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It is shown that HW (R)(η), the algebra of observables of the rational Calogero model based on the root

system R ⊂RN , has TR independent traces, where TR is the number of conjugacy classes of elements without

eigenvalue 1 belonging to the Coxeter group W (R)⊂ End(RN) generated by the root system R.

Simultaneously, we reproduce an known result: the algebra HW(R)(η), considered as a superalgebra with

a natural parity, has STR independent supertraces, where STR is the number of conjugacy classes of elements

without eigenvalue −1 belonging to W (R).
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1. Introduction

It was shown in [6] and [8] that, for every associative superalgebra HW(R)(η) of observables of

the rational Calogero model based on the root system R, the space of supertraces is nonzero. The

dimensions of these spaces for every root system are listed in [9].

Here we consider these superalgebras as algebras (parity forgotten) and find the conditions for

existence of traces and the dimensions of the spaces of traces on these algebras.

Astonishingly, the proof differs from the one in [6] and [8] in several signs only, and we provide

it here indicating change of signs by means of a parameter κ with κ = −1 for the supertraces and

κ = +1 for the traces. As a result, some parts of this text are almost copypasted from [6] and [8],

especially Subsection 4.3 and Appendix.

1.1. Preliminaries

1.1.1. Traces

Let A be an associative superalgebra with parity π . All expressions of linear algebra are given

for homogenous elements only and are supposed to be extended to inhomogeneous elements via

linearity.

A linear function str on A is called a supertrace if

str( f g) = (−1)π( f )π(g)str(g f ) for all f ,g ∈A .
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A linear function tr on A is called a trace if

tr( f g) = tr(g f ) for all f ,g ∈A .

Let κ = ±1. We can unify the definitions of trace and supertrace by introducing a κ-trace. We

say that a linear functiona sp on A is a κ-trace if

sp( f g) = κ
π( f )π(g)sp(g f ) for all f ,g ∈A . (1.1)

A linear function L is even (resp. odd) if L( f ) = 0 for any odd (resp even) f ∈A .

Let A1 and A2 be associative superalgebras with parities π1 and π2 , respectively. Define the

tensor product A =A1⊗A2 as a superalgebra with the product (a1⊗a2)(b1⊗b2)= (a1b1)⊗(a2b2)

(no sign factors in this formula) and the parity π defined by the formula π(a⊗b) = π1(a)+π2(b).

Let Ti be a trace on Ai. Clearly, the function T such that T (a⊗b) = T1(a)T2(b) is a trace on A .

Let Si be an even supertrace on Ai. Clearly, the function S such that S(a⊗b) = S1(a)S2(b) is an

even supertrace on A .

In what follows, we use three types of brackets:

[ f ,g] = f g−g f ,

{ f ,g} = f g+g f ,

[ f ,g]κ = f g−κ
π( f )π(g)g f .

1.1.2. The superalgebra of observables

The superalgebra HW(R)(η) of observables of the rational Calogero model based on the root system

R is a deform of the skew productb of the Weyl algebra and the group algebra of a finite group

generated by reflections. We will define it by Definition 1.1 (see below); now let us describe the

necessary ingredients.

Let V = R
N be endowed with a non-degenerate symmetric bilinear form (·, ·) and the vectors ~ai

constitute an orthonormal basis in V , i.e.,

(~ai, ~a j) = δi j.

Let xi be the coordinates of~x ∈V , i.e.,~x =~ai xi. Then (~x,~y) = ∑N
i=1 xiyi for any~x,~y ∈V . The indices

i are raised and lowered by means of the forms δi j and δ i j.

For any nonzero~v ∈V , define the reflections R~v as follows:

R~v(~x) =~x−2
(~x,~v)

(~v,~v)
~v for any~x ∈V. (1.2)

The reflections (1.2) have the following properties

R~v(~v) =−~v, R2
~v = 1, (R~v(~x), ~u) = (~x, R~v(~u)) for any~v,~x, ~u ∈V. (1.3)

A finite set of vectors R ⊂V is said to be a root system if the following conditions hold:

i) R is R~v-invariant for any~v ∈R,

aFrom the German word Spur.
bLet A and B be the superalgebras, and A is a B-module. We say that the superalgebra A ∗B is a skew product of A

and B if A ∗B = A ⊗B as a superspace and (a1⊗b1)∗ (a2⊗b2) = a1b1(a2)⊗b1b2.
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ii) if~v1,~v2 ∈R are collinear, then either~v1 =~v2 or~v1 =−~v2.

The group W (R)⊂ O(N,R)⊂ End(V ) generated by all reflections R~v with~v ∈R is finite.

As it follows from this definition of a root system, we consider both crystallographic and non-

crystallographic root systems. We consider also the empty root system denoted by A0, assuming

that it generates the trivial group consisting of the unity element only.

Let H α , where α = 0,1 , be two copies of V with orthonormal bases aα i ∈H α , where i =

1, ... , N. For every vector ~v = ∑N
i=1~aiv

i ∈ V , let vα ∈H α be the vectors vα = ∑N
i=1 aα iv

i, so four

bilinear forms on H 0⊕H 1 can be defined by the expression

(xα , yβ ) = (~x,~y) for α ,β = 0,1 , (1.4)

where~x,~y ∈V and xα , yα ∈H α are their copies. The reflections R~v act on H α as follows:

R~v(hα) = hα −2
(hα , vα)

(~v,~v)
vα for any hα ∈H

α . (1.5)

So the W (R)-action on the spaces H α is defined.

Let C[W (R)] be the group algebra of W (R), i.e., the set of all linear combinations ∑g∈W(R) αgḡ,

where αg ∈ C and we temporarily use the notation ḡ to distinguish g considered as an element of

W (R) ⊂ End(V ) from the same element ḡ ∈ C[W (R)] of the group considered as an element of

the group algebra. The addition in C[W (R)] is defined as follows:

∑
g∈W (R)

αgḡ+ ∑
g∈W(R)

βgḡ = ∑
g∈W (R)

(αg +βg)ḡ

and the multiplication is defined by setting g1 g2= g1g2.

Note that the additions in C[W (R)] and in End(V ) differ. For example, if I ∈W (R) is unity

and the matrix K =−I from End(V ) belongs to W (R), then I +K = 0 in End(V ) while I+K 6= 0

in C[W (R)]. In what follows, the element K ∈ HW(R)(η) is a Klein operator. c

Let η be a set of constants η~v with~v∈R such that η~v =η~w if R~v and R~w belong to one conjugacy

class of W (R).

Definition 1.1. The superalgebra HW(R)(η) is an associative superalgebra with unity 1; it is the

superalgebra of polynomials in the aα i with coefficients in the group algebra C[W (R)] subject to

cLet A be an associative superalgebra with parity π . Following M.Vasiliev, see, e.g. [15], we say that an element K ∈A

is a Klein operator if π(K) = 0, K f = (−1)π( f ) f K for any f ∈ A and K2 = 1. Every Klein operator belongs to the

anticenter of the superalgebra A , see [10], p.41. (Recall that the anticenter AC(A ) of an associative superalgebra A is

defined by the formula

AC(A ) = {a ∈A | ax− (−1)π(x)(π(a)+1)xa = 0 for any x ∈A }.)

Any Klein operator, if exists, establishes an isomorphism between the space of even traces and the space of even

supertraces on A . Namely, if f 7→ T ( f ) is an even trace, then f 7→ T ( f K) is a supertrace, and if f 7→ S( f ) is an even

supertrace, then f 7→ S( f K) is a trace.

It is proved in [9] that if HW (R)(η) has isomorphic spaces of the traces and supertraces, then HW (R)(η) contains a

Klein operator.
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the relations

ghα = g(hα )hα g for any g ∈W (R) and hα ∈H
α , (1.6)

[xα I,yβ I] = εαβ

(

(~x,~y)1̄I+ ∑
~v∈R

η~v
(~x,~v)(~y,~v)

(~v,~v)
1̄R~v

)

for any xα ∈H α and yβ ∈H β , (1.7)

where εαβ is the antisymmetric tensor, ε01 = 1, and 1̄ is the unity in C[aα i]. The element 1 = 1̄ · I is

the unity of HW(R)(η).d The action of any operator g ∈ End(V ) is given by a matrix (gi
j):

g(aα ih
i) = aα ig

i
jh

j, g1(g2(hα )) = (g1g2)(hα ) for any hα = aα ih
i ∈H

α , (1.8)

g(1̄) = 1̄. (1.9)

The commutation relations (1.7) suggest to define the parity π by setting:

π(aα ig) = 1 for any α , i and g ∈ C[W (R)]; π(1̄g) = 0 for any g ∈ C[W (R)]. (1.10)

We say that HW(R)(η) is a the superalgebra of observables of the Calogero model based on the

root system R.

These algebras HW(R)(η) (with parity forgotten) are particular cases of Symplectic Reflection

Algebras [4] and are also known as rational Cherednik algebras (see, for example, [5]).

Below we will usually designate 1, 1̄, I and I by 1, and FI = ĪF by F for any F ∈ C[aα i], and

1̄G = G1̄ by G for any G ∈ C[W (R)]. Besides, we will just write g instead of g because it will

always be clear, whether g ∈W (R) or g ∈ C[W (R)].

The associative algebra HW(R)(η) has a faithful representation via Dunkl differential-difference

operators Di, see [3], acting on the space of smooth functions on V . Namely, let vi = δi jv
j, xi = δi jx

j,

and

Di =
∂

∂xi
+

1

2
∑
~v∈R

η~v
vi

(~x,~v)
(1−R~v), (1.11)

where (1−R~v) f (x) = f (x)− f (R~v(x)) for every smooth function f . Let (see [14,1])

aα i =
1√
2
(xi +(−1)α Di) for α = 0,1. (1.12)

The reflections R~v transform the deformed creation (a1 i) and annihilation (a0 i) operators (1.12)

as vectors:

R~vaα i =
N

∑
j=1

(

δi j−2
viv j

(~v,~v)

)

aα jR~v. (1.13)

Since [Di, D j] = 0, see [3], it follows that

[aα i,aβ j] = εαβ

(

δi j + ∑
~v∈R

η~v
viv j

(~v,~v)
R~v

)

, (1.14)

which manifestly coincides with (1.7).

dClearly, HW(R) does not contain either 1̄ ∈ C[aα i] or I but does contain their product.
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Observe an important property of superalgebra HW(R)(η): The Lie (super)algebra of its inner

derivations contains sl2 generated by the operators

Tαβ =
1

2

N

∑
i=1

{

aα i, aβ i

}

(1.15)

which commute with C[W (R)], i.e., [Tαβ , R~v] = 0, and act on aα i as on vectors of the irreducible

2-dimensional sl2-modules:

[

Tαβ , aγ i

]

= εαγaβ i + εβγaα i, where i = 1, . . . ,N. (1.16)

The restriction of the operator T01 in the representation (1.12) on the subspace of W (R)-

invariant functions on V is a second-degree differential operator which is the well-known Hamil-

tonian of the rational Calogero model, see [2], based on the root system R, see [12]. One of the

relations (1.15), namely, [T01, aα i] = −(−1)α aα i, allows one to find the solutions of the equation

T01ψ = εψ and eigenvalues ε via usual Fock procedure with the vacuum |0〉 such that a0 i|0〉=0

for any i, see [1]. After W (R)-symmetrization these eigenfunctions become the eigenfunctions of

the Calogero Hamiltonian.

2. The κ-traces on HW(R)(η)

Every κ-trace sp(·) on A generates the following bilinear form on A :

Bsp( f ,g) = sp( f ·g) for any f ,g ∈A . (2.1)

It is obvious that if such a bilinear form Bsp is degenerate, then the null-vectors of this form (i.e.,

v ∈ A such that B(v,x) = 0 for any x ∈ A ) constitute the two-sided ideal I ⊂ A . If the κ-trace

generating degenerate bilinear form is homogeneous (even or odd), then the corresponding ideal is

a superalgebra.

If κ =−1, the ideals of this sort are present, for example, in the superalgebras HW(A1)(η) (cor-

responding to the two-particle Calogero model) at η = k + 1
2
, see [15], and in the superalgebras

HW(A2)(η) (corresponding to three-particle Calogero model) at η = k+ 1
2

and η = k± 1
3
, see [7],

for every integer k. For all other values of η all supertraces on these superalgebras generate nonde-

generate bilinear forms (2.1).

The general case of HW(An−1)(η) for arbitrary n is considered in [11]. Theorem 5.8.1 of [11]

states that the associative algebra HW(An−1)(η) is not simple if and only if η = q
m

, where q,m are

mutually prime integers such that 1 < m 6 n, and presents the structure of corresponding ideals.

Conjecture: Each of the ideals found in [11] is the set of null-vectors of the degenerate bilinear

form (2.1) for some κ-trace sp on HW(An−1)(η).e

2.1. Main results

Theorem 2.1. Each nonzero κ-trace on HW(R)(η) is even.

eThe dimension of the space of supertraces on HW(An−1)(η) is the number of the partition of n> 1 into the sum of different

positive integers, see [6], and the space of the traces on HW (An−1)(η) is one-dimensional for n > 2 due to Theorem 2.3,

see also [9].
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Proof. The space of superalgebra HW(R)(η) can be decomposed into the direct sum of irreducible

sl2-modules, where sl2 is defined by eq. (1.15). Clearly, each κ-trace should vanish on all these

irreducible modules except singlets, and can take nonzero value only on singlets, i.e., on elements

f ∈ HW(R)(η) such that [Tαβ , f ] = 0 for α ,β = 0,1. So, if sp( f ) 6= 0, then [T01, f ] = 0, which

implies π( f ) = 0.

Theorem 2.2. The dimension of the space of κ-traces on the superalgebra HW(R)(η) is equal to

the number of conjugacy classes of elements without eigenvalue κ belonging to the Coxeter group

W (R)⊂ End(RN) generated by the finite root system R ⊂ R
N .

Proof. This Theorem follows from Theorem 4.1 and Theorem 3.2.

Clearly, Theorem 2.2 is equivalent to the following theorem

Theorem 2.3. Let the Coxeter group W (R)⊂End(RN) generated by the finite root system R ⊂R
N

have TR conjugacy classes without eigenvalue 1 and STR conjugacy classes without eigenvalue −1.

Then the superalgebra HW(R)(η) possesses TR independent traces and STR independent super-

traces.

3. Ground Level Conditions

Clearly, 1̄ ·C[W (R)] is an isomorphic to C[W (R)] subalgebra of HW(R)(η).

It is easy to describe all κ-traces on C[W (R)]. Every κ-trace on C[W (R)] is completely deter-

mined by its values on W (R) and is a central function on W (R), i.e., the function constant on the

conjugacy classes due to W (R)-invariance. Thus, the number of κ-traces on C[W (R)] is equal to

the number of conjugacy classes in W (R).

Since C[W (R)] ⊂ HW(R)(η), some additional restrictions on these functions follow from the

definition (1.1) of κ-trace and the defining relations (1.7) for HW(R)(η). Namely, for any g∈W (R)

consider elements cα
i ∈H α such that

gcα
i = κcα

i g. (3.1)

Then, eqs. (1.1) and (3.1) imply that

sp
(

c0
i c1

jg
)

= κsp
(

c1
jgc0

i

)

= sp
(

c1
jc

0
i g
)

,

and therefore

sp
(

[c0
i ,c

1
j ]g
)

= 0. (3.2)

Since [c0
i ,c

1
j ]g ∈ C[W (R)], the conditions (3.2) single out the central functions on C[W (R)]

which can in principle be extended to κ-traces on HW(R)(η), and Theorem 4.1 states that each

central function on C[W (R)] satisfying conditions (3.2) can be extended to a κ-trace on HW(R)(η).

In [6], the conditions (3.2) are called Ground Level Conditions.

Ground Level Conditions (3.2) is an overdetermined system of linear equations for the central

functions on C[W (R)]. The dimension of the space of its solution is given in Theorem 3.2.
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3.1. The number of independent solutions of Ground Level Conditions

For any g ∈W (R), consider the subspaces E α(g)⊂H α :

E
α(g) = {h ∈H

α | g(h) = κh}. (3.3)

Clearly, dim E 0(g) = dim E 1(g).

In the vector space C[W (R)], introduce the grading E: f

E(g) = dim E
α(g). (3.4)

For any g∈W (R), the number E(g) is an integer such that 0 6 E(g)6 N; recall that dimH α = N.

Let Wl = {g ∈W (R) | E(g) = l}. Clearly,

W (R) =
N
⋃

l=0

Wl . (3.5)

The set Wl is W (R)-invariant, i.e., hWlh
−1 = Wl for any h ∈W (R), and we can introduce the

space W ∗l of W (R)-invariant functions on Wl .

Theorem 3.1. Each function S ∈W ∗0 can be uniquely extended to a central function on W (R)

satisfying the Ground Level Conditions.

The following theorem follows from Theorem 3.1:

Theorem 3.2. The dimension of the space of solutions of Ground Level Conditions (3.2) is equal

to the number of conjugacy classes in W (R) with E(g) = 0.

Theorems 3.1 and 3.2 are simultaneously proved below.

The following lemmas are needed to prove these theorems.

Lemma 3.1. Let g be an orthogonal N×N real matrix without eigenvalue κ, i.e., the matrix g−κ

is invertible. Then the matrix R~vg has exactly one eigenvalue equal to κ.

Proof. Consider the equation R~vg~x−κ~x = 0 or, equivalently, g~x−κR~v~x = 0 for the eigenvectors ~x

corresponding to eigenvalue κ. Using the definition of R~v this equation can be written as

g~x−κ(~x−2
(~v,~x)

|~v|2 v) = 0;

hence,

~x =−2κ
(~v,~x)

|~v|2 (g−κ)−1~v. (3.6)

fIt follows from Lemma 3.2 formulated below that if κ = −1, then ρ(g) := E(g)|mod2 is a parity on the group algebra

C[W (R)]. It is a well known parity of elements of the Coxeter group W (R). Besides, (E(g)|κ=+1−E(g)|κ=−1)|mod2 =
N|mod2 .

Co-published by Atlantis Press and Taylor & Francis 
                      Copyright: the authors 
                                      277



S.E. Konstein and I.V. Tyutin

It remains to show that this equation has a nonzero solution. Let ~v = (g−κ)~w; it follows from eq.

(3.6) that~x = µ~w, where µ ∈ R. Then

|~v|2 = 2(|~w|2−κ(~w, g~w)) ,

−2κ(~v,~x) = 2(|~w|2−κ(~w, g~w))µ ,

and eq. (3.6) becomes an identity µ~w = µ~w. So the vector ~x1 = (g−κ)−1~v is the only solution, up

to a factor.

Lemma 3.2. Let g be an orthogonal N×N real matrix and~ci, where i = 1, ..., E(g), the complete

orthonormal set of its eigenvectors corresponding to eigenvalue κ. Then

i) E(R~vg) = E(g)+1 if (~v,~ci) = 0 for all i;

ii) if there exists an i such that (~v,~ci) 6= 0, then E(R~vg) = E(g)−1 and the space of eigenvectors

of R~vg corresponding to eigenvalue κ is the subspace of span{~c1, ...,~cE(g)} orthogonal to~v.

Proof. Let C
de f
= span{~c1, ...,~cE(g)} and V =C⊕B the orthogonal direct sum. Clearly, gB = B and

g−κ is invertible on B.

Let us seek a null-vector~z of the operator R~vg−κ, i.e., the solution of the equation

R~vg~z−κ~z = 0, (3.7)

in the form~z =~c+~b, where~c ∈C and~b ∈ B. The definition of R~v and (3.7) yield

− 2

(~v,~v)

(

κ(~c,~v)+ (g~b,~v)
)

~v+(g−κ)~b = 0. (3.8)

Represent~v in the form~v =~vc+~vb, where~vc ∈C,~vb ∈ B. Let~vb = (g−κ)~w, where ~w ∈ B. Then

eq. (3.7) is equivalent to the system

− 2

(~v,~v)

(

κ(~c,~vc)+ (g~b, (g−κ)~w)
)

~vc = 0, (3.9)

− 2

(~v,~v)

(

κ(~c,~vc)+ (g~b, (g−κ)~w)
)

~w+~b = 0. (3.10)

Consider the two cases:

1) Let (~v,~ci) = 0 for all i = 1, ...,E(g). So, ~vc = 0, and hence ~v ∈ B. Then (3.10) acquires the

form

− 2

(~v,~v)
(g~b, (g−κ)~w)~w+~b = 0. (3.11)

It is easy to check that~b = ~w is the only nonzero solution of (3.11) orthogonal to C.

So, all the solutions of eq. (3.7) are linear combinations of the vectors ~zi = ~ci, where i =

1, ..., E(g), and~zE(g)+1 = ~w.

2) Let~vc 6= 0. Then eq. (3.9) gives

κ(~c,~vc)+ (g~b, (g−κ)~w) = 0 (3.12)

which reduces eq. (3.10) to~b = 0 which, in its turn, reduces eq. (3.12) to (~c,~v) = 0.
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Let P be the projection C[W (R)]→ C[W (R)] defined as

P(∑
i

αigi) = ∑
i:gi 6=1

αigi for any gi ∈W (R), αi ∈ C. (3.13)

Lemma 3.3. Let g∈W (R). Let cα
1 ,c

α
2 ∈ E α(g)⊂HW(R)(η) (i.e., gcα

1 =κcα
1 g, gcα

2 =κcα
2 g). Then

E(P([cα
1 , c

β
2 ])g) = E(g)−1 for any g ∈W (R). (3.14)

Proof. Proof easily follows from the formula

P([cα
1 , c

β
2 ]) = εαβ ∑

~v∈R
η~v

(~c1,~v)(~c2,~v)

(~v,~v)
R~v . (3.15)

Indeed, if (~c1,~v)(~c2,~v) 6= 0, then Lemma 3.2 implies that E(R~vg) = E(g)−1.

3.2. Proof of Theorems 3.1 and 3.2

Due to Lemma 3.3 some of the Ground Level Conditions express the κ-trace of elements g with

E(g) = l via the κ-traces of elements R~vg with E(R~vg) = l−1:

sp(g) =−sp(([c0
i , c1

i ]−1)g) if (~ci,~ci) = 1. (3.16)

We prove Theorems 3.1 and 3.2 using induction on E(g).

The first step is simple: if E(g) = 0, then sp(g) is an arbitrary central function. The next step

is also simple: if E(g) = 1, then there exists a unique element c0
1 ∈ E 0(g) and a unique element

c1
1 ∈ E 1(g) such that |cα

1 |= 1 and gcα
1 = κcα

1 g. Since ([c0
1, c1

1]−1)g ∈ C[W (R)] and E(([c0
1, c1

1]−
1)g) = 0, then

sp(g) =−sp(([c0
1, c1

1]−1)g) (3.17)

is the unique possible value for sp(g) with E(g) = 1. In such a way, W ∗0 is extended to W ∗1 .

A priori these values can be not consistent with other Ground Level Conditions.

Suppose that the Ground Level Conditions (3.2) which are equivalent to the conditions consid-

ered for all g with E(g)6 l and for all cα
1 , cα

2 ∈ E α(g) have Ql independent solutions.

Proposition 3.1. The value Ql does not depend on l.

Proof. It was shown above that Q1 = Q0. Let l > 1. Consider g ∈W (R) with E(g) = l + 1. Let

cα
i ∈ E α(g), where i = 1,2, be such that (cα

i , c
β
j ) = δi j. These elements cα

i give the conditions:

sp(g) =−sp(([c0
1, c1

1]−1)g), (3.18)

sp(g) =−sp(([c0
2, c1

2]−1)g), (3.19)

sp([c0
1, c1

2]g) = 0. (3.20)

Below we prove that eqs. (3.18) and (3.19) are equivalent and eq. (3.20) follows from them. So,

we will prove that eq. (3.18) considered for all g ∈Ws, where 0 < s 6 l + 1, realizes the extension

of W ∗0 to W ∗l+1.
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Let us transform (3.18):

sp(g) = sp(S1)− sp(S12), (3.21)

where

S1 = −
(

[c0
1, c1

1]−1− ∑
~v∈R:(~v,~c1)(~v,~c2) 6=0

η~v
(~v,~c1)

2

|~v|2 R~v

)

g =

= −
(

∑
~v∈R: (~v,~c2)=0

η~v
(~v,~c1)

2

|~v|2 R~v

)

g, (3.22)

S12 =

(

∑
~v∈R:(~v,~c1)(~v,~c2) 6=0

η~v
(~v,~c1)

2

|~v|2 R~v

)

g. (3.23)

It is clear from eq. (3.22) and Lemma 3.2 that E(S1) = l and S1c0
2 = κc0

2S1. Hence, due to eq. (3.16)

and inductive hypothesis

sp(S1) =−sp(([c0
2, c1

2]−1)S1) = sp(([c0
2, c1

2]−1)(([c0
1, c1

1]−1)g−S12)) (3.24)

and as a result

sp(S1) = sp(([c0
2, c1

2]−1)([c0
1, c1

1]−1)g)− sp(([c0
2, c1

2])S12)+ sp(S12). (3.25)

Finally, eq. (3.18) is equivalent under inductive hypothesis to

sp(g) = sp(([c0
2, c1

2]−1)([c0
1, c1

1]−1)g)− sp(([c0
2, c1

2])S12). (3.26)

Analogously, eq. (3.19) is equivalent under inductive hypothesis to

sp(g) = sp(([c0
1, c1

1]−1)([c0
2, c1

2]−1)g)− sp(([c0
1, c1

1])S21), (3.27)

where

S21 =

(

∑
~v∈R:(~v,~c1)(~v,~c2) 6=0

η~v
(~v,~c2)

2

|~v|2 R~v

)

g. (3.28)

Now, let us compare the corresponding terms in eqs. (3.26) and (3.27). First, the relation

sp(([c0
1, c1

1]−1)([c0
2, c1

2]−1)g) = sp(([c0
2, c1

2]−1)([c0
1, c1

1]−1)g) (3.29)

is identically true for every κ-trace on C[W (R)] since [c0
1, c1

1] commutes with g. Second,

sp(([c0
1, c1

1])S21) = sp(([c0
2, c1

2])S12) (3.30)

since

sp([c0
1, c1

1](~v,~c2)
2R~vg) = sp([c0

2, c1
2](~v,~c1)

2R~vg) (3.31)

for every~v ∈R such that (~v,~c1)(~v,~c2) 6= 0. Indeed, the element

~c = α~c1 +β~c2 , where α =−(~v,~c2) 6= 0 and β = (~v,~c1) 6= 0 , (3.32)
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is orthogonal to~v:

(~v,~c) = 0 (3.33)

and satisfies the relation

R~vgcα = κcα R~vg (3.34)

due to Lemma 3.2. This fact together with the fact that

E(P([c0
i , c1])R~vg) = l−1 for i = 1,2 (3.35)

(this also follows from Lemma 3.2) and inductive hypothesis imply

sp([c0
i , c1]R~vg) = sp([c0, c1

i ]R~vg) = 0 for i = 1,2. (3.36)

Substituting~c1 =
1
α (~c−β~c2) and~c2 =

1
β (~c−α~c1) in the left-hand side of eq. (3.31) and using eqs.

(3.33) and (3.36) one obtains the right-hand side of eq. (3.31). Thus, eq. (3.18) is equivalent to eq.

(3.19); hence

sp(([c0
1, c1

1]−1)g)− sp(([c0
2, c1

2]−1)g) = 0 (3.37)

for every orthonormal pair c1, c2 ∈ E (g). Consequently,

sp([c0
1, c1

2]g) = 0 (3.38)

which finishes the proof of Proposition 3.1 and Theorem 3.2.

4. The number of independent κ-traces on HW(R)(η)

For proof of the following theorem, see this and subsequent sections.

Theorem 4.1. Every κ-trace on the algebra C[W (R)] satisfying the equation

sp([h0, h1]g) = 0 for any g ∈W (R) with E(g) 6= 0 and hα ∈ E
α(g), (4.1)

can be uniquely extended to a κ-trace on HW(R)(η).

4.1. Notation

For each g ∈W (R), introduce eigenbases bα i in CH α (i = 1, ...,N, α = 0,1) such that

gb0 i = λib0 ig, (4.2)

gb1 i =
1

λi

b1 ig, (4.3)

(b0 i,b1 j) = δi j. (4.4)

Let Bg be the set of all these bα i for a fixed g.
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In what follows we use the generalized indices I,J, ... instead of pairs (α , i) and sometimes write

i(I), λI , α(I) meaning that

bI = bα(I) i(I), gbI = λIbIg. (4.5)

Introduce also a symplectic form

CIJ = [bI , bJ ]|η=0 (4.6)

and let fIJ be the η-dependent part of the commutator [bI , bJ]:

FIJ
de f
= [bI , bJ] = CIJ + fIJ. (4.7)

The indices I,J are raised and lowered with the help of the symplectic forms C IJ and CIJ:

µI = ∑
J

CIJµJ , µ I =∑
J

µJC
JI ; ∑

M

CIMC
MJ =−δ J

I . (4.8)

Let M(g) be the matrix of the map B1 −→ Bg, such that

bI = ∑
i,α

Mα i
I (g)aα i . (4.9)

Obviously this map is invertible. Using the matrix notation one can rewrite (4.5) as

gbI =
2N

∑
J=1

ΛJ
I (g)bJg, (4.10)

where the matrix (ΛJ
I ) is diagonal, i.e., ΛJ

I = δ J
I λI .

We say that the monomial bI1
bI2

. . . bIk
g is regular if bIs

∈ Bg for all s = 1, . . . ,k and at least one

of λIs
is not equal to κ.

We say that the monomial bI1
bI2

. . . bIk
g is special if bIs

∈ Bg for all s = 1, . . . ,k and λIs
= κ for

all s. Clearly, in this case E(g)> 0.

Introduce a lexicographical partial ordering on HW(R)(η): For any P1, P2 ∈ C[aα i] and g1,g2 ∈
W (R), we say

P1g1 > P2g2 if either degP1 > degP2 or degP1 = degP2 and E(g1)> E(g2). (4.11)

4.2. The κ-trace of General Elements

To find the κ-trace, we consider the defining relations (1.1) as a system of linear equations for the

linear function sp.

Clearly, this system can be reduced to the following two equations

sp([bI ,P(a)g]κ) = 0, (4.12)

sp
(

τ−1P(a)gτ
)

= sp(P(a)g) , (4.13)

where polynomials P and g,τ ∈W (R) are arbitrary.

Since each κ-trace is even, eq. (4.12) can be rewritten in the form

sp(bIP(a)g−κP(a)gbI) = 0. (4.14)

Eq. (4.14) enables us to express a κ-trace of any monomial in HW(R)(η) in terms of κ-trace on

C[W (R)]. Indeed, this can be done in a finite number of the following step operations.

Co-published by Atlantis Press and Taylor & Francis 
                      Copyright: the authors 
                                      282



Traces on the Superalgebra of Observables of Rational Calogero Model

Regular step operation. Let bI1
bI2

. . . bIk
g be a regular monomial. Up to a polynomial of lesser

degree, this monomial can be expressed in a form such that λI1
6= κ.

Then

sp(bI1
bI2

. . . bIk
g) = κsp(bI2

. . . bIk
gbI1

) = κλI1
sp(bI2

. . . bIk
bI1

g),

which implies

sp(bI1
bI2

. . . bIk
g)−κλI1

sp(bI1
bI2

. . . bIk
g) = κλI1

sp([bI2
. . . bIk

, bI1
]g).

Thus,

sp(bI1
bI2

. . . bIk
g) =

κλI1

1−κλI1

sp([bI2
. . . bIk

, bI1
]g). (4.15)

This step operation expresses the κ-trace of any regular degree k monomial in terms of the

κ-trace of degree k−2 polynomials.

Special step operation. Let M
de f
= bI1

bI2
. . . bIk

g be a special monomial and E(g) = l > 0.

We can choose a basis bI in E 0⊕E 1 such that CIJ|E 0⊕E 1 has the normal form:

CIJ|E 0⊕E 1 =

(

0 IE(g)

−IE(g) 0

)

Up to a polynomial of lesser degree, the monomial M can be expressed in the form

M = b
p
I b

q
J bL1

. . . bLk−p−q
g+ a lesser degree polynomial,

where

0 6 p,q 6 k, p+q 6 k,

λI = λJ = λLs
= κ for any s, (4.16)

CIJ = 1, CILs
= 0, CJLs

= 0 for any s .

Let M′
de f
= b

p
I b

q
J bL1

. . . bLk−p−q
and derive the equation for sp(M′g). Since

sp(bJbIM
′g) = κsp(bIM

′gbJ) = sp(bIM
′bJg),

it follows that

sp([bIM
′, bJ]g) = 0. (4.17)

Since [bIM
′, bJ] can be expressed as follows:

[bp+1
I b

q
J bL1

. . . bLk−p−q
, bJ] =

p

∑
t=0

bt
I(1+ fIJ)b

p−t
I b

q
J bL1

. . . bLk−p−q
+

+
k−p−q

∑
t=1

b
p+1
I b

q
J bL1

. . . bLt−1
fLt J bLt+1

. . . bLk−p−q
(4.18)
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eq. (4.17) can be rewritten in the form

(p+1)sp(M′g) = − sp

(

p

∑
t=0

bt
I fIJb

p−t
I b

q
J bL1

. . . bLk−p−q
g+

+
k−p−q

∑
t=1

b
p+1
I b

q
J bL1

. . . bLt−1
fLt J bLt+1

. . . bLk−p−q
g

)

, (4.19)

which is the desired equation for sp(M′g).
Due to Lemma 3.2 it is easy to see that eq. (4.19) can be rewritten in the form

sp(M′g) = ∑
g̃∈W(R):E(g̃)=E(g)−1

sp(Pg̃(aα i)g̃), (4.20)

where the Pg̃ are some polynomials such that degPg̃ 6 degM′.
So, the special step operation expresses the κ-trace of a special polynomial in terms of the

κ-trace of polynomials lesser in the sense of the ordering (4.11).

Thus, we showed that it is possible to express the κ-trace of any polynomial in terms of the

κ-trace on C[W (R)] using a finite number of regular and special step operations. Since each step

operation is manifestly W (R)-invariant, and the κ-trace on C[W (R)] is also W (R)-invariant, the

resulting κ-trace is W (R)-invariant.

This does not prove Theorem 4.1 yet because the resulting values of κ-traces may a priori

depend on the sequence of step operations used and impose additional constraints on the values of

κ-trace on C[W (R)].

Below we prove that the value of κ-trace does not depend on the sequence of step operations

used. We use the following inductive procedure:

(⋆) Let F
de f
= P(aα i)g∈HW(R)(η), where P is a polynomial such that degP= 2k and g∈W (R).

Assuming that κ-trace is correctly defined for all elements of HW(R)(η) lesser than F relative to

the ordering (4.11), we prove that sp(F) is defined also without imposing an additional constraints

on the solution of the Ground Level Conditions.

The central point of the proof is consistency conditions (4.33), (4.34) and (4.50) proved in

Appendices A.1 and A.2.

Assume that the Ground Level Conditions hold. The proof of Theorem 4.1 will be given in a

constructive way by the following double induction procedure, equivalent to (⋆):

(i) Assume that

sp([bI ,Pp(a)g]κ) = 0 for any Pp(a), g and I provided bI ∈ Bg

and

λ (I) 6= κ; p 6 k or

λ (I) = κ, E(g)6 l, p 6 k or

λ (I) = κ; p 6 k−2 ,

where Pp(a) is an arbitrary degree p polynomial in aα i and p is odd. This implies that there exists a

unique extension of the κ-trace such that the same is true for l replaced with l+1.

(ii) Assuming that sp(bIPp(a)g−κPp(a)gbI) = 0 for any Pp(a), g and bI ∈ Bg, where p 6 k,

one proves that there exists a unique extension of the κ-trace such that the assumption (i) is true for

k replaced with k+2 and l = 0.
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As a result, this inductive procedure uniquely extends any solution of the Ground Level Condi-

tions to a κ-trace on the whole HW(R)(η). (Recall that the κ-trace of any odd element of HW(R)(η)

vanishes because the κ-trace is even.)

It is convenient to work with the exponential generating functions

Ψg(µ) = sp
(

eSg
)

, where S =
2N

∑
L=1

(µLbL) , (4.21)

where g is a fixed element of W (R), bL ∈ Bg and µL ∈C are independent parameters. By differen-

tiating eq. (4.21) n times with respect to µL at µ = 0 one can obtain an arbitrary polynomial of n-th

degree in bL as a coefficient of g up to polynomials of lesser degrees. In these terms, the induction

on the degree of polynomials is equivalent to the induction on the homogeneity degree in µ of the

power series expansions of Ψg(µ).

As a consequence of general properties of the κ-trace, the generating function Ψg(µ) must be

W (R)-invariant:

Ψτgτ−1(µ) = Ψg(µ̃) , (4.22)

where the W (R)-transformed parameters are of the form

µ̃ I = ∑
J

(

M(τgτ−1)M−1(τ)Λ−1(τ)M(τ)M−1(g)
)I

J
µJ (4.23)

and matrices M(g) and Λ(g) are defined in eqs. (4.9) and (4.10).

The necessary and sufficient conditions for the existence of an even κ-trace are the W (R)-

covariance conditions (4.22) and the condition

sp
(

[bL,e
Sg]κ

)

= 0 for any g and L , (4.24)

or, equivalently,

sp
(

bLeSg−κeSgbL

)

= 0 for any g and L . (4.25)

4.3. General relations

To transform eq. (4.25) to a form convenient for the proof, we use the following two general relations

true for arbitrary operators X and Y and parameter µ ∈C:

X exp(Y +µX) =
∂

∂ µ
exp(Y +µX)+

∫

t2 exp(t1(Y +µX))[X ,Y ]exp(t2(Y +µX))D1t, (4.26)

exp(Y +µX)X =
∂

∂ µ
exp(Y +µX)−

∫

t1 exp(t1(Y +µX))[X ,Y ]exp(t2(Y +µX))D1t (4.27)

with the convention that

Dn−1t = δ (t1 + . . .+ tn−1)θ(t1) . . .θ(tn)dt1 . . .dtn . (4.28)

The relations (4.26) and (4.27) can be derived with the help of partial integration (e.g., over t1)

and the following formula

∂

∂ µ
exp(Y +µX) =

∫

exp(t1(Y +µX))X exp(t2(Y +µX))D1t (4.29)
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which can be proven by expanding in power series. The well-known formula

[X ,exp(Y )] =

∫

exp(t1Y )[X ,Y ]exp(t2Y )D1t (4.30)

is a consequence of eqs. (4.26) and (4.27).g

With the help of eqs. (4.26), (4.27) and (4.5) one rewrites eq. (4.25) as

(1−κλL)
∂

∂ µL
Ψg(µ) =

∫

(−κλLt1− t2)sp
(

exp(t1S)[bL,S] exp(t2S)g
)

D1t . (4.31)

This condition should be true for any g and L and plays the central role in the analysis in this section.

Eq. (4.31) is an overdetermined system of linear equations for sp; we show below that it has the

only solution extending any fixed solution of the Ground Level Conditions.

There are two essentially distinct cases, λL 6= κ and λL = κ. In the latter case, the eq. (4.31)

takes the form

0 =

∫

sp
(

exp(t1S)[bL,S]exp(t2S)g
)

D1t , λL = κ . (4.32)

In Appendix A.1 we prove by induction that eqs. (4.31) and (4.32) are consistent in the following

sense

(1−κλK)
∂

∂ µK

∫

(−κλLt1− t2)sp
(

exp(t1S)[bL,S] exp(t2S)g
)

D1t− (L↔ K) = 0 (4.33)

for λL 6= κ, λK 6= κ

and

(1−κλK)
∂

∂ µK

∫

sp
(

exp(t1S)[bL,S] exp(t2S)g
)

D1t = 0 for λL = κ. (4.34)

Note that this part of the proof is quite general and does not depend on a concrete form of the

commutation relations between the aα i in eq. (1.7).

By expanding the exponential eS in eq. (4.21) into power series in µK (equivalently bK) we con-

clude that eq. (4.31) uniquely reconstructs the κ-trace of monomials containing bK with λK 6= κ

(i.e., regular monomials) in terms of κ-traces of some lower degree polynomials. Then the consis-

tency conditions (4.33) and (4.34) guarantee that eq. (4.31) does not impose any additional condi-

tions on the κ-traces of lower degree polynomials and allow one to represent the generating function

gThe independent proof of eq. (4.30) follows from the equalities:

[X ,exp(Y )] = lim
n→∞

[X ,(exp(Y/n))n] = lim
n→∞

n−1

∑
k=0

(exp(Y/n))k[X ,(1+
1

n
Y )](exp(Y/n))n−k−1.

The same trick can be used for the proof of eq. (4.29).
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in the form

Ψg = Φg(µ)+ (4.35)

+ ∑
L:λL 6=κ

∫ 1

0

µLdτ

1−κλL

∫

D1t (−κλLt1− t2)sp
(

et1(τS′′+S′)[bL,(τS′′+S′)]et2(τS′′+S′)g
)

,

where we introduced the generating functions Φg for the κ-trace of special polynomials, i.e., the

polynomials depending only on bL with λL = κ,

Φg(µ)
de f
= sp

(

eS′g
)

= Ψg(µ)
∣

∣

∣

(µ I=0 if λI 6=κ)
(4.36)

and

S′ = ∑
L:bL∈Bg,λL=κ

(µLbL); S′′ = S−S′ . (4.37)

The relation (4.35) successively expresses the κ-trace of higher degree regular polynomials via the

κ-traces of lower degree polynomials.

One can see that the arguments above prove the inductive hypotheses (i) and (ii) for the particular

case where the polynomials Pp(a) are regular and/or λI 6= κ. Note that for this case the induction (i)

on the grading E is trivial: one simply proves that the degree of the polynomial can be increased by

two.

Let us now turn to a less trivial case of the special polynomials:

sp
(

bIe
S′g−κeS′gbI

)

= 0 , where λI = κ . (4.38)

This equation implies

sp
(

[bI , eS′ ]g
)

= 0 , where λI = κ . (4.39)

Consider the part of sp([bI ,expS′]g) which is of degree k in µ and let E(g) = l + 1. By eq.

(4.32) the conditions (4.39) give

0 =
∫

sp
(

exp(t1S′)[bI ,S
′] exp(t2S′)g

)

D1t . (4.40)

Substituting [bI ,S
′] = µI +∑M fIMµM, where the quantities fIJ and µI are defined in eqs. (4.7)-

(4.8), one can rewrite eq. (4.40) in the form

µIΦg(µ) = −
∫

sp

(

exp(t1S′)∑
M

fIMµM exp(t2S′)g

)

D1t . (4.41)

Now we use the inductive hypothesis (i). The right hand side of eq. (4.41) is a κ-trace of a

polynomial of degree 6 k−1 in the aα i in the sector of degree k polynomials in µ , and E( fIMg) = l.

Therefore one can use the inductive hypothesis (i) to obtain the equality

∫

sp
(

exp(t1S′)∑
M

fIMµM exp(t2S′)g
)

D1t =

∫

sp
(

exp(t2S′)exp(t1S′)∑
M

fIMµMg
)

D1t,

where we used that sp(S′Fg) = κsp(FgS′)= sp(FS′g) by definition of S′.

Co-published by Atlantis Press and Taylor & Francis 
                      Copyright: the authors 
                                      287



S.E. Konstein and I.V. Tyutin

As a result, the inductive hypothesis allows one to transform eq. (4.38) to the following form:

XI = 0, where XI
de f
= µIΦg(µ)+ sp

(

exp(S′)∑
M

fIMµMg

)

. (4.42)

By differentiating this equation with respect to µJ one obtains after symmetrization

∂

∂ µJ
(µIΦg(µ))+ (I↔ J) =−

∫

sp
(

et1S′bJet2S′∑
M

fIMµMg
)

D1t +(I↔ J). (4.43)

An important point is that the system of equations (4.43) is equivalent to the original equations

(4.42) except for the ground level part Φg(0). This can be easily seen from the simple fact that the

general solution of the system of equations for entire functions XI(µ)

∂

∂ µJ
XI(µ)+

∂

∂ µ I
XJ(µ) = 0

is of the form

XI(µ) = XI(0)+∑
J

cIJ µJ

where XI(0) and cJI=−cIJ are some constants.

The part of eq. (4.42) linear in µ is however equivalent to the Ground Level Conditions analyzed

in Section 3. Thus, eq. (4.43) contains all information of eq. (3.2) additional to the Ground Level

Conditions. For this reason, we will from now on analyze equation (4.43).

Using again the inductive hypothesis we move bI to the left and to the right of the right hand

side of eq. (4.43) with equal weights equal to 1
2

to get

∂

∂ µJ
µIΦg(µ)+ (I↔ J) =−1

2
∑
M

sp
(

exp(S′){bJ , fIM}µMg
)

−

−1

2

∫

∑
L,M

(t1− t2)sp
(

exp(t1S′)FJLµL exp(t2S′) fIMµMg
)

D1t +(I↔ J) . (4.44)

The last terms with the factor t1− t2 vanish as is not difficult to show, so eq. (4.44) reduces to

LIJΦg(µ) =−
1

2
RIJ(µ) , (4.45)

where

RIJ(µ) = ∑
M

sp
(

exp(S′){bJ , fIM}µMg
)

+(I↔ J) (4.46)

and

LIJ =
∂

∂ µJ
µI +

∂

∂ µ I
µJ , (4.47)

or, equivalently,

LIJ = µI

∂

∂ µJ
+µJ

∂

∂ µ I
. (4.48)
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The differential operators LIJ satisfy the standard commutation relations of the Lie algebra

sp(2E(g))

[LIJ,LKL] =−(CIKLJL +CILLJK +CJKLIL +CJLLIK) . (4.49)

In Appendix A.2 we show by induction that this Lie algebra sp(2E(g)) realized by differential

operators is consistent with the right-hand side of the basic relation (4.45), i.e., that

[LIJ, RKL]− [LKL, RIJ] =−(CIKRJL +CJLRIK +CJKRIL +CILRJK) . (4.50)

Generally, these consistency conditions guarantee that eqs. (4.45) express Φg(µ) in terms of RIJ

in the following way

Φg(µ) = Φg(0)+
1

8E(g)

2E(g)

∑
I,J=1

∫ 1

0

dt

t
(1− t2E(g))(LIJRIJ)(tµ) , (4.51)

provided

RIJ(0) = 0 . (4.52)

The latter condition must hold for the consistency of eqs. (4.45) since its left hand side vanishes at

µ I = 0. In the expression (4.51) it guarantees that the integral over t converges. In the case under

consideration the condition (4.52) is met as follows from definition (4.46).

Taking Lemma 3.2 and the explicit form (4.46) of RIJ into account one concludes that eq. (4.51)

uniquely expresses the κ-trace of special polynomials in terms of the κ-traces of polynomials of

lower degrees or in terms of the κ-traces of special polynomials of the same degree multiplied by

elements of W (R) with a smaller value of E provided that the µ-independent term Φg(0) is an

arbitrary solution of the Ground Level Conditions. This completes the proof of Theorem 4.1. �

5. Non-deformed skew product HW(R)(0) of the Weyl superalgebra and a finite group

generated by reflections

Consider HW(R)(0). It has the same number of traces and supertraces as HW(R)(η) for an arbitrary

η and whose generation functions of these traces and supertraces can be written down explicitly.

This algebra is the skew product of the Weyl superalgebra and the group algebra of the finite group

W (R) generated by a root system R ⊂ V = R
N . Algebras of this type, and their generalizations,

were considered in [13].

The superalgebra HW(R)(0) is an associative superalgebra of polynomials in aα i , where α = 0,1

and i = 1, ...,N, with coefficients in the group algebra C[W (R)] subject to relations

gaα i =
N

∑
k=1

gk
i aα kg for any g ∈W (R) and aα i , (5.1)

[aα i,aβ j] = εαβ δi j , (5.2)

where εαβ is the antisymmetric tensor, ε01 = 1, and (gk
i ) is a matrix realizing the representation

of g ∈W (R) in End(V ). The commutation relations (5.1)–(5.2) suggest to define the parity π by
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setting:

π(aα i) = 1 and π(g) = 0 for any g ∈W (R). (5.3)

Unifying indices i and α in one index I one can rewrite eq. (5.2) as

[aI , aJ] = ωIJ , where ωIJ is a symplectic form. (5.4)

It is easy to find the general solution of eqs. (4.31) and (4.32) for the generating function of

κ-traces: (1) If g ∈W (R) and E(g) 6= 0, then sp(P(aI)g) = 0 for any polynomial P.

(2) If g ∈W (R) and E(g) = 0, then sp(g) is an arbitrary central function on W (R).

(3) Let E(g) = 0. There exists a complete set bα ,k of eigenvectors of g for each α , such that

gbK = ΛKbKg and CKL = [bK , bL] is nondegenerate skewsymmetric form such that CKL 6= 0 only if

λKλL = 1. In this notation, let

S(µ ,b) = ∑
K

µKbK ,

Q(µ) =
1

4
∑
KL

µK µL
C̃KL ,

where

C̃KL =−1+κλK

1−κλK

CKL = C̃LK .

Then

sp
(

eS(µ ,b)g
)

= eQ(µ)sp(g) . (5.5)

The solution of eq. (5.5) can be also obtained in the initial basis. Let S = ∑α i µα iaα i ,

Ψ(g,µ , t) = sp(etSg), Ψ(g,µ) = sp(eSg) = Ψ(g,µ ,1). Then

sp
(

[aα i,e
tSg]κ

)

= sp
(

tεαβ δi jµ
β jetSg+ etSaα jgp

j
i

)

, where p
j
i = (1−κg) j

i . (5.6)

Since E(g) = 0, the matrix (p
j
i ) is invertible, so eq. (5.6) gives

d

dt
Ψ(g,µ , t) =−µα iεαβ qk

i δk jµ
β jΨ(g,µ , t), where qk

i =

(

1

I−κg

)k

i

=
1

2

(

I+κg

I−κg

)k

i

+
1

2
δ k

i

So

d

dt
Ψ(g,µ , t) =−µα iεαβ ω̃i jµ

β jΨ(g,µ , t), where ω̃i j =
1

2

(

1+κg

1−κg

)k

i

δk j =−ω̃ ji

and finally

Ψ(g,µ) = exp
(

− 1

2
µα iεαβ ω̃i jµ

β j
)

sp(g).
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Appendix A. Proof of consistency conditions

A.1. Proof of consistency condition (4.33) for λ 6= κ.

Let parameters µ1
de f
= µK1 and µ2

de f
= µK2 be such that λ1 6= κ and λ2 6= κ, where λ1

de f
= λK1

and

λ2
de f
= λK2

. Let b1 de f
= bK1

and b2 de f
= bK2

. Let us prove by induction that conditions (4.33) hold. To

implement induction, we select a part of degree k in µ from eq. (4.31) and observe that this part

contains a degree k polynomial in bM in the left-hand side of eq. (4.31) while the part on the right

hand side of the differential version (4.31) of eq. (4.24) which is of the same degree in µ has degree

k−1 as polynomial in bM .

This happens because of the presence of the commutator [bL,S] which is a zero degree poly-

nomial due to the basic relations (1.7). As a result, the inductive hypothesis allows us to use the

properties of κ-trace provided that the above commutator is always handled as the right hand side

of eq. (1.7), i.e., we are not allowed to represent it again as a difference of the second-degree poly-

nomials.

Direct differentiation of Eq. (4.31) with the help of eq. (4.29) gives

(1−κλ2)
∂

∂ µ2

∫

(−κλ1t1− t2)sp
(

et1S[b1,S]et2Sg
)

D1t−
(

1↔ 2
)

=

=

(

∫

(1−κλ2)(−κλ1t1− t2)sp
(

et1S[b1,b2]et2Sg
)

D1t −
(

1↔ 2
)

)

+

+

(

∫

(1−κλ2)(−κλ1(t1 + t2)− t3)sp
(

et1Sb2et2S[b1,S]et3S
)

D2t −
(

1↔ 2
)

)

+

+

(

∫

(1−κλ2)(−κλ1t1− t2− t3)sp
(

et1S[b1,S]et2Sb2et3Sg
)

D2t −
(

1↔ 2
)

)

. (A.1)

We have to show that the right hand side of eq. (A.1) vanishes. Let us first transform the second

and the third terms on the right-hand side of eq. (A.1). The idea is to move the operators b2 through

the exponentials towards the commutator [b1,S] in order to use then the Jacobi identity for the

double commutators. This can be done in two different ways inside the κ-trace so that one has to

fix appropriate weight factors for each of these processes. The correct weights turn out to be

D2t(−κλ1(t1 + t2)− t3)b
2 ≡ D2t(−κλ1− t3(1−κλ1))b

2 =

= D2t

((

λ1λ2

1−κλ2

− t3(1−κλ1)

)

−→
b2 +

−κλ1

1−κλ2

←−
b2

)

(A.2)

and

D2t(−κλ1t1− t2− t3)b
2 ≡ D2t((−κλ1 +1)t1−1)b2 =

= D2t

((

t1(1−κλ1)−
1

1−κλ2

)

←−
b2− −κλ2

1−κλ2

−→
b2

)

(A.3)
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for the second and third terms in the right hand side of eq. (A.1), respectively. Here the notation−→
A and

←−
A imply that the operator A has to be moved from its position to the right and to the left,

respectively. Using eq. (4.30) along with the simple formula

∫

φ(t3, . . . tn+1)D
nt =

∫

t1φ(t2, . . . tn)D
n−1t (A.4)

we find that all terms which involve both [b1,S] and [b2,S] pairwise cancel after antisymmetrization

1↔ 2.

As a result, one is left with some terms involving double commutators which, thanks to the

Jacobi identities and antisymmetrization, are all reduced to

∫

(

λ1λ2t1 + t2− t1t2(1−κλ1)(1−κλ2)
)

sp
(

exp(t1S)[S, [b1,b2]]exp(t2S)g
)

D1t . (A.5)

Finally, we observe that this expression can be equivalently rewritten in the form

∫

(

λ1λ2t1+ t2− t1t2(1−κλ1)(1−κλ2)
)

(

∂

∂ t1
− ∂

∂ t2

)

sp
(

exp(t1S)[b1,b2]exp(t2S)g
)

D1t (A.6)

and after integration by parts cancel the first term on the right-hand side of eq. (A.1). Thus, it is

shown that eqs. (4.31) are compatible for the case λ1,2 6= κ.

Analogously, we can show that eqs. (4.31) are compatible with eq. (4.32). Indeed, let λ1 = κ,

λ2 6= κ. Let us prove that

∂

∂ µ2

sp
(

[b1,exp(S)]g
)

= 0 (A.7)

provided the κ-trace is well-defined for the lower degree polynomials. The explicit differentiation

gives

∂

∂ µ2

sp
(

[b1,exp(S)]g
)

=
∫

sp
(

[b1,exp(t1S)b2 exp(t2S)]g
)

D1t =

= (1−κλ2)
−1sp

(

[b1,(b2 exp(S)−κλ2 exp(S)b2)]g
)

+ . . . (A.8)

where dots denote some terms of the form sp
(

[b1,B]g
)

involving more commutators inside B,

which therefore amount to some lower degree polynomials and vanish by the inductive hypothesis.

As a result, we find that

∂

∂ µ2

sp
(

[b1,exp(S)]g
)

= (1−κλ2)
−1sp

(

(b2[b1,exp(S)]−κλ2[b
1,exp(S)]b2)g

)

+

+ (1−κλ2)
−1sp

(

([b1,b2]exp(S)−κλ2 exp(S)[b1,b2])g
)

. (A.9)

This expression vanishes by the inductive hypothesis, too.

A.2. The proof of consistency conditions (4.50) (the case of special polynomials)

In order to prove eq. (4.50) we use the inductive hypothesis (i). In this appendix we use the conven-

tion that any expression with the coinciding upper or lower indices are automatically symmetrized,
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e.g., F II de f
= 1

2
(F I1I2 +FI2I1). Let us write the identity

0 = ∑
M

sp
([

exp(S′){bI , fIM}µM,bJbJ

]

g
)

− (I↔ J) (A.10)

which holds due to Lemma 3.3 for all terms of degree k− 1 in µ with E(g) 6 l + 1 and for all

lower degree polynomials in µ (one can always move fIJ to g in eq. (A.10) combining fIJg into a

combination of elements of W (R) analyzed in Lemma 3.3).

Straightforward calculation of the commutator in the right-hand-side of eq. (A.10) gives 0 =

X1 +X2+X3, where

X1 = −∑
M,L

∫

sp
(

exp(t1S′){bJ ,FJL}µL exp(t2S′){bI , fIM}µMg
)

D1t− (I↔ J) ,

X2 = ∑
M

sp
(

exp(S′)
{

{bJ ,FIJ}, fIM

}

µMg
)

− (I↔ J) ,

X3 = ∑
M

sp
(

exp(S′)
{

bI ,{bJ , [ fIM ,bJ ]}
}

µMg
)

− (I↔ J) . (A.11)

The terms of X1 bilinear in f cancel due to the antisymmetrization (I↔ J) and the inductive hypoth-

esis (i). As a result, one can transform X1 to the form

X1 =

(

−1

2
[LJJ, RII ]+2sp

(

eS′{bI , fIJ}µJg
)

)

− (I↔ J). (A.12)

Substituting FIJ = CIJ + fIJ and fIM = [bI ,bM ]−CIM one transforms X2 to the form

X2 = 2CIJRIJ−2
(

sp
(

eS′{bJ, fIJ}µIg
)

− (I↔ J)
)

+Y, (A.13)

where

Y = sp
(

eS′
{

{bJ , fIJ}, [bI , S′]
}

g
)

− (I↔ J) . (A.14)

Using that

sp
(

exp(S′)
[

P fIJQ, S′
]

g
)

= 0 (A.15)

provided that the inductive hypothesis can be used, one transforms Y to the form

Y = sp

(

eS′
(

− [ fIJ, (bIS
′bJ +bJS′bI)]−bI [ fIJ , S′]bJ−bJ[ fIJ , S′]bI +[ fIJ, {bI ,bJ}]S′

)

g

)

.

(A.16)

Let us rewrite X3 in the form X3 = X s
3 +Xa

3 , where

X s
3 =

1

2
∑
M

sp
(

eS′
({

bI ,{bJ , [ fIM ,bJ ]}
}

+
{

bJ,{bI , [ fIM ,bJ]}
})

µMg
)

− (I↔ J) ,

Xa
3 =

1

2
∑
M

sp
(

eS′
({

bI ,{bJ , [ fIM ,bJ ]}
}

−
{

bJ ,{bI , [ fIM ,bJ]}
})

µMg
)

− (I↔ J) .

With the help of the Jacobi identity [ fIM ,bJ ]− [ fJM,bI ] = [ fIJ,bM ] one expresses X s
3 in the form

X s
3 =

1

2
sp
(

eS′ ({bI ,bJ}[ fIJ ,S
′]+ [ fIJ,S

′]{bI ,bJ}+2bI [ fIJ ,S
′]bJ +2bJ[ fIJ ,S

′]bI

)

g
)

.
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Let us transform this expression for Xa
3 to the form

Xa
3 =

1

2
∑
M

sp
(

eS′ [FIJ, [ fIM ,bJ]]µ
Mg
)

− (I↔ J). (A.17)

Substitute FIJ = CIJ + fIJ and fIM = [bI ,bM ]−CIM in eq. (A.17). After simple transformations

we find that Y +X3 = 0. From eqs. (A.12) and (A.13) it follows that the right hand side of eq. (A.10)

is equal to

1

2
([LII , RJJ]− [LJJ, RII])+2CIJRIJ.

This completes the proof of the consistency conditions (4.50).
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