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We characterize the differential equations of the form

x′ = y, y′ = an(x)yn +an−1(x)yn−1 + · · ·+a1(x)y+a0(x), n≥ 2, an(0) 6= 0,

where a j(x) are meromorphic functions in the variable x for j = 0, . . . ,n that admits either a Weierstrass first
integral or a Weierstrass inverse integrating factor.
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1. Introduction and statement of the main results

Let x and y be complex variables. In this paper we study the differential equations of the form

x′ = y = P(x,y),

y′ = an(x)yn +an−1(x)yn−1 + · · ·+a1(x)y+a0(x) = Q(x,y),
(1.1)

where n ≥ 2, an(0) 6= 0, the functions a j(x) are meromorphic functions in the variable x for j =
0, . . . ,n, and the prime indicates derivative with respect to the time t, real or complex.

The goal of this paper is to analyze the integrability of the differential systems (1.1) restricted to
a special kind of first integrals. For such systems the notion of integrability is based on the existence
of a first integral, and we shall characterize when the differential system (1.1) has a Weierstrass first
integral or a Weierstrass inverse integrating factor. More precisely, guided by the fact that system
(1.1) is polynomial in the variable y, we study the first integrals and the inverse integrating factors
that are polynomials in the variable y and are an analytic function in the variable x, i.e. we study the
so called Weierstrass integrability of system (1.1).
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As usual C[[x]] is the ring of formal power series in the variable x with coefficients in C, and
C[y] is the ring of polynomials in the variable y with coefficients in C. A polynomial of the form

n

∑
i=0

wi(x)yi ∈ C[[x]][y], (1.2)

is called a formal Weierstrass polynomial in the variable y of degree n if and only if wn(x) = 1 and
wi(0) = 0 for i < n. A formal polynomial whose coefficients are convergent is called Weierstrass
polynomial, see [1]. In other words, a Weierstrass polynomial first integral is of the form

H = ys +Hs−1(x)ys−1 + · · ·+H1(x)y+H0(x) =
s

∑
i=0

Hi(x)yi (1.3)

(with Hs(x) = 1).

We recall that an analytic first integral H : U → C of system (1.1) where U is an open subset of
C2 is a non-locally constant analytic function such that it is constant on the solution of system (1.1)
contained in U .

In what follows we prefer to work with an inverse integrating factor V = V (x,y) than with an
integrating factor R = R(x,y) = 1/V (x,y), because both work well for finding first integrals, but V
has better properties than R, for instance in the region where V is defined if there are limit cycles
they are contained in V = 0, see more raisons in the paper [6].

An inverse integrating factor for the differential system (1.1) is a function V defined in an open
subset of the domain of definition of the differential system that satisfies

∂ (P/V )

∂x
+

∂ (Q/V )

∂y
= 0,

or equivalently

∂V
∂x

P+
∂V
∂y

Q =

(
∂P
∂x

+
∂Q
∂y

)
V,

i.e. if V is an inverse integrating factor of our differential system (1.1) it must satisfy

∂V
∂x

y+
∂V
∂y

(an(x)yn +an−1(x)yn−1 + · · ·+a1(x)y+a0(x))

= (nan(x)yn−1 +(n−1)an−1(x)yn−2 + · · ·+a1(x))V.

Therefore if V is an inverse integrating factor of our differential system (1.1), then it is known that
there exists a first integral H of the Hamiltonian system

ẋ =
y
V

=
∂H
∂y

,

ẏ =
an(x)yn +an−1(x)yn−1 + · · ·+a1(x)y+a0(x)

V
=−∂H

∂x
.

Now from the first equation we obtain

H =
∫ P

V
dy+ f (x),
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Weierstrass integrability

and substituting this H in the second equation we determine the function f (x), and consequently
the first integral H. So for studying the integrability (i.e. the existence of a first integral) of the
differential system (1.1) it is sufficient to determine an inverse integrating factor of system (1.1).

We say that a differential system (1.1) is Weierstrass integrable if it admits either a first integral
or an inverse integrating factor which is a Weierstrass polynomial. In [6] this definition is given in a
more general context.

The main objective of this paper is to provide the differential systems (1.1) that have Weierstrass
first integrals, or Weierstrass integrating factors. More precisely: How to determine the functions
a j(x), for j = 1, . . . ,n and n≥ 2 for which the differential systems (1.1) are Weierstrass integrable?

Unfortunately the differential systems (1.1) have no Weierstrass first integrals as the following
results shows.

Proposition 1.1. The differential systems (1.1) have no Weierstrass first integrals.

Proposition 1.1 is proved in section 2.

In view of Proposition 1.1 we will concentrate on investigating the inverse integrating factors of
the form

V = ys +Vs−1(x)ys−1 + · · ·+V1(x)y+V0(x) =
s

∑
i=0

Vi(x)yi (1.4)

with Vs(x) = 1.

Our first main theorem is the following one.

Theorem 1.1. If the differential system (1.1) with n > 2 has a Weierstrass inverse integrating factor
of the form (1.4) with s = n, then

Vi(x) =
ai(x)
an(x)

for i = 2, . . . ,n−1,

V1(x) =
a1(x)
an(x)

+
1

(n−1)an(x)
d
dx

an−1(x)
an(x)

+
(n−2)a1(x)an−1(x)

(n−1)a2
n(x)

and

V0(x) =
a0(x)
an(x)

+
1

nan(x)
d
dx

an−2(x)
an(x)

− (n−2)an−1(x)
n(n−1)a2

n(x)
d
dx

an−1(x)
an(x)

−
(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)
.

The proof of Theorem 1.1 is given in section 2.

The following result characterizes the existence of Weierstrass inverse integrating factors of the
differential systems (1.1) when n = 2.

Theorem 1.2. System (1.1) with n = 2 has a Weierstrass inverse integrating factor of the form (1.4)
with s = 2, if and only if
either a0(x) = a1(x) = 0, and then V = y2;
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or a0(x) = 0 and a1(x) 6= 0, and then V0 = 0 and

V1(x) =−e
∫

a2(x)dx
∫

a1(x)e−
∫

a2(s)ds dx;

or a0(x) 6= 0 and a1(x) = 0, and then V1 = 0, and

V0(x) =−2e2
∫

a2(x)dx
∫

a0(x)e−2
∫

a2(s)ds dx;

or a0(x)a1(x) 6= 0 with a0(x)a1(x)a2(x)+a0(x)a′1(x)−a′0(x) 6= 0 and

a′0(x)a1(x)2a2(x)+a0(x)a1(x)2a′2(x)−a′′0(x)a1(x)2−3a0(x)a′1(x)
2

+3a′0(x)a1(x)a′1(x)+a0(x)a1(x)a′′1(x)−2a0(x)a1(x)a′1(x)a2(x) = 0,

then

V0(x) =
a1(x)a2

0(x)
a0(x)a1(x)a2(x)+a0(x)a′1(x)−a′0(x)a1(x)

and

V1(x) =
a2

1(x)a0(x)
a0(x)a1(x)a2(x)+a0(x)a′1(x)−a′0(x)a1(x)

.

The proof of Theorem 1.2 is given in section 3. After the proof of this theorem we apply it to
two examples. One satisfying the assumptions of the theorem, and consequently having an inverse
integrating factor of the form (1.4) with s = 2, and another which does not satisfy the hypotheses of
the theorem and consequently it has not an inverse integrating factor of the form (1.4) with s = 2.

The second main result of the paper is the following.

Theorem 1.3. System (1.1) with n ≥ 3 has a Weierstrass inverse integrating factor of the form
in (1.4) if and only if the following conditions hold:

ak(0) = 0 for k = 2, . . . ,n−1, a1(0) =−
a′n−1(0)

(n−1)an(0)
, a0(0) =−

a′n−2(0)
nan(0)

,

d
dx

an−k−1(x)
an(x)

=
n− k+1
nan(x)

an−k+1(x)
d
dx

an−2(x)
an(x)

− (n− k+1)(n−2)an−1(x)
n(n−1)an(x)2 an−k+1(x)

d
dx

an−1(x)
an(x)

−
(n− k+1)(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)
an−k+1(x).

for k = 0, . . . ,n−3,

d
dx

(a1(x)
an(x)

+
1

(n−1)an(x)
d
dx

an−1(x)
an(x)

+
(n−2)a1(x)an−1(x)

(n−1)a2
n(x)

)
= 3a3(x)

(
1

nan(x)
d
dx

an−2(x)
an(x)

− (n−2)
n(n−1)

an−1(x)
a2

n(x)
d
dx

an−1(x)
an(x)

−
(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)

)
+

a2(x)
(n−1)an(x)

d
dx

an−1(x)
an(x)

+
(n−2)a1(x)a2(x)an−1(x)

(n−1)a2
n(x)

,
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d
dx

(
a0(x)
an(x)

+
1

nan(x)
d
dx

an−2(x)
an(x)

− (n−2)an−1(x)
n(n−1)a2

n(x)
d
dx

an−1(x)
an(x)

−
(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)

)
= 2a2(x)

(
1

nan(x)
d
dx

an−2(x)
an(x)

− (n−2)
n(n−1)

an−1(x)
an(x)2

d
dx

an−1(x)
an(x)

−
(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)

)
,

and

a0(x)
(n−1)

d
dx

an−1(x)
an(x)

+
(n−2)a0(x)a1(x)an−1(x)

(n−1)an(x)

=
a1(x)

n
d
dx

an−2(x)
an(x)

− (n−2)
n(n−1)

a1(x)an−1(x)
an(x)

d
dx

an−1(x)
an(x)

−
(n−2)2a2

1(x)a
2
n−1(x)

n(n−1)a2
n(x)

.

The proof of Theorem 1.3 is given in section 4.

In [9] and [10] the Weierstrass integrability has been characterized for the particular differential
systems (1.1) with n = 3,4.

2. Proof of Proposition 1.1 and Theorem 1.1

Proof of Proposition 1.1. If the differential system (1.1) has a first integral of the form (1.3) we
get

s−1

∑
i=0

H ′i (x)y
i+1 +

s

∑
i=0

iHi(x)yi−1(an(x)yn +an−1(x)yn−1 + · · ·+a1(x)y+a0(x)) = 0. (2.1)

The highest power is ys+n−1 (since n ≥ 2) and its coefficient is san(x) = 0. Since we are assuming
that an(x) 6= 0 we get s = 0. So H = H0(x). Then, from (2.1), it follows that H ′0(x) = 0, that is
H = H0, a constant in contradiction with the fact that H is a first integral.

Imposing that system (1.1) with n > 2 has an inverse integrating factor of the form (1.4) we
obtain a polynomial in the variable y whose coefficients must be zero. Hence we get that

s−1

∑
i=0

V ′i (x)y
i+1 +

s

∑
i=0

iVi(x)yi−1(an(x)yn +an−1(x)yn−1 + · · ·+a1(x)y+a0(x))

= (nan(x)yn−1 +(n−1)an−1(x)yn−2 + · · ·+2a2(x)y+a1(x))
( s

∑
i=0

Vi(x)yi
)
.

(2.2)

Now computing the terms in (2.2) with ys+n−1 with n≥ 2 we get

sVs(x)an(x) = nVs(x)an(x).

In short s = n≥ 2 because Vs(0)an(0) = an(0) 6= 0. Now we state and prove some auxiliary results.

Lemma 2.1. Equation (2.2) can be written as

n−1

∑
i=0

V ′i (x)y
i+1 +a0(x)

n−1

∑
i=0

(i+1)Vi+1(x)yi +
2n−2

∑
l=0

yl
min{l,n}

∑
i=max{0,l+1−n}

(2i−1− l)Vi(x)al−i+1(x). (2.3)
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Proof. Since Vn(x) = 1 equation (2.2) can be written as

0 =
n−1

∑
i=0

V ′i (x)y
i+1 +a0(x)

n

∑
i=1

iVi(x)yi−1

+
n

∑
i=0

iVi(x)yi−1(an(x)yn +an−1(x)yn−1 + · · ·+a1(x)y)

− (nan(x)yn−1 +(n−1)an−1(x)yn−2 + · · ·+2a2(x)y+a1(x))
( n

∑
i=0

Vi(x)yi
)

(2.4)

=
n−1

∑
i=0

V ′i (x)y
i+1 +a0(x)

n−1

∑
i=0

(i+1)Vi+1(x)yi

+
n

∑
i=0

iVi(x)yi−1(an(x)yn +an−1(x)yn−1 + · · ·+a1(x)y)

−
n

∑
i=0

Vi(x)yi−1(nan(x)yn +(n−1)an−1(x)yn−1 + · · ·+a1(x)y)

=
n−1

∑
i=0

V ′i (x)y
i+1 +a0(x)

n−1

∑
i=0

(i+1)Vi+1(x)yi

+
n

∑
i=0

Vi(x)yi−1((i−n)an(x)yn +(i−n+1)an−1(x)yn−1 + · · ·+(i−1)a1(x)y).

We can write the last sum in (2) as

n

∑
i=0

Vi(x)yi−1((i−n)an(x)yn +(i−n+1)an−1(x)yn−1 + · · ·+(i−1)a1(x)y)

=
n−1

∑
j=0

n

∑
i=0

(i−n+ j)Vi(x)an− j(x)yn+i−1− j

=
2n−2

∑
l=0

yl
min{l,n}

∑
i=max{0,l+1−n}

(2i−1− l)Vi(x)al−i+1(x).

(2.5)

Now the proof follows immediately from (2) and (2.5).

Let

Sn,l(x) =
l−1

∑
j=1

(l−2 j)an− j(x)an−l+ j(x). (2.6)

Note that l ≤ n+1. The following two lemmas are the Lemmas 4 and 5 of [9], respectively.

Lemma 2.2. We have that Sn,l(x) = 0.
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Lemma 2.3. For k = 2, . . . ,n−1 we have that

Vk(x) =
ak(x)
an(x)

.

Lemma 2.4. We have that

V1(x) =
a1(x)
an(x)

+
1

(n−1)an(x)
d
dx

an−1(x)
an(x)

+
(n−2)a1(x)an−1(x)

(n−1)a2
n(x)

.

Proof. We compute in (2.2) with s = n the coefficient of yn. By Lemma 2.1 with l = n we get

V ′n−1(x)+
n

∑
i=1

(2i−1−n)Vi(x)an−i+1(x) = 0.

Now, using Lemma 2.3 we get

0 =V ′n−1(x)+(1−n)V1(x)an(x)+(n−1)Vn(x)a1(x)+
n−1

∑
i=2

(2i−1−n)Vi(x)an−i(x)

=V ′n−1(x)+(1−n)V1(x)an(x)+(n−1)a1(x)+
1

an(x)

n−1

∑
i=2

(2i−n)ai(x)an−i(x)

− (2−n)a1(x)an−1(x)
an(x)

=V ′n−1(x)+(1−n)V1(x)an(x)+(n−1)a1(x)−
Sn,n(x)
an(x)

− (2−n)a1(x)an−1(x)
an(x)

=V ′n−1(x)+(1−n)V1(x)an(x)+(n−1)a1(x)−
(2−n)a1(x)an−1(x)

an(x)
,

where in the last equality we have used that Sn,n(x) = 0, see Lemma 2.2. Therefore,

V1(x) =
1

(n−1)an(x)

(
(n−1)a1(x)+V ′n−1(x)+

(n−2)a1(x)an−1(x)
an(x)

)
=

a1(x)
an(x)

+
1

(n−1)an(x)
d
dx

an−1(x)
an(x)

+
(n−2)a1(x)an−1(x)

an(x)
.

This concludes the proof of the lemma.

Lemma 2.5. We have that

V0(x) =
a0(x)
an(x)

+
1

nan(x)
d
dx

an−2(x)
an(x)

− (n−2)an−1(x)
n(n−1)a2

n(x)
d
dx

an−1(x)
an(x)

−
(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)
.

Proof. We compute in (2.2) with s = n the coefficient of yn−1. By Lemma 2.1 with l = n−1 we get

V ′n−2(x)+na0(x)Vn(x)+
n−1

∑
i=0

(2i−n)Vi(x)an−i(x) = 0.
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Now using Lemma 2.3 we get

V ′n−2(x)+na0(x)Vn(x)−nV0(x)an(x)+(2−n)V1(x)an−1(x)+
n−1

∑
i=2

(2i−n)Vi(x)an−i(x)

=V ′n−2(x)+na0(x)−nV0(x)an(x)+(2−n)V1(x)an−1(x)+
1

an(x)

n−1

∑
i=2

(2i−n)ai(x)an−i(x)

=V ′n−2(x)+na0(x)−nV0(x)an(x)+(2−n)V1(x)an−1(x)−
Sn,n(x)
an(x)

+
(n−2)a1(x)an−1(x)

an(x)

=V ′n−2(x)+na0(x)−nV0(x)an(x)+(2−n)V1(x)an−1(x)+
(n−2)a1(x)an−1(x)

an(x)
= 0.

Therefore

V0(x) =
1

nan(x)

(
na0(x)+V ′n−2(x)− (n−2)

(
V1(x)an−1(x)−

a1(x)an−1(x)
an(x)

)
=

a0(x)
an(x)

+
1

nan(x)
d
dx

an−2(x)
an(x)

− n−2
nan(x)

(
a1(x)an−1(x)

an(x)

+
an−1(x)

(n−1)an(x)
d
dx

an−1(x)
an(x)

+
(n−2)a1(x)a2

n−1(x)
(n−1)a2

n(x)
− a1(x)an−1(x)

an(x)

)
=

a0(x)
an(x)

+
1

nan(x)
d
dx

an−2(x)
an(x)

− (n−2)an−1(x)
n(n−1)a2

n(x)
d
dx

an−1(x)
an(x)

−
(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)
.

This concludes the proof of the lemma.

Proof of Theorem 1.1. The proof of Theorem 1.1 is an immediate consequence of Lemmas 2.3,
2.4 and 2.5.

3. Proof of Theorem 1.2

In this section we consider system (1.1) with n = 2. In this case (2.2) with s = 2 and V = V0(x)+
V1(x)y+ y2 becomes

V ′0(x)y+V ′1(x)y
2 +(V1(x)+2y)(a2(x)y2 +a1(x)y+a0(x))

= (2a2(x)y+a1(x))
(

V0(x)+V1(x)y+ y2
)
,

(3.1)

that is,

a0(x)V1(x)−a1(x)V0(x) = 0,

V ′0(x)−2a2(x)V0(x)+2a0(x) = 0,

V ′1(x)−a2(x)V1(x)+a1(x) = 0.

(3.2)

Solving the third equation in system (3.2) we get

V1(x) = e
∫

a2(x)dxc1− e
∫

a2(x)dx
∫

a1(x)e−
∫

a2(s)ds dx, c1 ∈ C. (3.3)

Since we are interesting in finding one Weierstrass inverse integrating and not all, we choose c1 = 0.
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Moreover, solving the second equation in system (3.2) we get

V0(x) = e2
∫

a2(x)dxc0−2e2
∫

a2(x)dx
∫

a0(x)e−2
∫

a2(s)ds dx. (3.4)

Again since we are interesting in finding one Weierstrass inverse integrating and not all, we choose
c0 = 0.

Imposing the values of V1(x) and V0(x) in the first equation in (3.2) we obtain

a0(x)
∫

a1(x)e−
∫

a2(s)ds dx = 2a1(x)e
∫

a2(x)dx
∫

a0(x)e−2
∫

a2(s)ds dx. (3.5)

It is clear that if a0(x) = 0 (respectively a1(x) = 0), then V0(x) = 0 (respectively V1(x) = 0).
Therefore the statement in the theorem for the cases a0(x) = a1(x) = 0, a0(x) = 0 and a1(x) 6= 0,
and a0(x) 6= 0 and a1(x) = 0 follow.

Now assume that a0(x)a1(x) 6= 0. In this case we will rewrite (3.3), (3.4) and (3.5) in a more
compact form, without quadratures. It follows from the first relation in (3.2) that

V1(x) =
a1(x)
a0(x)

V0(x) (3.6)

and

a′0(x)V1(x)+a0(x)V ′1(x)−a′1(x)V0(x)−a1(x)V ′0(x) = 0.

Now using (3.6) and the second and third relations in (3.2) we get

a′0(x)
a1(x)
a0(x)

V0(x)+a2(x)a1(x)V0(x)−a0(x)a1(x)−a′1(x)V0(x)−2a1(x)a2(x)V0(x)+

2a1(x)a0(x) =V0(x)
(

a′0(x)
a1(x)
a0(x)

−a2(x)a1(x)−a′1(x)
)
+a1(x)a0(x) = 0,

and thus

V0(x) =
a1(x)a2

0(x)
a0(x)a1(x)a2(x)+a0(x)a′1(x)−a′0(x)a1(x)

,

with a0(x)a1(x)a2(x)+a0(x)a′1(x)−a′0(x) 6= 0, otherwise there is no solution. Again from (3.6) we
get

V1(x) =
a2

1(x)a0(x)
a0(x)a1(x)a2(x)+a0(x)a′1(x)−a′0(x)a1(x)

Now we write (3.5) as∫
a1(x)e−

∫
a2(s)ds dx = 2

a1(x)
a0(x)

e
∫

a2(x)dx
∫

a0(x)e−2
∫

a2(s)ds dx.

Taking derivatives in x we get

a1(x)e−
∫

a2(x)dx = 2
a′1(x)a0(x)−a1(x)a′0(x)

a2
0(x)

e
∫

a2(x)dx
∫

a0(x)e−2
∫

a2(s)ds dx

+2
a1(x)a2(x)

a0(x)
e
∫

a2(x)dx
∫

a0(x)e−2
∫

a2(s)ds dx+2a1(x)e−
∫

a2(x)dx.
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Hence

−a1(x)e−
∫

a2(x)dx = 2
a′1(x)a0(x)−a1(x)a′0(x)+a0(x)a1(x)a2(x)

a2
0(x)

e
∫

a2(x)dx
∫

a0(x)e−2
∫

a2(s)ds dx,

or equivalently

a1(x)a2
0(x)e

−2
∫

a2(x)dx

a′1(x)a0(x)−a1(x)a′0(x)+a0(x)a1(x)a2(x)
=−2

∫
a0(x)e−2

∫
a2(s)ds dx.

Taking again derivatives in x we get

a0(x)
(
a2(x)a′0(x)a1(x)2 +a0(x)a′2(x)a1(x)2−a′′0(x)a1(x)2−2a0(x)a2(x)a′1(x)a1(x)+

3a′0(x)a
′
1(x)a1(x)+a0(x)a′′1(x)a1(x)−3a0(x)a′1(x)

2
)
= 0.

This concludes the proof of Theorem 1.2.

Example 1: We apply Theorem 1.2 to the differential system

ẋ = y, ẏ = y2 +(b+ax)y− (b+ax)(a+b+ax),

with ab 6= 0. Then

a0(x) = (b+ax)(a+b+ax) 6= 0, a1(x) = b+ax 6= 0, a2(x) = 1,

satisfy the assumptions of Theorem 1.2 corresponding to the case a0(x)a1(x) 6= 0, and from this
theorem this differential system has the inverse integrating factor

V (x,y) = y2 +(a+b+ax)y− (a+b+ax)2,

as it is easy to check directly from the definition of inverse integrating factor. Once we know an
inverse integrating factor we can compute a first integral, and we obtain

H = −10x−
(
−5+

√
5
)

log
((
−1+

√
5
)

b+
(
−1+

√
5
)

a(x+1)−2y
)
+(

5+
√

5
)

log
(√

5b+b+
(

1+
√

5
)

a(x+1)+2y
)
.

Example 2: We consider the differential system

ẋ = y, ẏ = y2 +2y+ x,

then

a0(x) = 1, a1(x) = 2, a2(x) = x,

and this system does not satisfy the assumptions of Theorem 1.2 corresponding to the case
a0(x)a1(x) 6= 0. Now we shall prove that this differential system has not an inverse integrating factor

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

303



Weierstrass integrability

of the form (1.4) with s = 2. Indeed, if it has an inverse integrating factor V =V0(x)+V1(x)y+ y2,
then from the second and third equations of (3.2) we obtain

V0(x) =−2
(
− x

2
− 1

4

)
+ c0e2x,

V1(x) = 2+ c1ex,

respectively. Finally from the first equation of (3.2) we get the contradiction

−1−2c0e2x + c1xex = 0.

4. Proof of Theorem 1.3

Lemma 4.1. For k = 2, . . . ,n−1 we have that ak(0) = 0 and

a1(0) =−
a′n−1(0)

(n−1)an(0)
, a0(0) =−

a′n−2(0)
nan(0)

.

Proof. Since Vk(0) = 0 for k = 0, . . . ,n−1 and an(0) 6= 0, it follows from Lemma 2.3 that ak(0) = 0
for k = 2, . . . ,n−1.

Now using that V1(0) = 0 it follows from Lemma 2.4 and the explanation above (note that
an−1(0) = 0) that

0 =V1(0) =
a1(0)
an(0)

+
a′n−1(0)

(n−1)a2
n(0)

.

¿From here the expression of a1(0) follows. Now using that V0(0) = 0 and an−1(0) = an−2(0) = 0,
it follows from Lemma 2.5 that

0 =V0(0) =
a0(0)
an(0)

+
a′n−2(0)
nan(0)2 ,

which completes the proof of the lemma.

Lemma 4.2. For k = 0, . . . ,n−3, we have

d
dx

an−k−1(x)
an(x)

=
n− k+1
nan(x)

an−k+1(x)
d
dx

an−2(x)
an(x)

− (n− k+1)(n−2)an−1(x)
n(n−1)an(x)2 an−k+1(x)

d
dx

an−1(x)
an(x)

−
(n− k+1)(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)
an−k+1(x).
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Proof. We compute in (2.2) with s = n the coefficients of yn−k with k = 0, . . . ,n−3. By Lemma 2.1
with l = n− k we get

V ′n−k−1(x)+(n− k+1)a0(x)Vn−k+1(x)+
n−k

∑
i=0

(2i−1−n+ k)Vi(x)an−k−i+1(x) = 0. (4.1)

Using Lemma 2.5 we get that (4.1) becomes

0 =
d
dx

an−k−1(x)
an(x)

+(n− k+1)a0(x)
an−k+1(x)

an(x)
+

n−k

∑
i=0

(2i−1−n+ k)Vi(x)an−k−i+1(x)

=
d
dx

an−k−1(x)
an(x)

+(n− k+1)a0(x)
an−k+1(x)

an(x)
− (n− k+1)V0(x)an−k+1(x)

+
1

an(x)

n−k

∑
i=1

(2i−1−n+ k)ai(x)an−k−i+1(x)

=
d
dx

an−k−1(x)
an(x)

+(n− k+1)a0(x)
an−k+1(x)

an(x)
− (n− k+1)V0(x)an−k+1(x)

−
Sn−k+1,n−k+1(x)

an(x)
.

Now using Lemma 2.2 we get

d
dx

an−k−1(x)
an(x)

+(n− k+1)a0(x)
an−k+1(x)

an(x)
− (n− k+1)V0(x)an−k+1(x) = 0,

and by Lemma 2.5, we deduce that

0 =
d
dx

an−k−1(x)
an(x)

+(n− k+1)a0(x)
an−k+1(x)

an(x)
− (n− k+1)

a0(x)
an(x)

an−k+1(x)

− n− k+1
nan(x)

an−k+1(x)
d
dx

an−2(x)
an(x)

+
(n− k+1)(n−2)an−1(x)

n(n−1)an(x)2 an−k+1(x)
d
dx

an−1(x)
an(x)

+
(n− k+1)(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)
an−k+1(x).

This concludes the proof of the lemma.

Lemma 4.3. We have

dV1(x)
dx

= 3a3(x)
(

1
nan(x)

d
dx

an−2(x)
an(x)

− (n−2)
n(n−1)

an−1(x)
a2

n(x)
d
dx

an−1(x)
an(x)

−
(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)

)
+

a2(x)
(n−1)an(x)

d
dx

an−1(x)
an(x)

+
(n−2)a1(x)a2(x)an−1(x)

(n−1)a2
n(x)

.

where V1(x) is given in Lemma 2.4.
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Proof. We compute in (2.2) with s = n the coefficients of y2 and we have

V ′1(x)+3V3(x)a0(x)−3V0(x)a3(x)−V1(x)a2(x)+V2(x)a1(x) = 0. (4.2)

Using Lemmas 2.3, 2.4 and 2.5 we get

0 =
dV1(x)

dx
+

3a3(x)
an(x)

a0(x)−3a3(x)
(

a0(x)
an(x)

+
1

nan(x)
d
dx

an−2(x)
an(x)

− (n−2)an−1(x)
n(n−1)a2

n(x)
d
dx

an−1(x)
an(x)

−
(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)

)
−a2(x)

(
a1(x)
an(x)

+
1

(n−1)an(x)
d
dx

an−1(x)
an(x)

+
(n−2)a1(x)an−1(x)

(n−1)a2
n(x)

)
+

a2(x)
an(x)

a1(x)

=
dV1(x)

dx
−3a3(x)

(
1

nan(x)
d
dx

an−2(x)
an(x)

− (n−2)
n(n−1)

an−1(x)
a2

n(x)
d
dx

an−1(x)
an(x)

−
(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)

)
− a2(x)

(n−1)an(x)
d
dx

an−1(x)
an(x)

− (n−2)a1(x)a2(x)an−1(x)
(n−1)a2

n(x)
.

This concludes the proof of the lemma.

Lemma 4.4. We have that

dV0(x)
dx

= 2a2(x)
(

1
nan(x)

d
dx

an−2(x)
an(x)

− (n−2)
n(n−1)

an−1(x)
an(x)2

d
dx

an−1(x)
an(x)

−
(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)

)
,

where V0(x) is given in Lemma 2.5.

Proof. We compute in (2.2) with s = n the coefficients of y and we have

V ′0(x)+2V2(x)a0(x)−2V0(x)a2(x) = 0. (4.3)

Using Lemmas 2.3 and 2.5 we get

dV0(x)
dx

+
2a2(x)a0(x)

an(x)
−2a2(x)

(
a0(x)
an(x)

+
1

nan(x)
d
dx

an−2(x)
an(x)

− (n−2)
n(n−1)

an−1(x)
an(x)2

d
dx

an−1(x)
an(x)

−
(n−2)2a1(x)a2

n−1(x)
n(n−1)a3

n(x)

)
.

This concludes the proof of the lemma.

Lemma 4.5. We have

a0(x)
(n−1)

d
dx

an−1(x)
an(x)

+
(n−2)a0(x)a1(x)an−1(x)

(n−1)an(x)

=
a1(x)

n
d
dx

an−2(x)
an(x)

− (n−2)
n(n−1)

a1(x)an−1(x)
an(x)

d
dx

an−1(x)
an(x)

−
(n−2)2a2

1(x)a
2
n−1(x)

n(n−1)a2
n(x)

.
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Proof. We compute in (2.2) with s = n the coefficients of y0 and we have

a0(x)V1(x) = a1(x)V0(x).

Using Lemmas 2.4 and 2.5 we get

a0(x)a1(x)
an(x)

+
a0(x)

(n−1)an(x)
d
dx

an−1(x)
an(x)

+
(n−2)a0(x)a1(x)an−1(x)

(n−1)a2
n(x)

=
a1(x)a0(x)

an(x)
+

a1(x)
nan(x)

d
dx

an−2(x)
an(x)

− (n−2)
n(n−1)

a1(x)an−1(x)
an(x)2

d
dx

an−1(x)
an(x)

−
(n−2)2a2

1(x)a
2
n−1(x)

n(n−1)a3
n(x)

.

After simplifying by 1/an(x), the lemma follows.

Proof of Theorem 1.3. The proof of Theorem 1.3 is an immediate consequence of Lemmas 4.1,
4.2, 4.4 and 4.5.
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