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In the Coxeter group W (R) generated by the root system R, let T (R) be the number of conjugacy classes

having no eigenvalue +1 and let S(R) be the number of conjugacy classes having no eigenvalue −1. The

algebra HW (R) of observables of the rational Calogero model based on the root system R possesses T (R)
independent traces; the same algebra, considered as an associative superalgebra with respect to a certain natural

parity, possesses S(R) even independent supertraces and no odd trace or supertrace. The numbers T (R) and

S(R) are determined for all irreducible root systems (hence for all root systems). It is shown that T (R)≤ S(R),
and T (R) = S(R) if and only if superalgebra HW (R) contains a Klein operator (or, equivalently, W (R) ∋−1).
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1. Definitions and generalities

1.1. Traces

Let A be an associative superalgebra with parity π . All expressions of linear algebra are given

for homogeneous elements only and are supposed to be extended to inhomogeneous elements via

linearity.

A linear function str on A is called a supertrace if

str( f g) = (−1)π( f )π(g)str(g f ) for all f ,g ∈ A .

A linear function tr on A is called a trace if

tr( f g) = tr(g f ) for all f ,g ∈ A .

A linear function L is even if L( f ) = 0 for any f ∈ A such that π( f ) = 1, it is odd if L( f ) = 0

for any f ∈ A such that π( f ) = 0.
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Let A1 and A2 be associative superalgebras with parities π1 and π2 , respectively. Define the

tensor product A =A1⊗A2 as a superalgebra with the product (a1⊗a2)(b1⊗b2)= (a1b1)⊗(a2b2)

(no sign factors in this formula) and the parity π defined by the formula π(a⊗b) = π1(a)+π2(b).

Let Ti be a trace on Ai. Clearly, the function T such that T (a⊗b) = T1(a)T2(b) is a trace on A .

Let Si be an even supertrace on Ai. Clearly, the function S such that S(a⊗b) = S1(a)S2(b) is an

even supertrace on A .

1.2. Klein operator

Let A be an associative superalgebra with parity π . Following M.Vasiliev, see, e.g. [21], we say

that an element K ∈ A is a Klein operatora if π(K) = 0, K f = (−1)π( f ) f K for any f ∈ A and

K2 = 1. Every Klein operator belongs to the anticenter of the superalgebra A , see [18], p.41.b

Any Klein operator, if exists, establishes an isomorphism between the space of even traces and

the space of even supertraces on A . Namely, if f 7→ T ( f ) is an even trace, then f 7→ T ( f K) is a

supertrace, and if f 7→ S( f ) is an even supertrace, then f 7→ S( f K) is a trace.

1.3. Group algebra

Let V = R
n and G ⊂ End(V ) be a finite group. The group algebra C[G] of G consists of all linear

combinations ∑g∈W(R) αgḡ, where αg ∈ C. We distinguish g considered as an element of the group

G ⊂ End(V ) from the same element ḡ ∈ C[G] considered as an element of the group algebra. The

addition in C[G] is defined as follows:

∑
g∈G

αgḡ+ ∑
g∈G

βgḡ = ∑
g∈G

(αg +βg)ḡ

and the multiplication is defined by setting g1 g2= g1g2.

Note that the additions in C[G] and in End(V ) differ. For example, if I ∈ G is unity and the

matrix J =−I from End(V ) belongs to G, then I + J = 0 in End(V ) while I+ J 6= 0 in C[G].

1.4. Root systems

Let V = R
N be endowed with a non-degenerate symmetric bilinear form (·, ·) and the vectors ~ai

constitute an orthonormal basis in V , i.e.

(~ai, ~a j) = δi j.

Let xi be the coordinates of~x ∈V , i.e.~x =~ai xi. Then (~x,~y) = ∑N
i=1 xiyi for any~x,~y ∈V . The indices

i are raised and lowered by means of the forms δi j and δ i j.

aIn honor of Oskar Klein.
bLet A be an associative superalgebra with parity π . Its anticenter AC(A ) is defined by the formula

AC(A ) = {a ∈ A | ax− (−1)π(x)(π(a)+1)xa = 0 for any x ∈ A }.
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For any nonzero~v ∈V = R
N , define the reflections R~v as follows:

R~v(~x) =~x−2
(~x,~v)

(~v,~v)
~v for any~x ∈V. (1.1)

The reflections (1.1) have the following properties

R~v(~v) =−~v, R2
~v = 1, (R~v(~x), ~u) = (~x, R~v(~u)) for any~v,~x, ~u ∈V.

A finite set of vectors R ⊂V is said to be a root system if the following conditions hold:

i) R is R~v-invariant for any~v ∈ R,

ii) if~v1,~v2 ∈ R are collinear, then either~v1 =~v2 or~v1 =−~v2.

Clearly, the group W (R) ⊂ O(N,R) ⊂ End(V ) generated by all reflections R~v with ~v ∈ R is

finite.

Let V = V1 ⊕V2, where V1 6= {0} and V2 6= {0} are orthogonal with respect to the form (·, ·),
and let a root system on V have a decomposition: R = R1

⋃

R2, where Ri ⊂ Vi for i = 1,2. Then

each Ri ⊂ Vi is a root system. We say in this case that R is reducible, and denote this fact as

R = R1 +R2. Note, that each Ri can be empty. A root system which is not reducible is called

irreducible.

If R = R1 +R2, then W (R) =W (R1)×W (R2).

Any root system has a decomposition R = R1 +R2 + . . .+Rn, where the R j are irreducible

root systems.

All irreducible root systems are listed in numerous literature (see, e.g., [1], [8], [17], [2], [20],

[6], [19]). As it follows from the definition of a root system given above, we consider both crystal-

lographic (An, Bn, Cn, Dn, E6, E7, E8, F4, G2) and non-crystallographic (H3, H4, I2(n)) root systems.

We consider also the empty root system, assuming that it generates the trivial group consisting

of the unity element only.

The definition of reducible root system implies that the empty root system in R
N is reducible

for any N > 1. The irreducible empty root system — we denote it A0 — belongs to R.

1.5. The superalgebra of observables

Let R be a finite root system. Let η be a set of constants η~v with~v ∈ R such that η~v = η~w if R~v and

R~w belong to one conjugacy class of W (R).

Let H α , where α = 0,1 , be two copies of V with orthonormal bases aα i ∈ H α , where i =

1, ... , N.

Definition 1.1. The superalgebra HW(R)(η) is an associative superalgebra with unity 1; it is the

superalgebra of polynomials in the aα i with coefficients in the group algebra C[W (R)] subject to

the relations

ghα = g(hα )hα g for any g ∈W (R) and hα ∈ H
α , (1.2)

[xα I,yβ I] = εαβ

(

(~x,~y)1̄I+ ∑
~v∈R

η~v
(~x,~v)(~y,~v)

(~v,~v)
1̄R~v

)

for any xα ∈ H α and yβ ∈ H β , (1.3)
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where εαβ is the antisymmetric tensor, ε01 = 1, and 1̄ is the unity in C[aα i]. The element 1 = 1̄ · I is

the unity of HW(R)(η).c The action of any operator g ∈ End(V ) is given by a matrix (g j
i ):

g(aα ih
i) = aα ig

j
i h j, g1(g2(hα )) = (g1g2)(hα ) for any hα = aα ih

i ∈ H
α , (1.4)

g(1̄) = 1̄. (1.5)

The commutation relations (1.3) suggest to define the parity π by setting:

π(aα ig) = 1 for any α , i and g ∈C[W (R)]; π(1̄g) = 0 for any g ∈ C[W (R)].

We say that HW(R)(η) is a superalgebra of observables of the Calogero model based on the root

system R.

Clearly, HW(R1+R2)(η) = HW(R1)(η)⊗HW(R2)(η).

These algebras HW(R)(η) (with parity forgotten) are particular cases of Symplectic Reflection

Algebras [3] and are also known as rational Cherednik algebras (see, e.g., [4]).

It follows from eqs. (1.4) and (1.2) that if I ∈W (R)⊂End(V ) is the unity and J =−I ∈End(V )

belongs to W (R), then K := 1̄J ∈ HW(R)(η) is a Klein operator in HW(R)(η).

2. Traces and supertraces on HW(R)(η)

The following facts were proved in [14]:

Theorem 2.1. Let the Coxeter group W (R)⊂End(RN) generated by the finite root system R ⊂R
N

have T (R) conjugacy classes without eigenvalue 1 and S(R) conjugacy classes without eigenvalue

−1.

Then the superalgebra HW(R)(η) possesses T (R) independent traces and S(R) independent

supertraces.

Theorem 2.2. Each trace and each supertrace on the superalgebta HW(R)(η) is even.

Theorem 2.1 helps to find the numbers T (R) and S(R) for an arbitrary root system R.

Theorem 2.2 implies, clearly, the following statement

Theorem 2.3. In the terms of Theorem 2.1, the following relations are satisfied:

T (R1 +R2) = T (R1)T (R2), (2.1)

S(R1 +R2) = S(R1)S(R2). (2.2)

Therefore, the problem of finding T (R) and S(R) is reduced to the problem of finding T (R)

and S(R) for irreducible root systems R.

Here, the number T (R) of traces and the number S(R) of supertraces for all irreducible root

systems are found and compared. The result is presented in Sections 3 and 4.

It follows from the results presented in Section 3, that if T (R) = S(R) for some irreducible root

system R, then −I ∈W (R), and so HW(R)(η) has a Klein operator.

The results of this paper were preprinted in [13] and [12].

cClearly, HW (R) contains neither 1̄ ∈ C nor I.
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3. The numbers T (R) of traces and S(R) of supertraces for irreducible root system R

if T (R) = S(R)

R T (R) = S(R)
presence of −I
in W (R) proved in

proof in:

A1 1 [1], Table I (XI) Appendix A.2

Bn,Cn

the number of partitions
of n into the sum of
positive integers

[1], Tables II, III (XI) Appendix A.3

D2n

the number of partitions
of 2n into the sum of
positive integers with
an even number of summands

[1], Table IV (XI) Appendix A.4

E7 12 [1], Table VI (XI) Appendix A.6

E8 30 [1], Table VII (XI) Appendix A.7

F4 9 [1], Table VIII (XI) Appendix A.8

G2 3 [1], Table IX (XI) Appendix A.9

H3 4 [6], p.160; Appendix A.10 Appendix A.10

H4 20 [6], Table 3, K2 Appendix A.11

I2(2n) n Appendix A.12 Appendix A.12

4. The numbers T (R) of traces and S(R) of supertraces for irreducible root system R

if W (R) 6∋ −I

R T (R) S(R) proof in:

A0 0 1 Appendix A.1

An−1, n ≥ 3 1
the number of partitions
of n into the sum of odd
positive integers

Appendix A.2

D2n+1

the number of partitions
of 2n+1 into the sum of
positive integers with
an even number of summands

the number of partitions
of 2n+1 into the sum of
positive integers with
an odd number of summands

Appendix A.4

E6 5 9 Appendix A.5

I2(2n+1) n n+1 Appendix A.12

The Weyl superalgebra. Let Wn be Weyl superalgebra with n pairs of generating elements:

Wn =C[aα i], where α = 0,1 and i = 1, ...,n, subject to relations [aα i, aβ j] = εαβ δi j and with parity

defined by π(aα i) = 1. Clearly, Wn = (W1)
⊗n. Further, superalgebra HW(A0)(η) does not depend on

η and since A0 is irreducible, HW(A0)(η) =W1. So, due to first row of Table 4 and Theorem 2.3, the

Weyl superalgebra Wn has 1 supertrace and 0 traces.

5. Inequality Theorem

Theorem 5.1. Let HW(R)(η) has T (R) traces and S(R) supertraces. Then
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i) S(R)> 0,

ii) T (R)≤ S(R),

iii) T (R) = S(R) if and only if W (R) contains −I. Equivalently, T (R) = S(R) if and only if

HW(R)(η) contains a Klein operator.

Proof. Since each group contains unity I and spectrum of I does not contain −1, it follows that

S(R)> 0.

Let K ∈ HW(R(η) be a Klein operator. Then K establishes one-to-one correspondence between

traces and supertraces:

tr( f ) = str( f K), str(g) = tr(gK)

Let T (R) = S(R). Then the decomposition of R in the sum of irreducible root systems does

not contain root systems from Table 4, namely A0, An for n ≥ 2, D2n+1 for n ≥ 1 and E6, because

T (Ri)< S(Ri) for all these root systems. So, this decomposition contains the root systems listed in

Table 3 only, each of these groups has the element −I and the direct product of all these −Is is −I

in W (R).

It remains to prove the inequalities

T (An)< S(An) for n = 0 and n ≥ 2, (5.1)

T (D2n+1)< S(D2n+1) for n ≥ 1, (5.2)

T (E6)< S(E6). (5.3)

Inequalities (5.1) and (5.3) manifestly follow from Table 4, and inequality (5.2) follows from Table

4 and Lemma 5.1, ii) below.

Lemma 5.1.d Let E(n) be the number of partitions of n into the sum of positive integers with

an even number of summands. Let O(n) be the number of partitions of n into the sum of positive

integers with an odd number of summands. Then

i) E(2k)> O(2k) for k ≥ 2,

ii) E(2k−1)< O(2k−1) for k ≥ 1,

iii) E(2) = O(2),

iv) |E(n)−O(n)| = R(n), where R(n) is the number of partitions of n into the sum of different

positive odd integers.

Proof. Let amn be the number of partitions of n into the sum of positive integers with m summands,

am0 = δm0. Introduce the generating function

F(t,x) =
∞

∑
m,n=0

amntmxn.

Then

∑
n

E(n)xn =
1

2
(F(t,x)+F(−t,x))|t=1 and ∑

n

O(n)xn =
1

2
(F(t,x)−F(−t,x))|t=1.

dThis Lemma is a simple exercise from Partitions Theory, see, e.g., [7], [16] and references therein.
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Hence,

∑
n

(O(n)−E(n))xn =−F(−t,x)|t=1.

Further,

F(t,x) = (1+ tx+(tx)2 +(tx)3 + · · ·)(1+ tx2 +(tx2)2 +(tx2)3 + . . .) . . .

=
1

(1− tx)(1− tx2)(1− tx3) . . .

So

−F(−t,x)|t=1 =− 1

(1+ x)(1+ x2)(1+ x3) . . .
(5.4)

Multiplying both terms of fraction (5.4) by (1− x)(1− x2)(1− x3) . . . we obtain

−F(−t,x)|t=1 =− (1− x)(1− x2)(1− x3) . . .

(1− x2)(1− x4)(1− x6) . . .
=−(1− x)(1− x3)(1− x5) . . . (5.5)

Now, it suffices to notice that eq. (5.5) can be rewritten in the form

∑
n

(O(n)−E(n))xn =−F(−t,x)|t=1 = ∑
n is odd

R(n)xn − ∑
n is even

R(n)xn .
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Appendix A. Computing the number of traces and supertraces for all irreducible root

systems

A.1. Root system A0

The Weyl algebra C[a, a+] generated by elements a and a+ satisfying the relation [a,a+] = 1 may

be considered as the algebra of observables of the Calogero model based on the empty irreducible

root system A0, which generates the trivial group consisting only of the unity 1. This group has 1

conjugacy class without -1 in its spectrum and 0 conjugacy classes without 1 in its spectrum. So,

this Weyl algebra has 0 traces and 1 supertrace.

A.2. Root systems An−1 for n > 1

It is well-known that W (An−1) = Sn and V = span(e1 − e2, e2 − e3, ... ,en−1 − en). Each element of

Sn can be decomposed in the product of cycles of the form

σ : ei1 → ei2 → . . .→ eik → ei1 .
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A.2.1. The number of traces

If k < n, then each cycle σ : ei1 → ei2 → . . .→ eik → ei1 has eigenvalue +1 with eigenvector

ei1 + ei2 + . . .+ eik −
k

n

n

∑
s=1

es.

The only conjugacy class without eigenvalue +1 is the one containing the cycle of maximal

length n:

σ : e1 → e2 → . . .→ en → e1

because its characteristic polynomial has the form

f (t) = 1+ t + ...+ tn−1 .

A.2.2. The number of supertraces (see also [15])

The cycle σ : ei1 → ei2 → . . . → eik → ei1 has eigenvalue −1 if and only if k is even. The corre-

sponding eigenvector has the form

ei1 − ei2 + . . .− eik .

So, the number of conjugacy classes without eigenvalue −1 is equal to the number of partitions

of n into the sum of positive odd integers [15].

A.2.3. Presence of −I in the group W (An−1), where n > 1.

If An−1 ∋ −I, then n = 2 (see [1], Table I (XI)). The group W (A1) consists of two elements: I and

−I.

A.3. Root systems Bn and Cn

The Coxeter group G =W (Bn) = W (Cn) is generated by the permutation group Sn and reflections

Ri : ei →−ei, e j → e j for i 6= j, see [1]. Each element g ∈ G can be represented in the form

g = σ
n

∏
i=1

R
αi

i , where σ ∈ Sn and αi ∈ {0, 1}.

The set (σ , α1, ...αn) unambiguously defines every element of G.

Since each permutation can be decomposed in the product of commuting cycles,

σ = ∏ σ̂k, where σ̂k : ei1 → ei2 → . . .→ eik → ei1 ,

we can introduce what we call R-cycles by the formula

σ̃k = σ̂kR
αi1

i1
R

αi2

i2
. . .R

αik

ik

So, each element g ∈ G has the form

g =∏
p

σ̃p. (A.1)

We say that the value εR(σ̃) = |αi1 +αi2 . . .+ αik |mod2 is the R-parity of the R-cycle σ̃ . Let

l(σ̃) = k, where k is the length of the cycle σ̂ .
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It is easy to prove that an R-cycle σ̃1 is conjugated to an R-cycle σ̃2 if and only if l(σ̃1) = l(σ̃2)

and εR(σ̃1) = εR(σ̃2).

So, a conjugacy class in G is characterized by the numbers p1, p2, . . . , pn and q1, q2, . . . , qn,

where pi is the number of R-cycles of length i and R-parity 0, and qi is the number of R-cycles of

length i and R-parity 1, in the presentation of g in the form (A.1).

The numbers pi and qi satisfy the relation

n

∑
i=1

(i pi + iqi) = n. (A.2)

A.3.1. The number of traces

The characteristic polynomial of the R-cycle σ̃ has the form

(−1)l(σ̃ )(t l(σ̃ )− (−1)ε(σ̃)). (A.3)

It has no root +1 if ε(σ̃) = 1.

So, if given conjugacy class has no eigenvalue +1, then pi = 0 and ∑i iqi = n.

A.3.2. The number of supertraces (see also [9])

The characteristic polynomial of an R-cycle σ̃ (A.3) has no root −1 if either l(σ̃) is even and

ε(σ̃) = 1 or if l(σ̃) is odd and ε(σ̃) = 0.

So, if a given conjugacy class has no eigenvalue −1, then p2k = 0 and q2k+1 = 0 and eq. (A.2)

gives p1 +2q2 +3p3 +4q4 + ...= n.

A.3.3. Presence of −I in the group W (Bn).

It is easy to see that −I = Πn
i=1Ri.

A.4. Root systems Dn

The Coxeter group W (Dn) is a subgroup of W (Bn), namely, g = ∏ σ̃s belongs to W (Dn) if

(∑s εR(σ̃s)) |mod2 = 0 [1].

A.4.1. The number of traces

So, g has no eigenvalue +1 if pi = 0, ∑i imi = n and (∑i mi) |mod2 = 0.

This implies that T (Dn) is equal to the number of partition of n into the sum of positive integers

with an even number of summands.

A.4.2. The number of supertraces (see also [9])

Analogously, S(Dn) is equal to the number of partitions of n into the sum of positive integers with

an even number of even integers.

Clearly, if n is even, then S(Dn) is equal to the number of partitions of n into the sum of positive

integers with an even number of summands, and if n is odd, then S(Dn) is equal to the number of

partitions of n into the sum of positive integers with an odd number of summands.
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A.4.3. Presence of −I in the group W (Dn).

If n is even, then −I = Πn
k=1Rk.

A.5. Root system E6

The conjugacy classes of the Weyl group E6 are described in Table 9 of [2]e.

A.5.1. The number of traces

The following 5 classes do not have the root +1:

A3
2, A5 ×A1, E6, E6(a1), E6(a2).

A.5.2. The number of supertraces

The following 9 classes do not have the root −1:

φ , A2, A2
2, A4, D4(a1), A3

2, E6, E6(a1), E6(a2).

A.6. Root system E7

The conjugacy classes of the Weyl group E7 are described in Table 10 of [2]e.

A.6.1. The number of traces

The last 12 classes in Table 10 of [2] do not have the root +1:

A7
1, A2

3 ×A1, A5 ×A2, A7, D4 ×A3
1, D6 ×A1, D6(a2)×A1,

E7, E7(a1), E7(a2), E7(a3), E7(a4).

A.6.2. The number of supertraces

The following 12 classes do not have the root −1:

φ , A2, A2
2, A4, D4(a1), A3

2, A4 ×A2, A6, D6(a1), E6, E6(a1), E6(a2).

A.7. Root system E8

The conjugacy classes of the Weyl group E8 are described in Table 11 of [2]e.

A.7.1. The number of traces

The last 30 classes in Table 11 of [2] do not have the root +1:

A8
1, A4

2, A2
3 ×A2

1, A2
4, A5 ×A2×A1, A7 ×A1, A8, D4 ×A4

1, D2
4, D4(a1)

2,

D5(a1)×A3, D6 ×A2
1, D8, D8(a1), D8(a2), D8(a3), E6 ×A2, E6(a2)×A2,

E7 ×A1, E7(a2)×A1, E7(a4)×A1, E8, E8(ai) (i = 1, ...8).

e In [2], the Carter diagrams are used to describe the conjugacy classes of the finite Weyl groups. Additional results on

the Carter diagrams are recently obtained in [20]. In particular, two problems are discussed:

i) two Carter diagrams can correspond to one conjugacy class ([20], Theorem 4.1) and

ii) certain Carter diagrams can correspond to two distinct conjugacy classes ([20], Theorem 6.5).
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A.7.2. The number of supertraces

The following 30 classes do not have the root −1:

φ , A2, A2
2, A4, D4(a1), A3

2, A4 ×A2, A6, D4(a1)×A2, D6(a1),

E6, E6(a1), E6(a2), A4
2, A2

4, A8, D4(a1)
2, D8(a1), D8(a3),

E6 ×A2, E6(a2)×A2, E8, E8(ai) (i = 1, ...8).

A.8. Root system F4

The conjugacy classes of the Weyl group F4 are described in Table 8 of [2]e.

A.8.1. The number of traces

The last 9 classes in Table 8 of [2] do not have the root +1:

A4
1, A2 × Ã2, A3 × Ã1, C3 ×A1, D4, D4(a1), B4, F4, F4(a1).

A.8.2. The number of supertraces

The following 9 classes do not have the root −1:

φ , A2, Ã2, B2, A2 × Ã2, D4(a1), B4, F4, F4(a1).

A.9. Root system G2

The conjugacy classes of the Weyl group G2 are described in Table 7 of [2]e.

A.9.1. The number of traces

The last 3 classes in Table 7 of [2] do not have the root +1:

A1 × Ã1, A2, G2, .

A.9.2. The number of supertraces (see [10])

The following 3 classes in Table 7 of [2] do not have the root −1:

φ , A2, G2, .

The fact that G2 has 3 conjugacy classes without eigenvalue +1 and 3 conjugacy classes without

eigenvalue −1 can be derived also from Appendix A.12 because G2 = I2(6).
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A.10. Root system H3

Let k = 1
2
(
√

5+1). Then the reflections

a =





1 0 0

0 −1 0

0 0 1



 , b =
1

2





1 k k−1

k 1− k −1

k−1 −1 k



 , c =





−1 0 0

0 1 0

0 0 1





corresponding to the roots~e2, 1
2
(−~e1 + k~e2 + k−1~e3) and~e1, respectively, satisfy the relations

a2 = b2 = c2 = 1, (ab)5 = (bc)3 = (ac)2 = 1

and generate the Coxeter group H3.

As H3 = Se
5 ×C2 (See [1], Ch.VI, Sect. 4, Ex.11 d), p. 284; [6], p.160 and references therein),

where Se
5 is the group of even permutations of 5 elements, C2 = {1,−1}, it follows that H3 has 10

conjugacy classes, 5 with a positive determinant and 5 with a negative one. (Observe that |Se
5|= 60,

hence |H3|= 120.)

The conjugacy classes with positive determinant are described by their representatives

The representative The characteristic polynomial

I (1− t)3

ac (1− t)(1+ t)2

bc (1− t)(t2 + t +1)

ab (1− t)[t2 +(1− k)t +1]

abab (1− t)(t2 + kt +1)

(A.4)

A.10.1. The number of supertraces

Only four conjugacy classes have no roots −1, their representatives are I, bc, ab and abab.

A.10.2. The number of traces

Each of the characteristic polynomials (A.4) has the root +1. Besides, the conjugacy class with

representative −ac has the root +1, so only four conjugacy classes with negative determinant have

no roots +1. Their representatives are −I, −bc, −ab and −abab.

So, the number of conjugacy classes without root +1 is equal to 4.

A.10.3. Presence of J =−I in W (H3).

The group H3 contains the element J =−I = (ababc)3 (see [5], p.11).
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A.11. Root system H4

According to [6], all 34 conjugacy classes of the Coxeter group H4 are described by their represen-

tatives acting on the space of quaternions

glr : x 7→ lxr∗, (A.5)

g∗p : x 7→ px∗. (A.6)

All 25 pairs of unit quaternions l and r and 9 unit quaternions p are listed in Table 3 of [6].

A.11.1. The number of traces

Each operator (A.6) has the root +1. Indeed, the equation px∗ = x has a nonzero solution x = 1+ p

if p 6=−1, and x is an arbitrary imaginary quaternion if p =−1.

Each operator (A.5) does not have the root +1 if and only if

l0 − r0 6= 0. (A.7)

Indeed, the determinant of the map x 7→ lx− xr is equal to 4(l0 − r0)
2.

There are 20 pairs (l,r) in Table 3 of [6] satisfying the condition (A.7), namely, Ki with i = 2, 5,

7, 9 to 25.

A.11.2. The number of supertraces

Each operator (A.6) has the root −1. Indeed, the equation px∗ =−x has nonzero solution x = 1− p

if p 6= 1, and x is an arbitrary imaginary quaternion if p = 1.

Each operator (A.5) does not have the root −1 if and only if

l0 + r0 6= 0. (A.8)

Indeed, the determinant of the map x 7→ lx− xr is equal to 4(l0 + r0)
2.

There are 20 pairs of l,r in Table 3 of [6] satisfying the condition (A.8), namely, Ki with i = 1,

4, 6, 8, 10 to 25.

A.11.3. Presence of element J =−I in W (H4).

The element K2 in Table 3 of [6] with l =−r = 1 is −I in H4.

A.12. Root systems I2(n)

It is convenient to use C instead of R
2 to describe W (I2(n)). The root system I2(n) contains 2n

vectors vk = exp(πik/n), where k = 0,1, ...,2n−1. The corresponding Coxeter group W (I2(n)) has

2n elements, n reflections Rk acting on z, z∗ ∈ C as follows

Rkz = −z∗v2
kRk,

Rkz∗ = −zv∗k
2
Rk, k ∈ Zn

and n elements of the form Sk = RkR0, where S0 is the unity in W (I2(n)). These elements satisfy the

following relations

RkRl = Sk−l, SkSl = Sk+l , RkSl = Rk−l, SkRl = Rk+l.
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Obviously, the reflections R2k lie in one conjugacy class and R2k+1 lie in another one if n is even.

If n is odd, then all reflections Rk lie in one conjugacy class. Each reflection has both eigenvalues

+1 and −1.

The rotation Sk has no eigenvalues −1 if k 6= n/2, and has no eigenvalues +1 if k 6= 0. If n is

even, then Sn/2 =−I.

Rotations Sk and S−k form a conjugacy class.

So, the number of conjugacy classes without +1 is equal to
[

n
2

]

, and the number of conjugacy

classes without −1 is equal to
[

n+1
2

]

, see [10].

References
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