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In this paper, we obtain µ-symmetry and µ-conservation law of the extended mKdV equation. The extended
mKdV equation dose not admit a variational problem since it is of odd order. First we obtain µ-conservation
law of the extended mKdV equation in potential form because it admits a variational problem, using it, we can
obtain µ-conservation law of the extended mKdV equation.
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1. Introduction

In 2001, Muriel and Romero introduced λ -symmetries method to order reduction of ODEs. In
2004, Gaeta and Morando expanded this approach to the PDE frame with p independent variables
x = (x1, ...,xp) and q dependent variables u = (u1, ...,uq), in order to do this, the central object is a
horizontal one-form µ = λidxi on first order jet space (J(1)M,π,M), where µ is a compatible, i.e.
Diλ j−D jλi = 0, and thus one speaks of µ-symmetries.

In 2006, Muriel, Romero and Olver generalized the concept of variational problem and conser-
vation law, based on λ -symmetries, and presented an adapted formulation of the Nother’s theorem
for λ -symmetry of ODEs. In 2007, Cicogna and Gaeta extended the results obtained by Muriel,
Romero and Olver, in the case of λ -symmetries to the case of µ-symmetries. They called, con-
servation law in the case of µ-symmetry of the Lagrangian, µ-conservation law. The Korteweg-de
Vries (KdV) equation ut + uxxx + uux = 0, is one of the most popular equations by Korteweg and
de Vries in the 19th century as water waves equations. The KdV equation is a nonlinear partial dif-
ferential equation arising in the study of a number of different physical systems, e.g., water waves,
plasma physics, harmonic lattices, elastic rods and nonlinear long dynamo waves observed in the
Sun. The modified Korteweg-de Vries (mKdV) equation is one of the most important nonlinear
wave equation in physics and mechanic. For example, in the study of plasma physics, nonlinear
optics, solid state physics and fluid mechanics, whose general form is ut +auxxx +bu2ux = 0.
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In the paper [8] H. Liu and J. Li studied the nonlinear evolution equation in the form of

ut +a1uxxx +a2ux +a3uux +a4u2ux = 0.

They called this equation “extended form of the mKdV equation” and the parameters ai ∈ R. We
know that the basis of mKdV equation rather than KdV type equation is obtained in terms of the
basis of extended form of the mKdV equation. In view of this, we would rather name this equation,
the extended mKdV equation. All properties of the extended mKdV equation can be obtained from
the well-known properties of the mKdV equation taking transformation mentioned in the paper [7]
into account. So, solutions of the extended mKdV equation can be expressed via the Painleve’
transcendents as well. In partial cases solutions of the extended mKdV equation can be expressed
using rational function and the Airy functions [1].

The outline of this paper is as follows. Firstly, µ-symmetry and reduced equations for the
extended mKdV equation. Secondly, µ-symmetry and reduced equations for particular cases -
the mKdV equation, the KdV equation and the Euler equation - of the extended mKdV equation.
Finally, µ-conservation law for the extended mKdV equation.

2. µ-prolongation and µ-symmetry

In this section, the starting point will be a discussion of some of the foundational results about µ-
prolongation and µ-symmetry rather briefly. Let µ = λidxi be horizontal one-form on first order jet
space (J(1)M,π,M) and compatible with contact structure E on J(k)M for k ≥ 2, i.e. dµ ∈ J(E ),
where J(E ) is Cartan ideal generated by contact structure E and λi : J(1)M −→ R. In the paper [5],
condition dµ ∈ J(E ) is equivalent to Diλ j−D jλi = 0, where Di is total derivative xi. For given the
vector bundle (M,π,R), the horizontal one-form µ ∈

∧1(J1M), i.e. the one-form µ = λ (x,u,ux)dx,
where λ (x,u,ux) : J1M −→ R is smooth real function.

Suppose ∆(x,u(n)) = 0 is a scalar PDEs involving p independent variables x = (x1, ...,xp) and
one dependent variable. Let X = ξ i∂xi +ϕ∂u be a vector field on M. We define Y = X +∑

k
J=1 ΨJ ∂uJ

on k-th order jet space JkM as µ-prolongation of X if its coefficient (with Ψ0 = ϕ) satisfy the
µ-prolongation formula

ΨJ,i = (Di +λi)ΨJ−uJ,m(Di +λi)ξ
m . (2.1)

Let us observe that, if µ = 0 in (2.1), then we gain ordinary prolongation of X . So we can assume
ordinary prolongation as 0-prolongation in µ-prolongation framework. Let X be a vector field on
M, and Y be its µ -prolongation of order k. Let ∆ be a differential equation (PDE) of order k in M,
∆(x,u(k)) = 0, and S ⊂ J(k)M be the solution manifold for ∆. If Y : S −→ TS , we say that X is a
µ-symmetry for ∆.

Suppose µ = λidxi is a horizontal 1-form and V = exp
(∫

µ
)
X is an exponential vector field,

where X is a vector field on M. For µ , consider an equation ∆ such that Diλ j−D jλi = 0 is satisfied
on S∆. Then V is a general symmetry for ∆ if and only if X is a µ-symmetry for ∆.

In the paper [5], we observe reduction of PDEs under µ-symmetries in the following theorem.

Theorem 2.1. Let ∆ be a scalar PDE of order k for u = u(x1, ...,xp). Let X = ξ i( ∂

∂xi )+ϕ( ∂

∂u) be a
vector field on M, with characteristic Q = ϕ − uiξ

i, and let Y be the µ-prolong of order k of X. If
X is a µ-symmetry for ∆, then Y : SX −→ TSX , where SX ⊂ J(k)M is the solution manifold for the
system ∆X made of ∆ and of EJ := DJQ = 0 for all J with | J |= 0,1, ...,k−1.
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3. µ-symmetry for the extended mKdV equation

In the extended mKdV equation we will consider PDEs in two independent variables, (x, t). In this
case we will also write X = ξ ∂x + τ∂t +ϕ∂u and µ = λ1dx+λ2dt.

3.1. µ-symmetry of given equations

In order to determine µ-symmetry of a given PDE ∆ of order n, one can proceed in the same
way as for ordinary symmetries. That is, consider a generic vector field X acting in M, and its µ-
prolongation Y of order n for a generic µ = λidxi, acting in J(n)M. One then applies Y to ∆, and
restricts the obtained expression to the solution manifold S∆ ⊂ J(n)M. The equation ∆∗ resulting
by requiring this is zero is the determining equation for µ-symmetries of ∆; this is an equation for
ξ ,τ,ϕ and λi, and as such is nonlinear.

If we require λi are functions on J(k)M, all the dependences on uJ with | J |> k will be explicit,
and one obtains a system of determining equation. This system should be complemented with the
compatibility conditions between the λi. If we determine a priori the form µ , we are left with a
system of linear equation for ξ ,τ,ϕ; similarly, if we fix a vector field X and try to find the µ for
which it is a µ-symmetry of the given equation ∆, we have a system of quasilinear equation for the
λi.

3.2. µ-symmetry for the extended mKdV equation

Let us consider the extended mKdV equation

ut +a1uxxx +a2ux +a3uux +a4u2ux = 0. (3.1)

Suppose X = ξ ∂x + τ∂t +ϕ∂u is a vector field and µ = λ1dx+λ2dt is a horizontal one-form. For
this µ , we should have the compatibility condition Dtλ1 = Dxλ2 when ut +a1uxxx +a2ux +a3uux +

a4u2ux = 0. Let us come to the third µ-prolongation of X . For this computation we can use the Eq.
(2.1), hence, we show µ-prolongation of X as

Y = X +Ψ
x
∂ux +Ψ

t
∂ut +Ψ

xx
∂uxx + ...+Ψ

ttt
∂uttt ,

where

Ψ
x = (Dx +λ1)ϕ−ux(Dx +λ1)ξ −ut(Dx +λ1)τ ,

Ψ
t = (Dt +λ2)ϕ−ux(Dt +λ2)ξ −ut(Dt +λ2)τ ,

Ψ
xx = (Dx +λ1)Ψ

x−uxx(Dx +λ1)ξ −uxt(Dx +λ1)τ ,

Ψ
xt = (Dt +λ2)Ψ

x−uxx(Dt +λ2)ξ −uxt(Dt +λ2)τ ,

Ψ
tt = (Dt +λ2)Ψ

t −utx(Dt +λ2)ξ −utt(Dt +λ2)τ , (3.2)

Ψ
xxx = (Dx +λ1)Ψ

xx−uxxx(Dx +λ1)ξ −uxxt(Dx +λ1)τ,

Ψ
xxt = (Dt +λ2)Ψ

xx−uxxx(Dt +λ2)ξ −uxxt(Dt +λ2)τ,

Ψ
xtt = (Dt +λ2)Ψ

xt −uxtx(Dt +λ2)ξ −uxtt(Dt +λ2)τ ,

Ψ
ttt = (Dt +λ2)Ψ

tt −uttx(Dt +λ2)ξ −uttt(Dt +λ2)τ .
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In this case, the µ-prolongation Y acts on the Eq. (3.1) and substituting (ut − a2ux − a3uux −
a4u2ux)/a1 for uxxx, we obtain the following system

a1τu = 0, a1τuu = 0, a1τuuu = 0, a1ξu = 0, a1ξuu = 0,

a1ξuuu = 0, a1λ1τ +a1τx = 0, −2a1λ1τu +a1(λ1)uτ +2a1τux = 0 ,

3a1τxu +3a1λ1τu +a1(λ1)uτ = 0, 9a1λ1ξu +9a1ξux +4a1(λ1)uξ −3a1φuu = 0 ,

3a1λ1τuu +a1(λ1)uuτ +3a1τxuu +3a1(λ1)uτu = 0,

3a1(λ1)xτ +3a1τxx +3a1λ 2
1 τ +6a1λ1τu = 0 ,

a1(λ1)uuξ +3a1(λ1)uξu +3a1ξxuu−a1φuuu +3a1λ1ξuu = 0 ,

−3a1(λ1)xξ +3a1φxu +3a1λ1φu−3a1ξxx−3a1λ 2
1 ξ +a1(λ1)uφ −6a1λ1ξx = 0,

6a1λ1τxu +3a1(λ1)xτu−3ξu +2a1(λ1)xuξ +3a1(λ1)uλ1τ

+3a1(λ1)uτx +3a1λ 2
1 τu +3a1τxxu = 0 ,

3a1λ 2
1 φx +a1(λ1)xxφ +λ2φ +φt +a1φxxx +a3uλ1φ +3a1(λ1)xφx +3a1λ1φxx

+3a1(λ1)xλ1φ +a3uφx +a1λ 3
1 φ +a2ϕx +a2λ1ϕ +a4u2ϕx +a4u2λ1ϕ = 0, (3.3)

−3a1(λ1)uλ1ξ −3a1(λ1)uξx +3a3uξu +3a1φxuu−3a1λ 2
1 ξu−2a1(λ1)xuξ +3a2ξu

−6a1λ1ξxu +3a1λ1φuu−3a1ξxxu−3a1(λ1)xξu +a1(λ1)uuφ +3a1(λ1)uφu

+3a4u2ξu +3a1(λ1)uφu = 0,

−a1λ 3
1 τ−λ2τ− τt −a1(λ1)xxτ−a3uλ1τ +3ξx−a1τxxx−3a1λ1τxx−3a1λ 2

1 τx

−a2τx−3a1(λ1)xλ1τ−3a1(λ1)xτx +3λ1ξ −a3uτx−a2λ1τ−a4u2τx−a4u2λ1τ = 0 ,

−a1λ 3
1 ξ −ξt +2a3uξx−3a1λ1ξxx−λ2ξ −3a1(λ1)xλ1ξ −3a1λ 2

1 ξx +3a1λ 2
1 φu +2a2ξx

+3a1(λ1)xφu−a1(λ1)xxξ +3a1φxxu +2a1(λ1)uxφ +6a1λ1φxu +3a1(λ1)uλ1φ +a3φ

−a1ξxxx +2a3uλ1ξ −3a1(λ1)xξx +3a1(λ1)uφx ++2a4uϕ +2a2λ1ξ

+2a4u2λ1ξ +2a4u2ξx = 0 .

For any choice of the type

λ1 = Dx[ f (x, t)]+g(x), λ2 = Dt [ f (x, t)]+h(t), (3.4)

where f (x, t), g(x) and h(t) are arbitrary functions, we have the compatibility condition, i.e. Dtλ1 =

Dxλ2 (on solutions to the Eq. (3.1)). For instance, we consider two cases to obtain µ-symmetry of
the Eq. (3.1) as the following:

1. When g(x) = 0 and h(t) = 0, then substituting the functions λ1 = Dx f (x, t) and λ2 =

Dt f (x, t) into the system of (3.3) and solving them, we obtain

ξ = F(x, t), τ = 0, ϕ = 0,

where f (x, t) = − ln(F(x, t)) and F(x, t) is an arbitrary positive function. Then X =

F(x, t)∂x is µ-symmetry of the Eq. (3.1) and corresponds to an ordinary symmetry V =

exp
(∫

Dx f (x, t)dx+Dt f (x, t)dt
)

X of exponential type. In this case, reduction of the Eq.
(3.1) is

Q = ϕ−ξ ux− τut =−F(x, t)ux. (3.5)
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2. When g(x) = 0 and h(t) = c1/(c1t + 12a2
4) where c1 is an arbitrary constant, then substi-

tuting the functions λ1 = Dx f (x, t) and λ2 = Dt f (x, t)+ c1/(c1t +12a2
4) into the system of

(3.3) and solving them, we obtain

ξ =
(4a2a4−a3

2)(c1t +12a2
4)+2a4(c1x+ c2)

6a4(c1t +12a2
4)

F(x, t),

τ = F(x, t), ϕ =− c1(a3 +2a4u)
6a4(c1t +12a2

4)
F(x, t),

where f (x, t) =− ln(F(x, t)), F(x, t) is an arbitrary positive function and c2 is an arbitrary
constant. Then

X =
((4a2a4−a3

2)(c1t +12a2
4)+2a4(c1x+ c2)

6a4(c1t +12a2
4)

∂x +∂t −
c1(a3 +2a4u)

6a4(c1t +12a2
4)

∂u

)
F(x, t),

is µ-symmetry of the Eq. (3.1) and corresponds to an ordinary symmetry V =

exp
(∫

Dx f (x, t)dx+(Dt f (x, t)+ c1/(c1t + 12a2
4))dt

)
X of exponential type. In this case,

reduction of the Eq. (3.1) is

Q = ϕ−ξ ux− τut (3.6)

= −
( c1(a3 +2a4u)

6a4(c1t +12a2
4)

+
(4a2a4−a3

2)(c1t +12a2
4)+2a4(c1x+ c2)

6a4(c1t +12a2
4)

ux +ut

)
F(x, t) .

4. µ-symmetry for Particular cases of the extended mKdV equation

In this section, we obtain µ-symmetry for Particular cases of the extended mKdV equation ut +

a1uxxx +a2ux +a3uux +a4u2ux = 0. Clearly, when a2 = a3 = 0, the extended mKdV equation is the
mKdV equation ut +a1uxxx +a4u2ux = 0. When a1 = a3 = 1 and a2 = a4 = 0, the extended mKdV
equation is the KdV equation ut +uxxx+uux = 0. When a3 =−1 and a1 = a2 = a4 = 0, the extended
mKdV equation is the Euler equation ut −uux = 0.

4.1. µ-symmetry for the mKdV equation

When a2 = a3 = 0, the Eq. (3.1) is the mKdV equation

ut +a1uxxx +a4u2ux = 0. (4.1)

Similar to the extended mKdV equation, for instance, we consider two cases to obtain µ-symmetry
of the mKdV equation as the following:

1. When g(x) = 0 and h(t) = 0 in the functions of (3.4), then substituting the functions λ1 =

Dx f (x, t) and λ2 = Dt f (x, t) into the system of (3.3) and solving them, we obtain

ξ = F(x, t), τ = 0, ϕ = 0,

where f (x, t) = − ln(F(x, t)), F(x, t) is an arbitrary positive function. Then X = F(x, t)∂x

is µ-symmetry of the Eq. (3.1) and corresponds to an ordinary symmetry V =

exp
(∫

Dx f (x, t)dx+Dt f (x, t)dt
)

X of exponential type. In this case, reduction of the Eq.
(3.1) is

Q = ϕ−ξ ux− τut =−F(x, t)ux. (4.2)
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2. When g(x) = 0 and h(t) = 3c1/(3c1t +1) in the functions of (3.4), where c1 is an arbitrary
constant, then substituting the functions λ1 = Dx f (x, t) and λ2 = Dt f (x, t)+3c1/(3c1t +1)
into the system of (3.3) and solving them, we obtain

ξ =
c1x+ c2

3c1t +1
F(x, t) , τ = F(x, t), ϕ =− c1u

3c1t +1
F(x, t),

where f (x, t) =− ln(F(x, t)), F(x, t) is an arbitrary positive function and c2 is an arbitrary
constant. Then

X = F(x, t)
(c1x+ c2

3c1t +1
∂x +∂t −

c1u
3c1t +1

∂u

)
,

is µ-symmetry of the Eq. (4.1) and corresponds to an ordinary symmetry V =

exp
(∫

Dx f (x, t)dx + (Dt f (x, t) + 3c1/(3c1t + 1))dt
)

X of exponential type. In this case,

reduction of the mKdV equation ut +a1uxxx +a4u2ux = 0 is

Q = ϕ−ξ ux− τut =−
( c1u

3c1t +1
+

c1x+ c2

3c1t +1
ux +ut

)
F(x, t). (4.3)

4.2. µ-symmetry for the KdV equation

When a1 = a3 = 1 and a2 = a4 = 0, the Eq. (3.1) is the KdV equation

ut +uxxx +uux = 0. (4.4)

Similar to the extended mKdV equation, for instance, we consider two cases to obtain µ-symmetry
of the KdV equation as the following:

1. When g(x) = 0 and h(t) = 1/(t + c) in the functions of (3.4), where c is an arbitrary con-
stant, then substituting the functions λ1 = Dx f (x, t) and λ2 = Dt f (x, t)+1/(t + c) into the
system of (3.3) and solving them, we obtain

ξ = F(x, t), τ = 0, ϕ =
1

t + c
F(x, t),

where f (x, t) =− ln(F(x, t)), F(x, t) is an arbitrary positive function. Then X = F(x, t)∂x+

(1/(t + c))F(x, t)∂u is a µ-symmetry of the KdV equation and corresponds to an ordinary
symmetry V = exp

(∫
Dx f (x, t)dx+(Dt f (x, t)+1/(t+c))dt

)
X of exponential type. In this

case, reduction of the KdV equation is

Q = ϕ−ξ ux− τut =
( 1

t + c
−ux

)
F(x, t). (4.5)

2. When g(x) = 0 and h(t) = 3/(3t + c1) in the functions of (3.4), where c1 is an arbitrary
constant, then substituting the functions λ1 = Dx f (x, t) and λ2 = Dt f (x, t) + 3/(3t + c1)
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into the system of (3.3) and solving them, we obtain

ξ = (c2 +
x+3c3

3t + c1
)F(x, t), τ = F(x, t), ϕ =

3(−2u+3c2)

3t + c1
F(x, t),

where f (x, t) =− ln(F(x, t)), F(x, t) is an arbitrary positive function, c2 and c3 are arbitrary
constants. Then

X = F(x, t)
(
(c2 +

x+3c3

3t + c1
)∂x +∂t +

3(−2u+3c2)

3t + c1
∂u

)
,

is a µ-symmetry of the KdV equation and corresponds to an ordinary symmetry V =

exp
(∫

Dx f (x, t)dx+(Dt f (x, t)+3/(3t+c1))dt
)

X of exponential type. In this case, reduc-
tion of the KdV equation under µ-symmetry is

Q = ϕ−ξ ux− τut = F(x, t)
(3(−2u+3c2)

3t + c1
− (c2 +

x+3c3

3t + c1
)ux−ut

)
. (4.6)

4.3. µ-symmetry for the Euler equation

When a3 =−1 and a1 = a2 = a4 = 0, the Eq. (3.1) is the Euler equation

ut −uux = 0. (4.7)

If a3 =−1 and a1 = a2 = a4 = 0 in the system of (3.3), then we obtain

(ux+λ1u+λ2)ϕ+uux(uλ1+λ2)τ−ux(uλ1−λ2)ξ+ϕt+uuxτt−uxξt+uϕx+u2uxτx−uuxξx = 0 .

With the ansatz λ1(x, t,u) = λ1 and λ2 = λ2(x, t,u) the dependence of the equations above in ux is
explicit, and it splits into two equations:

(λ1u+λ2)ϕ +ϕt +uϕx = 0 ,

ϕ +(λ1u2 +λ2u)τ− (λ1u+λ2)ξ +uτt −ξt +u2
τx−uξx = 0 .

A special solution is given by

ξ =
x2 + tu2 + txu+ux

u2 e−ux/2, τ = 0, ϕ =
x+ tu

u
e−ux/2 , λ1 = u , λ2 =

u2

2
,

and Dtλ1 = Dxλ2 when ut −uux = 0. Hence, vector field

X =
(x2 + tu2 + txu+ux

u2 e−ux/2
)

∂x +
(x+ tu

u
e−ux/2

)
∂u (4.8)

is a µ-symmetry for the Euler equation ut = uux. This µ-symmetry corresponds to an ordinary
symmetry V of exponential type, i.e. V = e

∫
µX , or V = exp

(∫
udx+ 1

2 u2dt
)

X . Also, reduction of
the Euler equation ut = uux under µ-symmetry is

Q = ϕ−ξ ux− τut =
x+ tu

u
e−ux/2− x2 + tu2 + txu+ux

u2 e−ux/2ux. (4.9)
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5. Lagrangian of the extended mKdV equation in potential form

In this section, we show that the extended mKdV equation does not admit a variational problem
since it is of odd order, but the extended mKdV equation in potential form admits a variational
problem. In the book [13], a system of a variational formulation if and only if its Frechet derivative
is self-adjoint. In fact, we have the following theorem.

Theorem 5.1. Let ∆ = 0 be a system of differential equation. Then ∆ is the Euler-Lagrange expres-
sion for some variational problem L=

∫
Ldx, i.e. ∆ = E(L), if and only if the Frechet derivative D∆

is self-adjoint: D∗
∆
= D∆. In this case, a Lagrangian for ∆ can be explicitly constructed using the

homotopy formula L[u] =
∫ 1

0 u.∆[λu]dλ .

We consider the extended mKdV equation as

∆ : ut +a1uxxx +a2ux +a3uux +a4u2ux = 0. (5.1)

The Frechet derivative of ∆ is

D∆ = Dt +a1D3
x +(a2 +a3u+a4u2)Dx +a3ux.

Obviously it does not admit a variational problem since D∗
∆
6= D∆. But the well-known differential

substitution u = vx yields the related transformed the extended mKdV equation as the following

∆v : vxt +a1vxxxx +a2vxx +a3vxvxx +a4v2
xvxx = 0 . (5.2)

We called this equation ”the extended mKdV equation in potential form ” and the Frechet derivative
it is

D∆v = DxDt +a1D4
x +(a2 +a3vx +a4v2

x)D
2
x +(a3vxx +2a4vxvxx)Dx ,

which is self-adjoint: D∗
∆v

= D∆v . By the Theorem (5.1), the extended mKdV equation in potential
form ∆v has a Lagrangian of the form

L[v] =
∫ 1

0
v.∆v[λv]dλ =− 1

12

(
6vxvt −6a1v2

xx +6a2v2
x +2a3v3

x +a4v4
x

)
+DivP.

Hence, Lagrangian of ∆v equation, up to Div-equivalence is

L [v] =− 1
12

(
6vxvt −6a1v2

xx +6a2v2
x +2a3v3

x +a4v4
x

)
, (5.3)

6. µ-conservation laws

A (standard) conservation law is a relation DivP := ∑
p
i=1 DiPi = 0, where P = (P1, · · · ,Pp) is a

p−dimensional vector. Suppose µ = λidxi is a horizontal one-form, such that Diλ j = D jλi. We
define a µ-conservation law as a relation

(Di +λi)Pi = 0, (6.1)

where Pi is a (Matrix-valued) vector and the M−vector Pi is called a µ-conserved vector. In the
paper [4], we observe the following theorem.
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Theorem 6.1. Consider the n−th order Lagrangian L = L (x,u(n)), and vector field X, then X
is a µ-symmetry for L , i.e. Y [L ] = 0 if and only if there exists M−vector Pi satisfying the µ-
conservation law (Di +λi)Pi = 0.

Using the other theorems in [4] and the theorem (6.1), the M−vector Pi is obtained For first and
second order Lagrangian, as the following:

• For first order Lagrangian L (x, t,u,ux,ut) and the vector field X = ϕ (∂/∂u) is a µ-
symmetry for L , then the M−vector Pi := ϕ (∂L /∂ui), is a µ-conserved vector.

• For second order Lagrangian L and the vector field X = ϕ (∂/∂u) is a µ-symmetry for L ,
then the M−vector

Pi := ϕ
∂L

∂ui
+((D j +λ j)ϕ)

∂L

∂ui j
−ϕD j

∂L

∂ui j
, (6.2)

is a µ-conserved vector.

6.1. µ-conservation laws of the extended mKdV equation in potential form

In this section, we want to compute µ-conservation law for the extended mKdV equation in potential
form and using it we compute µ-conservation law for the extended mKdV equation in section (6.2).
Consider the second order Lagrangian (5.3) for the extended mKdV equation in potential form

∆v = vxt +a1vxxxx +a2vxx +a3vxvxx +a4v2
xvxx = E(L ). (6.3)

Suppose X = ϕ∂v is a vector field and µ = λ1dx + λ2dt is a horizontal one-form. For this µ ,
we should have the compatibility condition Dtλ1 = Dxλ2 when vxt + a1vxxxx + a2vxx + a3vxvxx +

a4v2
xvxx = 0. Let us come to the second µ-prolongation of X . For this computation we can use the

Eq. (2.1), hence, we show µ-prolongation of X as

Y = ϕ∂v +Ψ
x
∂vx +Ψ

t
∂vt +Ψ

xx
∂vxx +Ψ

xt
∂vxt +Ψ

tt
∂vtt ,

where

Ψ
x = (Dx +λ1)ϕ, Ψ

t = (Dt +λ2)ϕ, Ψ
xx = (Dx +λ1)Ψ

x,

Ψ
xt = (Dt +λ2)Ψ

x, Ψ
tt = (Dt +λ2)Ψ

t . (6.4)

In this case, the µ-prolongation Y acts on the Eq. (6.3) and substituting (a1v2
xx− a2v2

x − a3v3
x/3−

a4v4
x)/vx for vt , we obtain

a1ϕvv = 0, a4ϕv = 0, a1(λ1ϕ +ϕx) = 0, a3(λ1ϕ−ϕx) = 0 ,

ϕt +λ2ϕ +a2λ1ϕ +a2ϕx = 0, a1(λ
2
1 ϕ +2λ1ϕx +ϕxx +λ1xϕ) = 0, (6.5)

a1(2λ1ϕv +2ϕvx +λ1vϕ) = 0, 3a4ϕx +2a3ϕv +3a4λ1ϕ = 0 .

Suppose ϕ = F(x, t), where F(x, t) is an arbitrary positive function satisfying L [v] = 0, where L [v]
is from (5.3), then a special solution them is given by

λ1 =−
Fx(x, t)
F(x, t)

, λ2 =−
Ft(x, t)
F(x, t)

, (6.6)

where λ1 and λ2 are satisfying to Dtλ1 = Dxλ2. Hence, X = F(x, t)∂v is a µ-symmetry for L , in this
case by the Theorem (6.1) there exists M−vector Pi satisfying the µ-conservation law (Di+λi)Pi =
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0, by the Eq. (6.2), we have

P1 =−1
6

(
3vt +a1vxxx +6a2vx +3a3v2

x +2a4v3
x

)
F(x, t), P2 =−vx

2
F(x, t). (6.7)

Hence, µ-conservation law for second order Lagrangian L [v] is (Dx +λ1)P1 +(Dt +λ2)P2 = 0, or
corresponds to

DxP1 +DtP2 +λ1P1 +λ2P2 = 0. (6.8)

Hence, X = F(x, t)∂v is a µ-symmetry and DxP1 +DtP2 +λ1P1 +λ2P2 = 0 is µ-conservation law
for the extended mKdV equation in potential form ∆v.

Remark 6.1. By the Noether’s Theorem for µ-symmetry (for the extended mKdV equation in
potential form), we have

(Di +λi)Pi = (Dx +λ1)P1 +(Dt +λ2)P2

= F(x, t)(vxt +a1vxxxx +a2vxx +a3vxvxx +a4v2
xvxx) (6.9)

= QE(L ) .

6.2. µ-conservation laws of the extended mKdV equation

We want to compute µ-conservation law for the extended mKdV equation. Consider the extended
mKdV equation in potential form ∆v = vxt +a1vxxxx +a2vxx +a3vxvxx +a4v2

xvxx = 0, or equivalently
Dx(vt +a1vxxx +a2vx +a3v2

x/2+a4v3
x/3) = 0. If we substitute u for vx, then, we have vt +a1uxx +

a2u+ a3u2/2+ a4u3/3 = F1(t) where F1(t) is an arbitrary function. Hence P1 and P2 in the Eq.
(6.7) are as the following

P1 =− 1
12

(
6a1uxx +6a2u+3a3u2 +2a4u3 +6F1(t)

)
F(x, t) , P2 =−u

2
F(x, t) . (6.10)

In doing so, µ-conservation law for the extended mKdV equation is as

DxP1 +DtP2 +λ1P1 +λ2P2 = 0, (6.11)

Remark 6.2. By the characteristic form for the extended mKdV equation, we have

(Di +λi)Pi = (Dx +λ1)P1 +(Dt +λ2)P2

= F(x, t)(ut +a1uxxx +a2ux +a3uux +a4u2ux) (6.12)

= Q∆ .
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