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In memory of Boris Kupershmidt (†2010), a mathematical light in the mysterious world of “dark”equations

A relatively new approach to analyzing integrability, based upon differential-algebraic and symplectic tech-
niques, is applied to some “dark equations ”of the type introduced by Boris Kupershmidt. These dark equations
have unusual properties and are not particularly well-understood. In particular, dark three-component poly-
nomial Burgers type systems are studied in detail. Their matrix Lax representations are constructed, and the
related symmetry recursion operators and infinite hierarchies of integrable nonlinear dynamical systems along
with their Lax representations are derived. New linear Lax spectral problems for dark integrable countable
hierarchies of dynamical systems are proposed and some special cases are considered as a means of indicating
that the approach presented is applicable to a far wider class of dark equations than analyzed here.
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1. Introduction

Boris Kupershmidt wrote in [22] , “... observing the Universe, astronomers have concluded that
the motion of the stars can not be accounted for unless one assumes that most of the mass in the
Universe is carried on by a ‘dark matter’ so far impervious to all attempts at being detected. There is
now a similar concept of ‘dark energy’. I shall discuss a different subject, ‘dark equations’ . These
have never indicated that they influence anything or even exist, but if one supposes that they do
exist, one can systematically discover them and study their properties, some of which turn out to be
strange and mysterious....”

Amongst such dark equations, B. Kupershmidt singled out the dispersive equations [43, 46] of
hydrodynamic type, discovered by B. Riemann in 1860 [40], whose generalized three-component
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representatives are

ut =−2uux +hx, (1.1)

ht =−(uh)x +uxx + vx,

vt =−(uv)x,

and

ut =−2uux +uxx +hx, (1.2)

ht =−(uh)x + vx,

vt =−(uv)x,

defined on a smooth functional manifold M ⊂C∞(R;R3), where (u,h,v)ᵀ ∈M. We note that (1.1)
is a natural extension of a system analyzed by Kupershmidt [22] and (1.2) appeared in [26] as a
special case of a countable hierarchy of Burgers type multi-component systems possessing a special
two-dimensional matrix Lax representation, whose structure in the 2-component case was recently
explained in [3]. With v = 0, the flow (1.2) was also studied in [11], where the corresponding
symmetry recursion operator was constructed. In particular, in [11, 22, 26] the dark integrability of
such dispersive equations of hydrodynamic type was demonstrated, owing in part to the fact that
the corresponding recursion operators are not always factorized by Poisson structures. The same
property was also recently analyzed in [3,37], where it was shown using differential-algebraic tools
that for v = 0 the flow (1.2)

ut =−2uux +uxx +hx, (1.3)

ht =−(uh)x ,

has only two local conserved quantities and, when h = 0, this yields the Burgers hydrodynamic
system

ut =−2uux +uxx, (1.4)

which has just one local conserved quantity. Yet it has a nontrivial countable hierarchy of nonlocal
conserved quantities. Moreover, the corresponding squared symmetry recursion operator has a non-
standard Poisson structure factorization, making it possible to generate [1, 4, 36, 39] a countable
hierarchy of mutually commuting Hamiltonian systems. Other examples of dark equations are the
Broer–Kaup–Kupershmidt

ut =−uux +uxx−hx, (1.5)

ht =−(uh)x −hxx

and the Kaup–Boussinesq

ut =−2uux + hx/2, (1.6)

ht =−2(uh)x +uxxx/2,

dispersive hydrodynamic flows, whose integrability and soliton-like solutions were investigated in
[5, 22, 23, 30, 36]. Related multi-component dark-type extensions of (1.5) and (1.6) were recently
constructed in [8].
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We have also obtained Lax representations for some new dark integrable Kaup–Broer type

ut =−2uxx +8uux +8(hu)x +4hhx−4hxx, (1.7)

ht = 2hxx +4uhx +4hhx,

and

ut =−uux +hxxx,

ht =−uxh−uhx
,

ut =−uux−2h−1uxx,

ht =−uxh−uhx,
(1.8)

Burgers type dynamical systems, both of which have only finitely many constants of motion, yet
possess many-component bi-Hamiltonian completely integrable generalizations.

In the sequel, we shall understand “dark equations” as nonlinear Lax integrable dynamical sys-
tems that have hidden symmetries and related properties such as only finitely many local con-
servation laws, mixed dissipative and strongly dispersive properties, and unfactored symmetry
recursion operators. Another possible characterization consistent with B. Kupershmidt’s work is
that an equation is “dark” if it is linearizable, has a finite number of local conservation laws and
admits a Lax pair. In the interest of understanding these systems, we examined the flows (1.1)
and (1.2) using a novel combination of the gradient-holonomic [1, 5, 36] and differential-algebraic
tools [2, 3, 13–16, 37] and proved they possess only a finitely many local conserved quantities. The
standard corresponding symmetry recursion operators do not allow Poisson factorization, yet they
generate countable hierarchies of mutually commuting nonlinear dynamical systems on M.

A key element in our analysis is determining the Nöther–Lax equation

dϕ/dt +K′,∗ϕ = 0 (1.9)

for a vector ϕ ∈ T ∗(M)⊗C subject to a given nonlinear dynamical system

d
dt
(u,h,v)ᵀ = K[u,h,v] (1.10)

where K : M → T (M) is the corresponding smooth vector field on M and K′,∗ : T ∗(M)⊗C→
T ∗(M)⊗C is the adjoint linear operator on the complexified cotangent space T ∗(M)⊗C to the
Fréchet derivative K′ : T (M)⊗C→ T (M)⊗C with respect to the standard bilinear conjugation
form (·, ·) on T ∗(M)⊗C×T (M)⊗C.

We shall analyze the dark integrability properties of the Burgers systems (1.1) and (1.2) in detail
to examine their Lie-algebraic and functional-analytic structures, but this is not the most important
aspect of our work here. It is, in fact, to demonstrate how our approach can provide an effective and
efficient means of analyzing a much wider class of dark equations.

2. Differential-algebraic preliminaries

For completeness we include some differential-algebraic preliminaries [1,14–18]. We start with the
ring K :=R{{x, t}}, (x, t) ∈R×(0,T ), of convergent germs of real-valued smooth functions from
C∞(R2;R) and construct the associated differential quotient ring K {u,h,v} := Quot(K [Θu,Θv])
with respect to the functional variables u,h,v∈K , where Θ denotes [14,17,21,41,41] the standard
monoid of all commuting differentiations Dx and Dt , satisfying the usual Leibniz condition, and
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defined by

Dx(x) = 1 = Dt(t), Dt(x) = 0 = Dx(t), (2.1a)

The ideal I{u,h,v} ⊂K {u,h,v} is called differential if I{u,h,v} = ΘI{u,h,v}. In the differential
ring K {u,h,v}, interpreted as an invariant differential ideal in K , there are two naturally defined
differentiations

Dt , Dx : K {u,h,v}→K {u,h,v}, (2.2)

satisfying the commutation relationship

[Dt , Dx] = 0. (2.3)

Consider the ring K {u,h,v}, u,h,v ∈ K , and the exterior differentiation d : K {u,h,v} →
Λ1(K {u,h,v}), : d : Λp(K {u,h,v})→ Λp+1(K {u,h,v}) for p ∈ Z+, acting in the freely gen-
erated Grassmann algebras Λ(K {u,h,v}) =⊕p∈Z+Λp(K {u,h,v}) over the field C, where

Λ1(K {u,h,v}) := K {u,h,v}dx+ K {u,h,v}dt + ∑ j,k∈Z+
K {u,h,v}du( j,k)+

+∑ j,k∈Z+
K {u,h,v}dh( j,k)+∑ j,k∈Z+

K {u,h,v}dv( j,k),

u( j,k) := D j
t Dk

xu, h( j,k) := D j
t Dk

xh, v( j,k) := D j
t Dk

xv,
Λ2(K {u,h,v}) := K {u,h,v}dΛ1(K {u,h,v}), ...,
Λp+1(K {u,h,v}) := K {u,h,v}dΛp(K {u,h,v}),

(2.4)

The triple A : =(K {u,h,v},Λ(K {u,h,v});d) will be called the Grassmann differential algebra
with generators u,h,v ∈K . In the algebra A , generated by u,h,v ∈K , one naturally defines the
action of differentiations Dt ,Dx and ∂/∂u( j,k),∂/∂h( j,k),∂/∂v( j,k) : A →A , j,k ∈ Z+, as follows:

Dtu( j,k) = u( j+1,k),Dxu( j,k) = u( j,k+1),

Dth( j,k) = h( j+1,k),Dxh( j,k) = h( j,k+1),

Dt v( j,k) = v( j+1,k),Dxv( j,k) = v( j,k+1),

Dtdu( j,k) = du( j+1,k),Dxdu( j,k) = du( j,k+1),

Dtdh( j,k) = dh( j+1,k),Dxdh( j,k) = dh( j,k+1),

Dtdv( j,k) = dv( j+1,k),Dxdv( j,k) = dv( j,k+1),

dP[u,h,v,h] = ∑ j,k∈Z+
(±)∂P[u,h,v,h]/∂u( j,k)∧du( j,k) +

+∑ j,k∈Z+
(±)∂P[u,h,v,h]/∂h( j,k)∧dh( j,k)+

+∑ j,k∈Z+
(±)∂P[u,h,v,h]/∂v( j,k)∧dv( j,k) :=< P′[u,h,v],∧(du,dh,dv)ᵀ >C2 ,

(2.5)

where ∧ denotes the standard [18] exterior multiplication in Λ(K {u,h,v}), and for any P[u,h,v] ∈
Λ(K {u,h,v}) the mapping

P′[u,h,v]∧ : Λ
0(K {u,h,v})3 → Λ(K {u,h,v}), (2.6)

is linear. Moreover, the commutation relationships

Dxd = d Dx, Dtd = d Dt (2.7)

hold in the Grassmann differential algebra A . The following remark [17] is also important.

Remark 2.1. Any Lie derivative LV : K {u,h,v}→K {u,h,v} with LV : K ⊂K , can be uniquely
extended to the differentiation LV : A →A , satisfying LV d = d LV .
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The variational derivative, or the functional gradient ∇P[u,h,v] ∈ Λ(K {u,h,v})3 with respect
to u,h,v ∈K , is defined for any P[u,h,v] ∈ Λ(K {u,h,v}) by

gradP[u,h,v] = P′,∗[u,h,v](1), (2.8)

where a mapping P′,∗[u,h,v] : Λ0(K {u,h,v})→ Λ0(K {u,h,v})3 is the formal adjoint for that of
(2.5). This is based on the following result for a special case in [13–17, 31].

Lemma 2.1. Let the differentiations Dx and Dt : Λ(K {u,h,v})→ Λ(K {u,h,v}) satisfy (2.5).
Then the mapping

Kergrad/(Imd⊕C)'H1(A ) := Ker{d : Λ
1(K {u,h,v})→ Λ

2(K {u,h,v})}/dΛ
0(K {u,h,v})

(2.9)
is a canonical isomorphism, where H1(A ) is the cohomology class of the Grassmann complex
Λ(K {u,h,v}).

It is well known [41] that for K {u,h,v} not all of the cohomology classes H j(A ), j ∈ Z+,

are trivial. However, one can impose additional restrictions on u,h,v ∈K , which give rise to the
condition H1(A ) = 0, or equivalently, to the relationship Ker∇ = ImDx⊕ ImDt ⊕C. In addition,
the following simple relationship holds:

grad (ImDx⊕ ImDt) = 0. (2.10)

Using Lemma 2.1, we define the equivalence class Ã := A /{ImDx ⊕ ImDt ⊕ R} :
=D(A ;dxdt) of functionals; that is, any element γ ∈ D(A ;dxdt) can be represented as an inte-
gral γ :=

∫ ∫
dxdtγ[u,h,v] ∈ D(A ;dxdt) for some γ[u,h,v] ∈ Λ(K {u,h,v}) with respect to the

Lebesgue measure dxdt on R2.

Consider now our two-component dynamical system (1.1) as the polynomial differential con-
straint

Dt(u,h,v)ᵀ = K[u,h,v], (2.11)

imposed on the ring K {u,h,v}. The following definitions will be useful for our further analysis.

Definition 2.1. Let the reduced ring ¯K {u,h,v} := K {u,h,v}|Dt(u,h,v)ᵀ=K[u,h,v] . Then the triple
A := ( ¯K {u,h,v},Λ( ¯K {u,h,v}),d) will be called a reduced Grassmann differential algebra over
the reduced ring ¯K {u,h,v}.

Definition 2.2. Any pair of elements (γ[u,h,v],ρ[u,h,v])ᵀ ∈ Λ0( ¯K {u,h,v})2, satisfying the rela-
tionship

Dtγ[u,h,v]+Dxρ[u,h,v] = 0, (2.12)

is called a scalar conserved quantity with respect to Dx and Dt .

In this setting, one can define the spaces of functionals D(A ;dx) := A /{DxA } and
D(A ;dt) = A /{DtA } on the the reduced Grassmann differential algebra A . From the functional
point of view, these factor spaces D(A ;dx) and D(A ;dt) can be understood more classically as
the corresponding spaces of suitably defined integral expressions subject to the measures dx and dt,
respectively. Then (2.12) means that γ :=

∫
dxγ[u,h,v] ∈ D(A ;dx) is a conserved quantity for Dt ,

and ρ :=
∫

dtρ[u,h,v] ∈D(A ;dt) is a conserved quantity for Dx.
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Since (2.11) defines [17, 18] on the reduced ring K {u,h,v} a smooth vector field K :
K {u,h,v}→T (K {u,h,v}), one can construct the corresponding Lie derivative LK : A →A along
this vector field and calculate the differential expression

∂ϕ[u,h,v]/∂ t +LKϕ[u,h,v] = 0 (2.13)

for the element ϕ[u,h,v] := gradγ[u,h,v] ∈ Λ0(K {u,h,v})3, where γ ∈ D(A ;dx) is an arbi-
trary scalar conserved quantity with respect to Dt . One easily calculates that [36] in K {u,h,v}
the following Lax relationship is identically satisfied [24], and this leads to the classical Nöther
lemma [1, 31, 36].

Lemma 2.2. (Nöther–Lax) Let a quantity ϕ[u,h,v] ∈ Λ0(K {u,h,v})3 be such that

Dtϕ[u,h,v]+K′,∗[u,h,v]ϕ[u,h,v] = 0, (2.14)

which is equivalent to (2.13), holds in K {u,h,v} satisfying the differential constraint (2.11). Then,
if the Volterra condition ϕ ′,∗[u,h,v] = ϕ ′[u,h,v] is satisfied in the K {u,h,v}, the homology func-
tional

γ :=
∫ 1

0
dλ

∫
dx < ϕ[λu,λh,λv],(u,h,v)ᵀ >C3∈D(A ;dx) (2.15)

is a scalar conserved quantity with respect to Dt .

Assume now that the system (2.11) possesses a nontrivial differential Lax representation in the
matrix form

Dx f (x, t;λ ) = l[u,h,v;λ ] f (x, t;λ ), (2.16)

compatible with the adjoint matrix evolution equation

Dt f (x, t;λ ) = p(l) f (x, t;λ ) (2.17)

for some matrices l := l[u,h,v;λ ] and p(l) ∈ EndΛ0( ¯K {u,h,v;D−1
x σ |N})n, acting in a vector

space of functions of fixed dimension n ∈ N, f (x, t;λ ) ∈ Λ0( ¯K {u,h,v;D−1
x σ |N})n, analytically

depending on the parameter λ ∈ C, where ¯K {u,h,v;D−1
x σ |N},N ∈ Z+, is a nonlocal finitely

extended differential ring ¯K {u,h,v}. Then the following result (based on the gradient-holonomic
approach [1, 5]) holds.

Proposition 2.1. The Lax integrable dynamical system (2.11) possesses a countable hierarchy
(either finite or infinite) of naturally ordered functionally independent scalar conserved differen-
tial quantities

Dtσ j[u,h,v]+Dxρ j[u,h,v] = 0, (2.18)

where the pairs (σ j[u,h,v],ρ j[u,h,v])ᵀ ∈ Λ0( ¯K {u,h,v})2, j ∈ Z+.

Proof. Assume that the Lax integrable dynamical system (2.11) possesses a countable set of natu-
rally ordered functionally independent scalar conserved quantities (2.18). Let ¯K {u,h,v;D−1

x σ |N}

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

412



Dark Equations and Their Light Integrability

denote the finitely extended differential ring K {u,h,v;{D−1
x σ j[u,h,v] : 0 ≤ j ≤ N}} for an arbi-

trary N ∈ Z+ under the constraints (2.11). Then the Lax equation (2.14) considered on the invariant
functional submanifold

MN := {(u,h,v)ᵀ ∈M : grad < c(N),
∫

dx σ
(N) >CN+1= 0, (2.19)

c(N) ∈ CN+1\{0},σ (N) := (σ0,σ1, ...,σN)
ᵀ ∈ Λ

0( ¯K {u,h,v})N+1},

allows [1, 36] a special solution ϕ(x;λ ) ∈ Λ0( ¯K {u,h,v;D−1
x σ |N})3 in the form

ϕ(x;λ ) ∼ ψ(x, t;λ ) exp{ω(t;λ )+D−1
x σ(x, t;λ )} (2.20)

with a scalar analytical “dispersion” function ω(t; ·) : C→ C, determined for all t ∈ [0,T ),
where a vector ψ ∈Λ0( ¯K {u,h,v})3 and element σ(x, t;λ )∈Λ0( ¯K {u,h,v}) possess the following
asymptotic expansions

σ(x, t;λ )∼ ∑
j∈Z+

σ j[u,h,v]λ− j+|σ |, ψ(x, t;λ )∼ ∑
j∈Z+

ψ j[u,h,v]λ− j+|ψ| (2.21)

as |λ | → ∞ for some fixed |σ |, |ψ| ∈ Z+. Moreover, owing to (2.14), all of the scalar functionals

γ j :=
∫

dxσ j[u,h,v] (2.22)

for j ∈ Z+ are conserved quantities with respect to Dt . Now, conversely, if (2.14) possesses an
asymptotic (as |λ | → ∞) solution in the form (2.20) ϕ[u,h,v;λ ] ∈ Λ0( ¯K {u,h,v;D−1

x σ |N}3 with
compatible expansions (2.21), then all of the scalar functionals (2.22) are, a priori, the conserved
quantities with respect to the Dt . That is, there exist scalars ρ j[u,h,v] ∈ Λ0( ¯K {u,h,v}), j ∈ Z+,

satisfying (2.18). The analytical expressions for representation (2.20) and asymptotic expansions
(2.21) for a Lax integrable dynamical system (2.11) readily follow both from the general theory of
asymptotic solutions [9, 42], applied to the linear matrix differential system (2.16), and from the
fact [1, 10, 29, 36] that the trace functional ∆[u,h,v;λ ] := trS(x;λ ) ∈ D(A ;dx)∩D(A ;dt) is for
almost all λ ∈ C a conserved quantity with respect to both Dt and Dx. Here the expression

S(x;λ ) := F(x, t;λ )C(λ )F̃ᵀ(x, t;λ ) ∈ Λ
0( ¯K {u,h,v;D−1

x σ |N})n (2.23)

satisfies the important characteristic matrix differential relationship

DxS(x;λ ) = [l[u,h,v;λ ],S(x;λ )], (2.24)

and is defined by means of some constant matrix C(λ ) ∈ End Cn and of the fundamental solutions
F(x, t;λ ) and F̃(x, t;λ ) ∈ EndΛ0( ¯K {u,h,v;D−1

x σ |N})n, (x, t) ∈ R× [0,T ), to

Dx f (x, t;λ ) = l[u,h,v;λ ] f (x, t;λ ) (2.25)

and, respectively, its adjoint

Dx f̃ (x, t;λ ) =−l[u,h,v;λ ]ᵀ f̃ (x, t;λ ), (2.26)

where f (x, t;λ ), f̃ (x, t;λ ) ∈ Λ0( ¯K {u,h,v;D−1
x σ |N})n. Consequently [1, 36],

grad∆(λ )[u,h,v] := ϕ[u,h,v;λ ] = tr(l′,∗S)[u,h,v;λ ] (2.27)

owing to Lemma 2.2 a priori satisfies the Lax equation (2.14). Then desired result then follows
from the asymptotic properties of linear equations (2.25) and (2.26).
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An important consequence of Proposition 2.1 is that (2.24) and (2.27) make it possible, via
their analytical structure, to retrieve the a priori unknown linear Lax spectral problem (2.16) and
next to apply it to finding exact solutions to (2.11) by means of the inverse spectral transform
method [7, 10, 28, 29] and the related algebro-geometric [29] tools and techniques.

3. Three-component polynomial Burgers systems and their integrability

3.1. Integrability analysis of the dispersive hydrodynamic flow (1.1)

We now analyze the Lax integrability of the dynamical system (1.1). To do this using the above
approach, we must prove that the Lax equation (2.14) has an asymptotic solution of the form (2.20)
in ¯K {u,h,v;D−1

x σ |N}3.

Proposition 3.1. The Lax equation (6) with the differential matrix operator

K′,∗[u,h,v] =

 2uDx hDx +D2
x vDx

−Dx uDx 0
0 −Dx uDx

 , (3.1)

possesses the asymptotic solution

ϕ(x;λ ) = (1/λ ,1,λ )ᵀg(x;λ )exp[−λ
3t−λ

2x−D−1
x (uλ +h+λ

−1v)] (3.2)

as |λ | → ∞, where the scalar invertible element

g(x;λ ) := exp(−uλ
−1 +(u2/2−h)λ−2 + ∑

j∈Z+\{0,1,2}
D−1

x σ j[u,h,v]/λ
j) ∈ Λ

0( ¯K {u,h,v}). (3.3)

The solution (3.2) corresponds to the local conserved quantity ∆(λ ) :=
∫

dx(uλ + h+ λ−1v) ∈
D(A ;dx) in the finitely extended ring ¯K {u,h,v;D−1

x σ |3} :

grad∆(λ )[u,h,v] = ϕ(x;λ ) ∈ ¯K {u,h,v;D−1
x σ |3}3. (3.4)

Proof. Assume that the Lax equation (2.14) possesses the asymptotic solution (2.20) as |λ | → ∞,
where ω(x, t;λ ) =−λ 3t−λ 2t,

ϕ(x;λ ) = ψ(x, t;λ )exp{− λ
3t−λ

2x+D−1
x σ(x, t;λ )} (3.5)

and

ψ(x, t;λ ) = (1,a(x, t;λ ),b(x, t;λ ))ᵀ, (3.6)

which reduces to an equivalent system of the differential-functional relationships

aD−1
x dσ/dt +da/dt−λ

3a+2uσx +2uaσ −2uλ
2a −hλ

2

+hσ +σx +λ
4−2λ

2
σ +σ

2 + vbx + vbσ −λ
2vb = 0;

D−1
x dσ/dt−λ

3−ax−aσ −λ
2 +uσ −λ

2u = 0;

db/dt−λ
3b+bD−1

x dσ/dt−σ +λ
2 +ubx +ubσ −λ

2ub = 0. (3.7)

The coefficients of the corresponding asymptotic expansions

a(x, t;λ )∼ ∑
j≥−1

a j[u,h,v]λ− j, b(x, t;λ )∼ ∑
j≥0

b j[u,h,v]λ− j, σ(x, t;λ )∼ ∑
j≥−1

σ j[u,h,v]λ− j (3.8)
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as |λ | → ∞ should satisfy three countable hierarchies of the recurrent relationships

∑
k∈Z+

a j−kD−1
x dσk/dt +da j/dt− a j+3 +2uσ j,x +2u ∑

k∈Z+

a j−kσk−

−2u2a j+2 +hσ j−hδ j,−2 + σ j,,x +δ j,−4−2σ j+2 + ∑
k∈Z+

σ j−kσk+

+vb j,x + v ∑
k∈Z+

b j−kσk− v b j+2 = 0;

D−1
x dσ j/dt−δ j,−3−a j,x− ∑

k∈Z+

a j−kσk +a j+2 +ua j−uδ j,−2 = 0;

db j/dt− b j+3 + ∑
k∈Z+

b j−kD−1
x σk,t −σ j+δ j,−2+

+ub j,x +u ∑
k∈Z+

b j−kσk− ub j+2 = 0,

(3.9)

compatible for all j ∈ Z+∪{−4,−3,−2,−1}. It is easy to calculate from (3.9) the corresponding
coefficients

σ−1 = u, σ0 =−h, σ1 = −ux− v, (3.10)

σ2 =−hx +uux, σ j+2 = Dxr j,x, ..., ;

a−1 = 1, a0 = 0, a1 = 1, a2 = 0, a3 = 0, ...,a j = 0, ...;

b1 = 1, b2 = 0,b3 = 0, ...,b j = 0, ....

for some local functionals r j ∈ Λ0( ¯K {u,h,v}), j ∈ Z+, and conclude that only three functionals

γ−1 :=
∫

dxσ−1[u,h,v] =
∫

dxu,γ1 :=
∫

dxσ1[u,h,v] =
∫

dxh, (3.11)

γ2 :=
∫

dxσ2[u,h,v] =
∫

dxv

are nontrivial conserved quantities with respect to Dt , since all other functionals for j ∈Z+\{0,1,2}

γ j :=
∫

dxσ j[u,h,v] =
∫

dxDx(...) = 0 (3.12)

are trivial in the ring ¯K {u,h,v}. Equivalently, the gradient ϕ(x;λ ) := grad
∫

dx(λu+h+λ−1v) =
(λ , 1,λ−1)ᵀ satisfies the Lax equation (2.14) in the ring ¯K {u,h,v} and thus it should coincide
with the expression (3.5). In particular, one can readily show that

ϕ(x;λ ) = (λ ,1,λ−1)ᵀg(x;λ )exp[−λ
3t−λ

2x−D−1
x (λu+h+λ

−1v)], (3.13)

holds, where the scalar invertible element

g(x;λ ) := exp[−uλ
−1 +(u2/2−h)λ−2 +D−1

x σ j[u,h,v]/λ
j) (3.14)

is a local functional from Λ0( ¯K {u,h,v}), giving rise to (3.2) and (3.3), which completes the proof.

As an important consequence in the gradient-holonomic integrability context [1, 36] of the cal-
culations above, we can formulate the following proposition.

Proposition 3.2. The nonlinear hydrodynamic system (1.1) possesses only three λ -ordered con-
served quantities that, in part, entails its Lax integrability.
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From the expression (3.2) one easily finds that the following linear differential relationships

Dxϕ j =−(λ 2 +uλ +h+ vλ
−1)ϕ j− [uxλ

−1 +(hx−uux)λ
−2− rx(x;λ )]ϕ j, (3.15)

hold for j = 1,2,3 and all λ ∈ C, where the local functional r(x;λ ) ∈ Λ0( ¯K {u,h,v}) is defined as
|λ | → ∞ by means of the asymptotic expansion

r(x;λ )∼ ∑
j>2

D−1
x σ j[u,h,v]/λ

j. (3.16)

The existence of the λ -ordered asymptotic solution as |λ | → ∞ (3.5) means in the gradient-
holonomic integrability approach [1, 36], that there exists a related linear spectral problem in the
differential form

Dx f (x;λ ) = l[u,h,v;λ ] f (x;λ ), (3.17)

where, in general, a matrix mapping l : M×C→ End Λ0( ¯K {u,h,v})n can be chosen to satisfy the
natural zero-trace constraint tr(l[u,h,v;λ ]) = 0. It is important to observe that it follows from the
general theory [9, 42] of asymptotic solutions to linear differential equations that there is a simple
relationship between the dimension n ∈ Z+ of the matrix l[u,h,v;λ ] ∈ End Λ0( ¯K {u,h,v})n and
the number nas ∈Z+ of asymptotic expansions with different hierarchies of the conserved quantities
for the Lax integrable nonlinear dynamical system (1.10); namely nas +1 = n. Turning back to the
characteristic system (2.14) one easily finds that it has only one nontrivial asymptotic expansion
(3.2), which implies that n = dim l[u,h,v;λ ] = 2. Taking this into account along with

ϕ1(x;λ ) = λ
−1

ϕ2(x;λ ), ϕ3(x;λ ) = λϕ2(x;λ ), (3.18)

one finds, owing to Theorem 2.1, that

ϕ1(x;λ ) = λ
−1 f11(x;λ )2eq(x;λ ), ϕ2(x;λ ) = f11(x;λ )2eq(x;λ ), ϕ3(x;λ ) = λ f11(x;λ )2eq(x;λ ), (3.19)

for the (1,1)-component of the two-dimensional a priori nonlocal fundamental matrix F(x;λ ) ∈
End Λ0( ¯K {u,h,v;D−1

x σ |3})2 and some local functional q(x;λ ) ∈ Λ0( ¯K {u,h,v}), which can
be chosen dependent only on the local functional (3.16) as q(x;λ ) := −uλ−1− (u2/2− h)λ−2−
r(x;λ ). Taking into account (3.19) and (3.15), we can rewrite them as a one equation with respect
to f11(x;λ ) ∈ Λ0( ¯K {u,h,v;D−1

x σ |3}) :

Dx f11(x;λ ) =−1
2
(λ 2 +uλ +h+ vλ

−1) f11(x;λ ), (3.20)

which holds for all λ ∈C\{0} and x ∈R. It is now easy to find the corresponding equation for the
nonlocal (2,1)-component f21(x;λ ) ∈ Λ0( ¯K {u,h,v;D−1

x σ |3}) of F(x;λ ):

Dx f21(x;λ ) = χ[u,h,v;λ ] f11(x;λ )+
1
2
(λ 2 +uλ +h+ vλ

−1) f11(x;λ ), (3.21)

where the a priori local functional χ[u,h,v;λ ] ∈ Λ0( ¯K {u,h,v}) can, in particular, be found from
the condition that there exists a local matrix p(l) ∈ EndΛ0( ¯K {u,h,v})2 for which the following
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two systems of the Lax–Zakharov–Shabat type equations

d
dt

f (x;λ ) = p(l) f (x;λ ) (3.22)

and

Dx f (x;λ ) = l[u,h,v;λ ] f (x;λ ), (3.23)

are compatible. Here f (x;λ ) := ( f11(x;λ ), f21(x;λ ))ᵀ ∈ Λ0( ¯K {u,h,v;D−1
x σ |3}) and

l[u,h,v;λ ] :=
(
−1

2(λ
2 +uλ +h+ vλ−1) 0
χ[u,h,v;λ ] 1

2(λ
2 +uλ +h+ vλ−1)

)
. (3.24)

Another, actually more efficient and effective, way of finding χ[u,h,v;λ ] consists in determining the
corresponding gradient element ϕ(x;λ ) ∈ Λ0( ¯K {u,h,v;D−1

x σ |3})3 by means of (2.27), using the
linear spectral equation (3.23) and (2.23), and next checking its compatibility with the determining
Nöther-Lax equation (2.14). It can be readily shown that χ[u,h,v;λ ] is a constant, which can be
taken as χ[u,h,v;λ ] = 1, for all λ ∈ C. Thus, the linear Lax spectral problem (3.23) for the system
(1.1) is governed by the following l[u,h,v;λ ]-matrix:

l[u,h,v;λ ] :=
(
−1

2(λ
2 +uλ +h+ vλ−1) 0

1 1
2(λ

2 +uλ +h+ vλ−1)

)
. (3.25)

The exact form of (3.23) makes it possible to obtain the recursion operator related to (1.1), namely
Λ : T ∗(M)×C→T ∗(M)×C from (2.24) and (2.27), which should satisfy

Λϕ(x;λ ) = λϕ(x;λ ) (3.26)

for all λ ∈ C\{0} and x ∈ R. The recursion operator expression:

Λ =

−D−1
x uDx −Dx−D−1

x hDx −D−1
x vDx

1 0 0
0 1 0

 , (3.27)

satisfying the linear operator Lax equation

DtΛ = [Λ,K
′,∗
]. (3.28)

on M can be readily derived from (3.26) and (2.14), taking into account that the adjoint (to (3.27))
symmetry recursion operator

Φ := Λ
∗ =

 −DxuD−1
x 1 0

Dx−DxhD−1
x 0 1

DxvD−1
x 0 0

 , (3.29)

satisfies the (adjoint to (3.28)) linear operator Lax equation

DtΦ = [Φ,K′]. (3.30)

on the functional manifold M.
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To construct the countable hierarchy of nonlinear dynamical systems on M resulting from the
linear spectral problem (3.23), it suffices to calculate [1, 4, 12, 27, 31, 36] the degree expression

d
dtn

(u,h,v)ᵀ = Φ
n(ux,vx,hx)

ᵀ := Kn[u,h,v] (3.31)

for all n ∈ Z+, where tn ∈R are the corresponding new evolution parameters. As a simple example
of (3.31) for n = 1, one retrieves the Burgers system (1.1)

d
dt1

(u,h,v)ᵀ =

 −2uux +hx

−(uh)x +uxx + vx

−(uv)x

 , (3.32)

with evolution parameter t1 = t ∈ [0,T ).
We next represent the countable hierarchy of nonlinear dynamical systems (3.31) in a more

general alternative form. Having defined on M a generating flow

d
dτ

(u,h,v)ᵀ := (Dxα(x;λ ),Dxβ (x;λ ),Dxξ (x;λ ))ᵀ (3.33)

with respect to an evolution parameter τ ∈ R by means of the asymptotic expression

(Dxα(x;λ ),Dxβ (x;λ ),Dxξ (x;λ ))ᵀ ∼ ∑
n∈Z+

λ
−nKn[u,h,v] (3.34)

for the vector (αx,βx,ξx)
ᵀ ∈ T (M)⊗C, satisfying the important symmetry relationship

Φ(Dxα(x;λ ),Dxβ (x;λ ),Dxξ (x;λ ))ᵀ = λ (Dxα(x;λ ),Dxβ (x;λ ),Dxξ (x;λ ))ᵀ. (3.35)

This makes it possible rewrite the relationship (3.33) in the equivalent form as

d
dτ

(λu+h+λ
−1v) = D2

xα(x;λ )−Dx[(λu+h+λ
−1v)α(x;λ )] (3.36)

with local element α(x;λ )∈Λ0( ¯K {u,h,v}), owing to the expression (3.34), having the asymptotic
expansion

α(x;λ )∼ ∑
n∈Z+

λ
−n

αn[u,h,v]. (3.37)

as |λ | → ∞. To rewrite each flow (3.31) from (3.36), it suffices to observe that for each n ∈ Z+ and
λ ∈ C\{0}

d
dtn

(λu+h+λ
−1v) = D2

xαn(x;λ )−Dx[(λu+h+λ
−1v)αn(x;λ )], (3.38)

where

αn(x;λ ) := (λ n
α(x;λ ))+, (3.39)

that is the corresponding polynomial part of the asymptotic expansion as |λ | → ∞ for the local
functional λ nα(x;λ ) ∈ Λ0( ¯K {u,h,v}).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

418



Dark Equations and Their Light Integrability

As easily follows from the recurrent relationship (3.35), the symmetry recursion operator Φ :
T (M)⊗C→T (M)⊗C satisfies the differential relationships

d
dtn

Φ = [K′,Φ] (3.40)

for all n ∈ Z+.This implies that the whole countable hierarchy of (3.31) are mutually commuting.

Remark 3.1. All the analysis above was performed for the case when the local functional
χ[u,h,v;λ ] ∈ Λ0( ¯K {u,h,v}) in the l-operator (3.24) was constant owing to the compatibility
between (2.27) and (2.14). If this local functional is assumed to be nonconstant, it is easy to see
that (3.24) is significantly modified, giving rise to a different symmetry recursion operator expres-
sion, which generates another countable hierarchy of nonlinear dynamical systems on M.

Recall now that for the linear Lax spectral problem (3.23) there should be associated evolution
equations (3.22) for the vector function f = ( f11, f21)

ᵀ ∈ Λ0( ¯K {u,h,v;D−1
x σ |3})2of the form

d
dtn

f (x;λ ) = pn(l) f (x;λ ), (3.41)

governed by matrices pn(l) ∈ EndΛ0( ¯K {u,h,v;D−1
x σ |3})2, n ∈ Z+, which are yet to be deter-

mined. To construct these matrices, we shall use (3.38) and observe that the following linear evolu-
tion equations are compatible with that of (3.20) for all n ∈ Z+.Similarly, we have

d
dtn

f21(x;λ ) = ηn[u,h,v;λ ] f11(x;λ )− 1
2
[(λ 2 +uλ +h+ vλ

−1)αn(x;λ )−Dxαn(x;λ )] f21(x;λ ),

(3.42)
where the local functionals ηn[u,h,v;λ ] ∈ Λ0( ¯K {u,h,v;D−1

x σ |3}),n ∈ Z+, are to be determined
from the corresponding compatibility condition of the equations (3.42) with vector component equa-
tion (3.21). Simple calculations yield

Dxηn(x;λ )−(λ 2+uλ +h+vλ
−1)ηn(x;λ ) = (λ 2+uλ +h+vλ

−1)αn(x;λ )−Dxαn(x;λ ), (3.43)

which holds for all λ ∈ C\{0} and n ∈ Z+, and make it possible to find that

ηn(x;λ ) =−αn(x;λ ) (3.44)

for all n ∈ Z+. Thus, the vector function f = ( f11, f21)
ᵀ ∈ Λ0( ¯K {u,h,v;D−1

x σ |3})2 satisfies the
evolution equations (3.41) with the governing matrix expressions

pn(l) =


1
2 [(λ

2 +uλ +h+ vλ−1)αn(x;λ )

−Dxαn(x;λ )]
0

−αn(x;λ )
1
2 [Dxαn(x;λ )−

−(λ 2 +uλ +h+ vλ−1)αn(x;λ )]

 (3.45)

for all n ∈ Z+ and λ ∈ C\{0}.
Summing up the results obtained above, one has the following result.

Proposition 3.3. The system (1.1) is a Lax integrable flow on the functional manifold M, whose
linear spectral problems are given by (3.22) and (3.23), governed by the matrices (3.45) at n = 1
and (3.25), respectively. The countable hierarchy of nonlinear dynamical systems on M related
to the linear spectral problem (3.23) is given by the mutually commuting evolution flows (3.31),
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whose compatible temporal linear spectral problems (3.41) are governed by (3.45). Moreover, all
of these systems possess only three nontrivial local conserved quantities γ−1 =

∫
dxu, γ0 =

∫
dxh

and γ1 =
∫

dxuv.

It should be mentioned here that the interesting question of existence of a countable hierarchy
of nonlocal conserved quantities for the nonlinear system (1.1) remains to be answered. It is also
reasonable to consider describing all dynamical systems that can be obtained from the linear spectral
problem (3.23) with the governing matrix (3.24), in which the local functional χ[u,h,v;λ ] is taken
to be non-constant. In particular, it can be assumed that χ[u,h,v;λ ] = ∑

p
j=0 λ jw j, p ∈ Z+, for an

additional phase space component w∈W ⊂C∞(R;Rm+1) of the extended functional manifold M̃ :=
M×W, on which the related nonlinear dynamical systems are defined. Other generalizations of
(3.23), governed by (3.24), will be considered in the next subsection.

3.2. Integrability analysis of the dispersive flow (1.2)

The system (1.2) can also be analyzed by means of the gradient-holonomic approach together with
related differential-algebraic techniques, which was successfully applied above to the nonlinear
Burgers type system (1.1). First we need to construct asymptotic (as |λ | → ∞) solutions to the
linear Nöther–Lax equation (2.14) with the (calculated) governing operator

K′,∗[u,h,v] =

 2uDx +D2
x hDx vDx

−Dx uDx 0
0 −Dx uDx

 , (3.46)

acting in the space Λ0( ¯K {u,h,v;D−1
x σ |N})3 for some still not defined N ∈Z+. The corresponding

basic equations are

dϕ1/dt +2u ϕ1,x + ϕ1,xx +hϕ2,x + vϕ3,x = 0, (3.47)

dϕ2/dt +uϕ2,x−ϕ1,x = 0,

dϕ3/dt−ϕ2,x +uϕ3,x = 0,

whose asymptotic solution as |λ | → ∞ have following form:

ϕ1(x;λ ) = exp[−λ
2t +λx+D−1

x σ(x;λ )], (3.48)

ϕ2(x;λ ) = a(x;λ )ϕ1(x;λ ),ϕ3(x;λ ) = b(x;λ )ϕ1(x;λ ),

where

σ(x;λ )∼ ∑
j∈Z+

λ
− j

σ j[u,h,v],a(x;λ )∼ ∑
j∈Z+

λ
− ja j[u,h,v], b(x;λ )∼ ∑

j∈Z+

λ
− jb j[u,h,v], (3.49)

for some local functionals σ j[u,h,v],a j[u,h,v] and b j[u,h,v] ∈ Λ0( ¯K {u,h,v}), j ∈ Z+. The repre-
sentation (3.48) assumes, in particular, that

γ(λ ) :=
∫

dxσ(x;λ ) (3.50)
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is a generating functional of conserved quantities for (1.2). By substituting (3.48) into (3.47), one
readily obtains

Dta j−a j+2 +∑k∈Z+
a j−kD−1

x dσk/dt +ua j,x +ua j+1+

+u∑k∈Z+
a j−kσk−δ j,−1−σ j = 0,

db j/dt−b j+2 +∑k∈Z+
b j−kD−1

x dσk/dt−a j,x−a j+1−
−∑k∈Z+

a j−kσk +ub j,x +ub j+1 +u∑k∈Z+
b j−kσk = 0,

D−1
x dσ j/dt +2uδ j,−1 +2uσ j +2σ j+1 +∑k∈Z+

σ j−kσk +σ j,x ++ha j,x+

+ha j+1 +h∑k∈Z+
a j−kσk + vb j,x + vb j+1 + v∑k∈Z+

b j−kσk = 0

(3.51)

for all j ∈ Z+∪{−2,−1}. Whence, the coefficients are easily found to be

σ0 =−u,σ1 = h+ux,σ2 =−v−Dx(ux +h−u2), ..., (3.52)

σ j = Dxr j+3[u,h,v], ...;

a0 = 0,a1 =−1,a2 = 0, ...,a j+3 = 0, ...;

b0 = 0,b1 = 0,b2 = 1, ...,b j+3 = 0, ...,

which hold for all j ∈ Z+. It follows from (3.48) taken together with (3.49) and (3.52), that

ϕ2(x;λ ) =−λ
−1

ϕ1(x;λ ),ϕ3(x;λ ) = λ
−2

ϕ1(x;λ ) (3.53)

hold for all λ ∈ C\{0} and x ∈ R. Having recalled now the results from Subsection 3.1 concerning
the application of the gradient-holonomic approach [1, 35, 36] to the solutions of the determining
Nöther–Lax equation (2.14), one can easily infer the existence a nontrivial hierarchy of conserved
quantities containing only the three local conserved quantities

γ0 =
∫

dxu, γ1 =
∫

dxh, γ2 =
∫

dxv. (3.54)

This entails the existence of two-dimensional linear Lax type spec-
tral problems (2.16), whose squared (1,1)-component of the fundamental matrix F(x;λ ) ∈ End
Λ0( ¯K {u,h,v;D−1

x σ |3})2 satisfies, owing to (3.53), the functional relationships

ϕ1(x;λ ) = f11(x;λ )2eq, ϕ2(x;λ ) =−λ
−1 f11(x;λ )2eq, ϕ3(x;λ ) =−λ

−2 f11(x;λ )2eq, (3.55)

where

q = q(x;λ )∼ λ
−1u−λ

−2(uxh−u2)− ∑
j∈Z+

λ
−3− jD−1

x σ j[u,h,v], (3.56)

as |λ | → ∞ is a local functional from Λ0( ¯K {u,h,v}). Now it is easy to obtain from (3.48) and
(3.55) an equivalent system of the linear Lax spectral equations of the form

Dx f11 =
1
2
(λ −u+λ

−1h−λ
−2v) f11, (3.57)

Dx f21 = χ[u,h,v;λ ] f11−
1
2
(λ −u+λ

−1h−λ
−2v) f21

for a vector f = ( f11, f21)
ᵀ ∈ Λ0( ¯K {u,h,v;D−1

x σ |3})2, where λ ∈ C\{0} and the local functional
χ[u,h,v;λ ] ∈ Λ0( ¯K {u,h,v}) is determined from the compatibility of (3.57) with (2.14). Simple
calculations show that χ[u,h,v;λ ] is constant, which we choose for brevity as χ[u,h,v;λ ] = 1 for
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all λ ∈ C\{0} and (u,h,v)ᵀ ∈M. Thus, the Lax spectral equations (3.57) for the system (1.2) can
be rewritten in the matrix form (2.16), where the matrix l[u,h,v;λ ]∈ EndΛ0( ¯K {u,h,v;D−1

x σ |3})2

is

l[u,h,v;λ ] :=
( 1

2(λ −u+λ−1h−λ−2v) 0
1 1

2(−λ +u−λ−1h+λ−2v))

)
(3.58)

and is defined for all λ ∈ C\{0} and (u,h,v)ᵀ ∈M. Then, using (2.16) and (2.24) one can readily
construct the related recursion operator

Λ =

Dx +D−1
x uDx D−1

x hDx D−1
x vDx

−1 0 0
0 −1 0

 , (3.59)

which implicitly satisfies the recurrent relationship

Λϕ(x;λ ) =−λϕ(x;λ ) (3.60)

for the vector ϕ(x;λ ) ∈ Λ0( ¯K {u,h,v;D−1
x σ |3})3 satisfying (2.14). The symmetry recursion oper-

ator adjoint to (3.59) is

Φ := Λ
∗ =

−Dx +DxuD−1
x −1 0

DxhD−1
x 0 −1

DxvD−1
x 0 0

 , (3.61)

which acts on T (M)⊗C, and allows to generate a countable hierarchy of mutually commuting
nonlinear dynamical systems on M via the degree iteration

d
dtn

(u,h,v)ᵀ := Φ
n(ux,hx,vx)

ᵀ (3.62)

for any n ∈ Z+, whose first flow coincides with the nonlinear dynamical system (1.2)

d
dt
(u,h,v)ᵀ = Φ(ux,hx,vx)

ᵀ =

uxx +hx−2uux

−(uh)x

−(uv)x

 . (3.63)

If we now define a symmetry generating vector function (Dxα,Dxβ ,Dxξ )ᵀ ∈ T (M)⊗C as

(Dxα,Dxβ ,Dxξ )ᵀ := ∑
j∈Z+

λ
− j

Φ
j(ux,hx,vx)

ᵀ, (3.64)

satisfying the linear recurrence relationship

Φ(Dxα,Dxβ ,Dxξ )ᵀ := λ (Dxα,Dxβ ,Dxξ )ᵀ (3.65)

as |λ | → ∞, the hierarchy (3.63) can be rewritten as

d
dtn

(λ −u+λ
−1h−λ

−2v) = Dx[Dxαn(x;λ )+ (λ −u+λ
−1h−λ

−2v)αn(x;λ )]. (3.66)

Here,

αn := (λ n
α(x;λ )+ (3.67)
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for any n ∈ Z+ and the coefficients of the asymptotic (as |λ | → ∞) series

α(x;λ )∼ ∑
j∈Z+

λ
− j

α j[u,h,v] (3.68)

should be determined from the differential relationship

D2
xα(x;λ )+ Dx[(λ −u+λ

−1h−λ
−2v)α(x;λ )] = 0. (3.69)

As in , one can obtain the compatible evolution equations

d
dtn

f (x;λ ) = pn(l) f (x;λ ), (3.70)

for the vector function f (x;λ ) ∈ Λ0( ¯K {u,h,v;D−1
x σ |3})2, where matrices pn(l) ∈

EndΛ0( ¯K {u,h,v;D−1
x σ |3})2,n ∈ Z+, are

pn(l) =


1
2 [Dxαn(x;λ )+

+(λ −u+λ−1h−λ−2v)αn(x;λ )]
0

−αn(x;λ )
−1

2 [Dxαn(x;λ )+

+(λ −u+λ−1h−λ−2v)αn(x;λ )]

 , (3.71)

which can be easily obtained from the determining compatibility matrix conditions

d
dtn

l = [pn(l), l]+Dx pn(l) (3.72)

for all λ ∈ C\{0} and n ∈ Z+. For n = 1, the evolution equation (2.17) is governed by the matrix
expression

p(l) =


1
2 [(λ −u+λ−1h−λ−2v)×

×(λ +u)− ux]
0

λ +u
1
2 [ux− (λ +u)×

×(λ −u+λ−1h−λ−2v)]

 . (3.73)

The following result follows directly from the above considerations.

Proposition 3.4. The Burgers system (1.2) is integrable by means of the Lax linear spectral prob-
lems (2.16) and (2.17), with corresponding two-dimensional matrix expressions (3.58) and (3.73).
Moreover, it possesses a countable hierarchy of mutually commuting nonlinear dynamical systems
(3.62), generated by (3.61), which allows no factorization by means of any compatible pair of Pois-
son operators on M.

It is worth mentioning that the existence of a countable hierarchy of nonlocal conserved quanti-
ties for the Burgers system (1.2) has yet to be completely verified, even though for h = 0 = v it does
prove to possess [37] such a nonlocal hierarchy, which is generated by the corresponding recursion
operator, whose squared form can be factorized by means of compatible Poisson structures.

Nonetheless, as shown in [37], if one can prove that (1.2) has another infinite hierarchy of
nonlocal conservation laws, then some portion of the symmetry recursion operator found in (3.61)
will already be factorized by means of the constructed Poisson structures - but this is still an open
problem.
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3.3. The integrable Kaup–Broer generalization of the Burgers systems

The linear Lax spectral problem (3.57), defined by the matrix (3.58), can be naturally generalized
in the form

Dx f (x;λ ) = l[u,v;λ ] f (x;λ ) (3.74)

with the square matrix

l[u,v;λ ] :=
( k

2(λ
n+1−∑

n
j=−m u jλ

j) − k
2(∑

n
j=0 v jλ

j)

∑
n
j=0 c jλ

j − k
2(λ

n+1−∑
n
j=−m u jλ

j)

)
, (3.75)

where (u,v)ᵀ := (u−m,u2, ...,un,v0,v1, ...,vn)
ᵀ ∈M ⊂C∞(R;R2(n+1)+m),c j ∈R, j = 0, ...n, are con-

stants and λ ∈ C\{0} is a spectral parameter. Using (3.74) in the Sobolev space W (1)
2 (R;C2),

one can readily obtain, along the lines of the work in the preceding sections, the integrable bi-
Hamiltonian dynamical systems

d(u,v)ᵀ/dt j = K j[u,v] (3.76)

on M with respect to the countable hierarchy of evolution parameters t j ∈ R, j ∈ Z+. We hope to
present a detailed analysis in a forthcoming paper.

In the special case n = 0 = m,c0 = 1 and k = 1/2 , (3.75) gives rise to the linear Lax spectral
problem

Dx f (x;λ ) = l[u,h;λ ] f (x;λ ) (3.77)

in W (1)
2 (R;C2), governed by the matrix operator

l [u,v;λ ] =

( 1
2(λ −u) −1

4 h
1 −1

2(λ −u)

)
(3.78)

of the well known Kaup–Broer–Kupershmidt system (1.5), whose integrability was studied in detail
in [5, 8, 19, 23]. The corresponding Lax matrix operator with respect to t ∈ R is

p(l) :=
( 1

8 [ (u
2−λ 2)−2ux]

1
4 hx +

1
8 h(u+λ )

1
2(u+λ ) −1

8 [ (u
2−λ 2)−2ux]

)
(3.79)

and it satisfies the commutator Lax–Zakharov–Shabat matrix condition (3.72) on a suitably defined
symplectic functional manifold M ⊂ C∞(R;R2), endowed with a compatible pair of Poisson oper-
ators ϑ ,η : T ∗(M)→ T (M) :

ϑ =

(
0 Dx

Dx 0

)
, η =

(
2Dx 2D2

x +Dxu
2D2

x −uDx vDx +Dxv

)
. (3.80)

Remark 3.2. It should be mentioned that when h = 0 the Kaup–Broer–Kupershmidt nonlinear
dynamical system (1.5) reduces [37,45] to a bi-Hamiltonian Burgers dynamical system on a suitably
reduced functional manifold M̃ with respect to the following compatible Poisson operators:

ϑ̃ = ∂ exp( ∂
−1u) ∂ exp( ∂

−1u)∂ , η̃ = ∂ exp( ∂
−1u) ∂

3 exp( ∂
−1u)∂ . (3.81)

Here we mean by a suitably reduced manifold, one constructed by the Novikov–Bogoyavlensky
reduction scheme [1, 29, 36], which yields an invariant submanifold M̃ of M with the desired
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property. In particular, the corresponding reduction of the operators (3.81) to M̃ yields the bi-
Hamiltonian structure for the Burgers equation. The associated symplectic structures for Burgers
equation restricted to M̃ can be obtained using the well-known Gelfand–Dickey differential method.
An equivalent of this result was first obtained by Taflin [44] in 1981. In this regard, it should be
noted that the bi-Hamiltonian representation of Burgers equation can also be obtained from the real
reduction of the analogous structure for its complex form, ut = −iux−2uux, discovered by Brushi
& Ragnisco [6].

Similarly, if we set n = 1 = m, c0 = 0,c1 = 1,u0 := u,u1 := 0,v0 := 0,v1 := h and k = 1 in
(3.75), one obtains the linear Lax type spectral problem

Dx f (x;λ ) = l[u,h;λ ] f (x;λ ), l[u,h;λ ] :=
( 1

2(λ
2−u) −λh
λ 0

)
(3.82)

in W (1)
2 (R;C2) for the following dark integrable bi-Hamiltonian nonlinear hydrodynamic system

ut =−2uxx +8uux +8(hu)x +4hhx−4hxx, (3.83)

ht = 2hxx +4uhx +4hhx

on M ⊂C∞(R;R2).

An important generalization of the linear Lax spectral problem (3.74) comes from the interesting
work [38], and has the form

Dx f (x;λ ) = l[u,v,h;λ ] f (x;λ ), (3.84)

which is governed by the square matrix

l[u,v,h;λ ] :=
( h

2(λ
n+1−∑

n
j=−m u jλ

j) −h
2(∑

n
j=0 v jλ

j)

∑
n
j=0 c jλ

j −h
2(λ

n+1−∑
n
j=−m u jλ

j)

)
, (3.85)

where (u,v,h)ᵀ := (u−m,u2, ...,un,v0,v1, ...,vn,h)ᵀ ∈M ⊂C∞(R;R2n+m+3), c∈R is a constant and
λ ∈ C\{0} is a spectral parameter. In the special case n = 0 = m,u0 := u, and c0 = 0 = v0, the
matrix operator (3.85) gives rise to the following compatible pair of the linear matrix Lax spectral
problems; namely,

Dx f (x;λ ) = l[u,h;λ ] f (x;λ ), l[u,h;λ ] =

( h
2(λ −u) 0

0 −h
2(λ −u)

)
(3.86)

and

d
dt

f (x;λ ) = p(l) f (x;λ ), p(l) =
( uh

2 (λ −u)− h
2 hxx +

1
4 h2

x 0
0 h

2 hxx− uh
2 (λ −u)− 1

4 h2
x

)
, (3.87)

which are equivalent to the following noteworthy dark nonlinear Hamiltonian hydrodynamic system

ut =−uux +hxxx, (3.88)

ht =−uxh−uhx

with respect to the Poisson structure

ϑ =

(
0 Dx

Dx 0

)
(3.89)
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on M ⊂C∞(R;R2).

Another physically interesting case is obtained for k = n = 1, m = 0, c0 = 1, c1 = 0, v0 = v1 = 0,
u0 =−hu and u1 = h in (3.85). The corresponding linear Lax spectral problems

Dx f (x;λ ) = l [u,h;λ ] f (x;λ ), l [u,h;λ ] =

(
h
2(λ −u)+ λ 2

2 0
1 −h

2(λ −u)− λ 2

2

)
(3.90)

enable the construction of a new dark integrable bi-Hamiltonian system

ut =−ux (u−h)−h−1 (uxx +hxu2 +hxx
)
, (3.91)

ht = uxh+uhx +2hhx,

on a suitably defined Poissonian functional manifold M ⊂C∞(R;R2).

4. Concluding Remarks

Using a combined gradient-holonomic-differential-algebraic approach [1, 32, 33, 36, 37] to test the
Lax integrability of nonlinear dynamical systems, we showed that the three-component Burgers
systems (1.1) and (1.2) possess 2-dimensional matrix Lax representations and corresponding sym-
metry recursion operators - which do not allow the usual bi-Poisoning factorization. In particular,
(1.2) does not have a related countable hierarchy of, either local or non- local, conserved quantities.
The problem of constructing a generalized bi-Poisoning factorization of a suitable power of a recur-
sion operator, such as in [37], is left for a future analysis, and so is an investigation of integrable
countable hierarchies of “dark”systems related to the Lax spectral problems (3.74) and (3.84). Thus,
gradient-holonomic and differential-algebraic tools combined in the context of symplectic geometry
can serve as a relatively simple and effective tool for analyzing the Lax integrability of a wide class
of nonlinear polynomial dynamical systems. Moreover, as recently shown in [34], this approach
also appears to be useful for nonlocal polynomial dynamical systems.
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