu

3 x
y′
′ −

2 x2
y
=

0
L
{ 1 x

,
x2}

−
4u

2 g(
u)
+

8α
u4 −

6β
u

x3
+

pu
7

u t
=

f(
u)
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{ 1,

x3 ,
x6 ,

x−
3}

13
u t

=
α

uu
xx

x
−

4 7
α

u x
u x

x
+

α
(3

40
0∓

54
8√ 22

)u
2

17
01

x3
+

pu
y(

4)
+

−4
4±

4√ 22
9x

y′
′′

L

{ x32
±2

√ 22
9

,
x17

∓4
√ 22

9
,

−
−1

37
2±

23
6√ 22

81
x2

y′
′

x22
∓2

√ 22
9

,
x3}

+
−2

98
00
±6

40
4√ 22

72
9x

3
y′

−
−1

22
32
±2

80
4√ 22

24
3x

4
y
=

0
14

u t
=
(α

u
+

β
)u

xx
x
−

1 2
α

u x
u x

x
+

pu
+

q
y(

5)
=

0
L
{ 1,

x,
x2 ,

x3 ,
x4}

15
u t

=
(α

u
+

β
)u

xx
x
−

3 5
α

u x
u x

x
+

pu
+

q
y(

6)
=

0
L
{ 1,

x,
x2 ,

x3 ,
x4 ,

x5}
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3. Reductions and exact solutions of concrete examples

In this section, we present several concrete examples to illustrate our classifications resulted from
the invariant subspace method.
Example 1. The equation

ut = αu2uxxx − (13s+28)α
9s+12

uuxuxx +
4(13s+28)α

27(3s+4)
u3

x +
s
(
2s3 +17s2 +48s+48

)
α

8(3s+4)x3 u3 + pu

with s ∕=−2,−4
3 admits the invariant subspace W2 =L

{
x−

3s
4 ,x−

s
4+1
}

generated by the linear ODE

y′′+
s
x

y′+
3s2 −12s

16x2 y = 0.

The corresponding exact solution is given by

u(x, t) = c1(t)x−
3s
4 + c2(t)x−

s
4+1,

where c1 ≡ c1(t) and c2 ≡ c2(t) satisfy the dynamical system

c′1 =
αc3

2
3s+4

(
13
54

s4 +
53
27

s3 +6s2 +
220
27

s+
112
27

)
+ pc1,

c′2 = pc2.

When p = 0, we have

c1 =
αC3

2t
3s+4

(
13
54

s4 +
53
27

s3 +6s2 +
220
27

s+
112
27

)
+C1,

c2 =C2;

and when p ∕= 0, we have

c1 =
αC3

2e3pt

2p(3s+4)

(
13
54

s4 +
53
27

s3 +6s2 +
220
27

s+
112
27

)
+C1ept ,

c2 =C2ept ,

where C1 and C2 are two arbitrary constants.
Example 2. The equation

ut =−21α
11

uuxxx +αuxuxx − 72α
11x3 u2 + pu

admits the invariant subspace W2 = L
{

x3,x3 lnx
}

generated by the linear ODE

y′′− 5
x

y′+
9
x2 y = 0.

The corresponding exact solution is given by

u(x, t) = c1(t)x3 + c2(t)x3 lnx,
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where c1 ≡ c1(t) and c2 ≡ c2(t) satisfy the dynamical system

c′1 = 5αc2
2 + pc1,

c′2 = pc2.

When p = 0, we have

c1 = 5αC2
2t +C1,

c2 =C2,

and when p ∕= 0, we have

c1 =
5αC2

2e2pt

p
+C1ept ,

c2 =C2ept ,

where C1 and C2 are two arbitrary constants.
Example 3. The equation

ut = αuuxxx −αuxuxx +
4αu2

x3 + pu

admits the invariant subspace W3 = L
{

x3, 1
x ,x
}

generated by the linear ODE

y′′′− 3
x2 y′+

3
x3 y = 0.

The corresponding exact solution is given by

u(x, t) = c1(t)x3 + c2(t)
1
x
+ c3(t)x,

where c1(t), c2(t) and c3(t) satisfy the dynamical system

c′1 =−8αc2
1 + pc1,

c′2 = 8αc1c2 +4αc2
3 + pc2,

c′3 = 8αc1c3 + pc3.

Example 4. The equation

ut = (αu2 +βu+ γ)uxxx − (2αu+β )uxuxx +αu3
x + pu+q

admits the invariant subspace W3 = L {1,sin(
√

sx) ,cos(
√

sx)} or
L
{

1,exp
(√−sx

)
,exp

(−√−sx
)}

or L
{

1,x,x2
}

generated by the linear ODE

y′′′+ sy = 0.

When s > 0, the corresponding exact solution has the form

u(x, t) = c1(t)+ c2(t)sin
(√

sx
)
+ c3(t)cos

(√
sx
)
,
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where c1(t), c2(t) and c3(t) satisfy the dynamical system

c′1 = pc1 +q,

c′2 = s
3
2 c3
[
α(c2

1 − c2
2 − c2

3)+βc1 + γ
]
+ pc2,

c′3 = s
3
2 c2
[
α(−c2

1 + c2
2 + c2

3)−βc1 − γ
]
+ pc3.

When s < 0, the corresponding exact solution has the form

u(x, t) = c1(t)+ c2(t)exp
(√−sx

)
+ c3(t)exp

(−√−sx
)
,

where c1(t), c2(t) and c3(t) satisfy the dynamical system

c′1 = pc1 +q,

c′2 = (−s)
3
2 c2
[
α(c2

1 −4c2c3)+βc1 + γ
]
+ pc2,

c′3 = (−s)
3
2 c3
[
α(−c2

1 +4c2c3)−βc1 − γ
]
+ pc3.

When s = 0, the corresponding exact solution has the form

u(x, t) = c1(t)+ c2(t)x+ c3(t)x2,

where c1(t), c2(t) and c3(t) satisfy the dynamical system

c′1 =−2βc2c3 −4αc1c2c3 +αc3
2 + pc1 +q,

c′2 =−4βc2
3 −8αc1c2

3 +2αc2
2c3 + pc2,

c′3 = pc3.

Example 5. The equation

ut = (αu+β )uxxx − 5α
6

uxuxx +
30u(αu+2β )

x3 + pu+q

admits the invariant subspace W4 = L
{

1,x3,x6,x−3
}

generated by the linear ODE

y(4)− 20
x2 y′′ = 0.

The corresponding exact solution has the form

u(x, t) = c1(t)+ c2(t)x3 + c3(t)x6 + c4(t)x−3,

where ci ≡ ci(t),(i = 1, ⋅ ⋅ ⋅ ,4) satisfy the dynamical system

c′1 = 66αc1c2 +135αc3c4 +66βc2 + pc1 +q,

c′2 = 21αc2
2 +180αc1c3 +180βc3 + pc2,

c′3 = 81αc2c3 + pc3,

c′4 = 30αc2
1 −9αc2c4 +60βc1 + pc4.

Example 6. The equation

ut = (αu+β )uxxx − 3
5

αuxuxx + pu+q
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admits the invariant subspace W6 = L
{

1,x,x2,x3,x4,x5
}

generated by the linear ODE

y(6) = 0.

The corresponding exact solution has the form

u(x, t) = c1(t)+ c2(t)x+ c3(t)x2 + c4(t)x3 + c5(t)x4 + c6(t)x5,

where ci ≡ ci(t),(i = 1, ⋅ ⋅ ⋅ ,6) satisfy the dynamical system

c′1 =−6
5

αc2c3 +6αc1c4 +6βc4 + pc1 +q,

c′2 =−12
5

αc2
3 +24αc1c5 +

12
5

αc2c4 +24βc5 + pc2,

c′3 =−24
5

αc3c4 +60αc1c6 +
84
5

αc2c5 +60βc6 + pc3,

c′4 =−24
5

αc2
4 +48αc2c6 +

24
5

αc3c5 + pc4,

c′5 =−6αc4c5 +30αc3c6 + pc5,

c′6 =−24
5

αc2
5 +12αc4c6 + pc6.

4. Conclusions and discussions

In this paper, we have applied the invariant subspace method to the study of exact solutions to
Eq.(1.1). A class of evolution equations admitting invariant subspaces Wn ≡ L { f1(x), ⋅ ⋅ ⋅ , fn(x)}
generated by linear ODEs (1.9) of order n less than seven are computed and listed in Table 1 and
Table 2. The resulting exact solutions of the corresponding equations have the forms of generalized
separation of variables u = ∑n

i=1 ci(t) fi(x) where the coefficient functions ci(t),(i = 1, ⋅ ⋅ ⋅ ,n) satisfy
n-dimensional dynamical systems. Generally speaking, such exact solutions can not be obtained
within the frameworks of the Lie point symmetry method and the nonclassical symmetry method.

Although the invariant subspace method is effective, we would like to point out that the refined
invariant subspace method produces wider invariant subspaces of exact solutions defined by finite-
dimensional dynamical systems [9]. There are also many other interesting problems of applying the
invariant subspace method method or the refine invariant subspace method. For example, how to
determine higher-order NLEEs and systems of higher-order NLEEs? How to deal with the initial
value problems? How to present resonant solutions with generalized separation of variables for
generalized bilinear and trilinear differential equations [12–14]?
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