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In this paper, using the properties of hyperelliptic σ- and ℘- functions, ℘µν := ∂µ∂ν logσ, we propose an algo-
rithm to obtain particular solutions of the coupled nonlinear differential equations, such as a general (2+1)-
dimensional breaking soliton equation and static Veselov-Novikov(SVN) equation, the solutions of which can
be expressed in terms of the hyperelliptic Kleinian functions for a given curve y2= f (x) of (2g+1)- and (2g+2)-
degree with genus G . In particular, owing to the idea of CK direct method, the algorithm can generate a series
of new forms of hyperelliptic function solutions with the same genus G .
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1. Introduction

In nonlinear mathematical physics, analytic solutions of nonlinear differential equations (NLDE)
play the more and more important role. Different approaches, particularly in soliton theory, pro-
vide many tools for searching exact solutions. Various kinds of exact solutions have been presented
for NLDE. Successful methods include inverse scattering transform [1], Lie group [2], Darboux
transformation [3], Hirota direct method [4], algebro-geometrical approach [5], et al. The algebro-
geometrical approach presents quasi-periodic or algebro-geometric solutions to many nonlinear dif-
ferential equations, which were originally obtained on the Korteweg-de Vries (KdV) equation based
inverse spectral theory and algebro-geometric method developed by pioneers such as Novikov,
Dubrovin, Mckean, Lax, Its, Matveev, and co-workers [5-10] in the late 1970s. Recently, this theory
has been extended to a large class of nonlinear integrable equations[11-17]. By virtue of Riemann
theta function, we obtain some quasi-periodic wave solutions of nonlinear equations, discrete equa-
tions and supersymmetric equations [43-48].
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The goal of this paper is to present an algorithm for obtain particular solutions of nonlinear
differential equations by virtue of CK direct method [18]. Taking a general (2+1)-dimensional
breaking soliton equation as an example, the solutions of which can be expressed in terms of the
hyperelliptic Kleinian functions with a given curve y2 = f (x) of (2g+1)- and (2g+2)- degrees whose
genus is G , along the lines of the study of Baker’s sigma function [19,20]. This construction means
re-evaluation of Baker’s studies on hyperelliptic functions which were conducted 100 years ago.
According to [20], in around 1898 he discovered series of partial differential equations which led
to the hyperelliptic σ-function , and ℘-functions, ℘µν := ∂µ∂ν logσ. If one saw the partial differen-
tial equations, one would know that they are related to soliton equations such as the KdV equation
and KP equation. Further as the paper [20] requires knowledge of hyperelliptic σ- and ℘- func-
tions which might not be familiar nowadays [19], it is not easy to understand its contents and to
confirm the derivation. Recently, many authors, such as Buchstaber, Eilbeck, Ônishi and others [21-
31], have extended it from the point of view of soliton theory. Their methods are consistent with
the zero curvature condition in modern soliton theory. Using the hyperelliptic sigma function and
defining natural sigma functions of more general algebraic curves, the authors in [21-26] have been
constructing deeper theories of Abelian functions and soliton equations[35-42].

Firstly, let us give the conventions which express the hyperelliptic functions throughout this
paper. We denote the set of complex numbers by C and the set of integers by Z.
Convention 1.1. A hyperelliptic curve-Riemann surface-Cg with genus g (g > 0): Hyperelliptic
curve of (2g+1)- and (2g+2)- degrees, respectively, given by the affine equations

y2 = λ0+λ1x+λ2x2+ · · ·+λ2g+1x2g+1 = (x−a1) · · · (x−ag)(x−ag+1)(x−b1) · · · (x−bg),

y2 = λ̄0+ λ̄1x+ λ̄2x2+ · · ·+ λ̄2g+2x2g+2 = (x− c1) · · · (x− cg)(x− cg+1)(x−d1) · · · (x−dg+1),

where λ2g+1≡1, λ̄2g+1≡1 and the λ j, λ̄ j are complex numbers, the ai, b j, ci, di (i=1, . . . ,g +
1, j=1, . . . ,g) are complex values.
Proposition 1.2. There exist several symmetries which express the same curve Cg.
(i) Translational symmetry: for ∀α0 ∈ C, (x,y)→ (x+α0,y), with b j→ b j+α0.
(ii) Dilatation symmetry: for ∀α1 ∈ C, (x,y)→ (α0x,α2g+1

0 y), with b j→ α0b j.
(iii) Inversion symmetry: for fixing b j1 , (x,y) → (1/(x − b j1),y

∏
j1, j2

√
b j1 −b j2/(x − b j1)(2g+1)/2),

with b j1 → 1/(b j2 −b j1).
Let the infinite point be located on this curve, we should embed it in a projective space. However

as this is not difficult, we assume that the curve y2 = f (x) includes the infinite point. Further, for
simplicity, we also assume that f (x) = 0 is not degenerate. We sometimes express a point P in the
curve by the affine coordinate (x,y).
Definition 1.3. ([19.p.195],[20,p.137],[27,p.385])
(i) Let us denote the homology of a hyperelliptic curve Cg by

H1(Cg,Z) =
g⊕

j=1

Zα j⊕
g⊕

j=1

Zβ j, (1.1)

where these intersections are given as [αi,α j] = 0, [βi,β j] = 0 and [αi,β j] = δi j.
(ii) The unnormalized differentials of the first kind are defined as

ω1 :=
dx
2y
, ω2 :=

xdx
2y
, · · · ,ωg :=

xg−1dx
2y
. (1.2)
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(iii) The unnormalized differentials of the second kind are defined as

η j :=
1
2y

2g− j∑
k= j

(k− j+1)λk+ j+1xkdx, ( j = 1,2, . . . ,g). (1.3)

(iv) The complete hyperelliptic integral matrices of the second kind are defined by

ζ′ :=
∫
α j

ηi

 , ζ′′ :=
∫
β j

ηi

 , ζ :=

 ζ′
ζ′′

 . (1.4)

(v) The unnormalized period matrices are defined as

Ω′ :=
∫
α j

ωi

 , Ω′′ :=
∫
β j

ωi

 , Ω :=

 Ω′
Ω′′

 . (1.5)

(vi) The normalized period matrices are given by

t[ω̂1 · · · ω̂g] := Ω′−1 t[ω1 · · ·ωg], T = Ω′−1Ω′′, Ω̂ :=

1g

T

 . (1.6)

(vii) By defining the Abel map for the gth symmetric product of the curve Xg and for points
{Qi}i=1,2,...,g in the curve:

ω : S ymg(Xg)→ Cg

ωk(Qi) :=
g∑

i=1

∫ Q1

∞
ωk

 ,
ω̂ : S ymg(Xg)→ Cg

ω̂k(Qi) :=
g∑

i=1

∫ Q1

∞
ω̂k


(1.7)

the Jacobi varieties Jg and Ĵg are defined as complex torus,

Jg := Cg/Λ, Ĵg := Cg/Λ̂. (1.8)

Here Λ (Λ̂) is a lattice generated by Ω (Ω̂).
(viii) We define the theta function over Cg, characterized by Λ̂, as [43, 44]

θ

a

b

 (z) := θ

a

b

 (z;T) :=
∑
n∈Zg

exp
[
2iπ

{
1
2

t
(n+a)T(n+a)+t (n+a)(z+b)

}]
(1.9)

for g-dimensional vectors a and b.
Remark 1.4. The first and second period matrices satisfy the generalized Legendre relations to the
genus g,

ω
′
ω

T −ωω′T = 0, ζ′ωT −ζω′T = − iπ
2

Ig, ζ
′
ζ

T −ζζ′T = 0, (1.10)

where Ig is the g×g unit matrix.
We should note that these contours in the integrals are, for example, given in p 3.83 in Ref. [30].

It is also noted that in Eq.(1.2), we have employed the convention of Refs. [27], which differs
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from Baker’s original one by a factor of 1/2. Due to the difference, the results and definitions in
Refs. [19, 20] will be slightly modified but the factor set us free from extra constant factors in
various situations [27, 29]. And based on references, we give the following definition.
Definition 1.5. (℘-function, Baker). The coordinate in Cg for points (xi,yi)i=1,2,...,g of the cure y2 =

f (x) is given by

u j :=
g∑

i=1

∫ (xi,yi)

g
du(i)

j . (1.11)

(i) The hyperelliptic function σ, which is a holomorphic function over u ∈ Cg, is defined by

σ(u) = σ(u;Cg) := γexp(−1
2

t
uζ′ω′−1u)ϑ

δ′′
δ′

 (ω′−1u;τ), (1.12)

where

δ′ :=t
[
g
2

g−1
2
· · · 1

2

]
, δ′′ :=t

[
1
2

1
2
· · · 1

2

]
. (1.13)

(ii) In terms of the σ-function, the ℘-function and Kleinian S-function over the hyperelliptic curve
are defined as logarithmic derivatives of the fundamental σ

℘µν = −
∂2

∂uµ∂uν
logσ(u), µ,ν = 1,2, . . . ,g. (1.14)

The multi-index symbols ℘i1,i2,··· ,in (n ≥ 2) are defined in similar way,

℘i1,i2,··· ,in(u) = − ∂
∂ui1

∂

∂ui2
· · · ∂
∂uin

logσ(u), i1 ≤ i2 ≤ · · · ≤ in, (1.15)

with the vector u belongs to the Jacobian variety Jav(Xg) of hyperelliptic curves.
One also consider these functions as hyperelliptic Abelian functions under the construction of

Kleinian, called hyperelliptic function below, which is a natural generalization of the Weierstrass
approach in elliptic functions theory to the case of a hyperelliptic cure of genus g > 1.

The rest of paper is organized as follows. In Sect. 2, we briefly introduce the hyperelliptic
functions of finite genus G . In sect. 3, an algorithm is proposed to obtain particular solutions of a
general (2+1)-dimensional breaking soliton equation (3.1) and static Veselov-Novikov(SVN) equa-
tion (3.18) , the solutions of which can be expressed in terms of the hyperelliptic Kleinian functions
for a given curve y2= f (x) of (2g+1)- and (2g+2)- degree with genus G . Finally, some conclusions
and remarks are presented.

2. The hyperelliptic functions of finite genus G

The hyperelliptic functions ℘i j...k with finite genus G are the generalization of the Weierstrass func-
tion ℘. As the ℘ is generated by Weierstrass elliptic function σ, the hyperelliptic functions ℘i j...k are
generated by the fundamental Kleinian S-function which is the natural generalization of the σ.

It turns out that the σ-function is a well tuned theta function. Equation (1.13) is related to the
so-called Riemannian constant R as mentioned on p 3.80-82 in Ref. [30]; δ′ +Tδ′′ agrees with
R. As the σ-function consists of the shifting Riemann theta function (1.9), the Riemann constant
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R outwardly disappears (Thus the σ-function vanishes just over the theta divisor). Using the σ-
function, Baker derived the multiple relations of ℘-functions and so on. Hereafter we assume that
the genus G = 2, and G = 3 of the curve of (2g+1)- and (2g+2)- degree are given in the following
propositions 2.1, 2.3 and 2.4, respectively.
Proposition 2.1. (Genus two) Let us express ℘µνρ := ∂℘µν(u)/∂uρ and ℘µνρλ := ∂2℘µν(u)/∂uρ∂uλ.
Then the hyperelliptic functions ℘µνρ are expressed (extended cubic relation) as follows in terms of
℘11, ℘12, ℘22 and the constants (λ0, . . . ,λ4) of defining hyperelliptic curve C2

(I−1) : ℘2
122 =λ0−4℘11℘12+λ4℘

2
12+λ4℘22℘

2
12,

(I−2) : ℘2
211 =λ0℘

2
22−λ1℘22℘12+λ2℘

2
12+4℘11℘

2
12,

(I−3) : ℘2
222 =λ2+4℘11+λ3℘22+4℘3

22+4℘12℘22+λ4℘
2
22,

(I−4) : ℘2
111 =λ0℘

2
12+λ1℘11℘12+λ2℘

2
11+4λ0℘11℘22+4℘3

11+
1
2
λ0λ3℘12

+
1

16
(λ2

1λ4+λ0λ
2
3−4λ0λ3λ4)+

(
1
4
λ1λ3−λ0λ4

)
℘11+

(
1
4
λ

2
1−λ0λ2

)
℘22. (2.1)

The ℘µνρλ functions are expressed as follows:

(I−5) : ℘1222 = 6℘12℘22+λ4℘12−2℘11,

(I−6) : ℘1122 = 2℘11℘22+
1
2
λ3℘12+4℘2

12,

(I−7) : ℘2222 =
1
2
λ3+6℘2

22+λ4℘22+4℘12,

(I−8) : ℘1112 = −λ0+6℘11℘12−
1
2
λ1℘22+λ2℘12,

(I−9) : ℘1111 = −
1
2
λ0λ4+

1
8
λ1λ3+6℘2

11+λ2℘11+λ1℘12−3λ0℘22. (2.2)

The ℘µ1ν1ρ1℘µ2ν2ρ2 functions are expressed as follows:

(I−10) : ℘112℘122 =2℘3
12+

1
2
λ3℘

2
12+

1
2
λ1℘12+2℘11℘12℘22−λ0℘22,

(I−11) : ℘122℘222 =
1
2
λ1+2℘2

12−2℘11℘22+
1
2
λ3℘12+4℘12℘

2
22+λ4℘12℘22,

(I−12) : ℘112℘222 =−
1
2
λ1℘22+2℘11℘

2
22+2℘22℘

2
12+λ2℘12+4℘11℘12+

1
2
λ3℘12℘22,

(I−13) : ℘111℘122 =−
1
4
λ0λ3−λ0℘12−

1
2
λ1℘11−2λ0℘

2
22+

1
4
λ1λ4℘12−

1
2
λ0λ4℘22

+λ1℘12℘22+
1
2
λ3℘11℘12+2℘11℘

2
12+2℘2

11℘22,

(I−14) : ℘111℘222 =−18
λ3

λ1
−4℘2

11−2℘3
12−

1
2
λ1℘12−

1
4
λ1λ4℘22−λ1℘

2
22−λ2℘11−

1
2
λ3℘11℘22

+6℘11℘12℘22−λ3℘
2
12+

1
2
λ2λ4℘12+2λ2℘12℘22+2λ4℘11℘12−

1
8
λ

2
3℘12. (2.3)

Remark 2.2. These relations in proposition 2.1 are generalizations of the elliptic PDE:

℘′′(u)−6℘(u)2− 1
2

g2 = 0, [℘′(u)]2−4℘(u)3−g2℘(u)−g3 = 0. (2.4)
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Proposition 2.3. (Genus three: (2g+1)-degree) As in the case of the ℘ Weierstrass elliptic func-
tion, and let ℘µνρλ := ℘µνρλ(u) and ℘µν := ℘µν(u) for simplicity, the hyperelliptic functions ℘µνρλ
are expressed (extended cubic relation) as follows in terms of ℘11, ℘12, ℘13, ℘22, ℘23, ℘33 and the
constants (λ0, . . . ,λ7) of defining hyperelliptic curve C3

(II−1) : ℘1133 =2∆+4℘2
13+2℘11℘33,

(II−2) : ℘1333 =6℘13℘33+4λ6℘13−2λ7℘12,

(II−3) : ℘1233 =2℘12℘33+4℘13℘23+2λ5℘13,

(II−4) : ℘3333 =2λ5λ7+6℘2
33+4λ6℘33+4λ7℘23,

(II−5) : ℘2333 =6℘23℘33+4λ6℘23+2λ7(3℘13−℘22),

(II−6) : ℘1113 =6℘11℘13+4λ0℘33−2λ1℘23+4λ2℘13,

(II−7) : ℘1123 =4℘12℘13+2℘11℘23−4λ0λ7+2λ3℘13,

(II−8) : ℘2233 =4℘2
23+2℘22℘33+2λ5℘23+4λ6℘13−2λ7℘12,

(II−9) : ℘1223 =−2∆+4℘12℘23+2℘13℘22−2λ1λ7+4λ4℘13,

(II−10) : ℘1112 =−2λ0λ5+6℘11℘12−8λ0℘23+4λ2℘12+2λ1(3℘13−℘22),

(II−11) : ℘2223 =−4λ2λ7+6℘22℘23−2λ3℘33+4λ4℘23−6λ7℘11+4λ5℘13,

(II−12) : ℘1111 =−4λ0λ4+λ1λ3+6℘2
11+4λ1℘12+4λ2℘11+4λ0(4℘13−3℘22),

(II−13) : ℘1122 =−8λ0λ6+4℘2
12+2℘11℘22−8λ0℘33−2λ1℘23+4λ2℘13+2λ3℘12,

(II−14) : ℘1222 =−4λ1λ6−8λ0λ7+6℘12℘22−6λ1℘33+4λ3℘13+4λ4℘12−2λ5℘11,

(II−15) : ℘2222 =12∆+2λ3λ5−6λ1λ7−8λ2λ6+6℘2
22−12λ2℘33+4λ3℘23+4λ4℘22

+4λ5℘12−12λ6℘11, (2.5)

where

∆ = ℘12℘23−℘13℘22+℘
2
13−℘11℘33. (2.6)

These equations are presented under the convention that if g = 1 or 2 then λµ with µ > 2g+ 1 and
℘-functions whose suffix contain µ bigger than ν are all zero.

Note that when g=1 the equation (II-12) above is the well-known equation derived from ℘′(u)2−
4 f (℘(u)) = 0.
Proposition 2.4. (Genus three: (2g+2)-degree) The hyperelliptic ℘-functions of a curve y2 = f̄ (x)
(g=3) obey the following relations:

(III−1) : ℘1133 = 4℘2
13+2℘11℘33+2∆,

(III−2) : ℘1333 = 6℘13℘33+4λ̄8℘11−2λ̄7℘12+4λ̄6℘13,

(III−3) : ℘1233 = −4λ̄1λ̄8+2℘12℘33+4℘13℘23+2λ̄5℘13,

(III−4) : ℘1223 = −8λ̄0λ̄8−2λ̄1λ̄7+4℘12℘23+2℘13℘22+4λ̄4℘13−2∆,

(III−5) : ℘2333 = −4λ̄3λ̄8+6℘23℘33+4λ̄6℘23+8λ̄8℘12+6λ̄7℘13−2λ̄7℘22,

(III−6) : ℘2233 = −8λ̄2λ̄8+4℘2
23+2℘22℘33+2λ̄5℘23−8λ̄8℘11−2λ̄7℘12+4λ̄6℘13,

(III−7) : ℘2223 = −8λ̄1λ̄8−4λ̄2λ̄7−6λ̄7℘11+4λ̄5℘13+4λ̄4℘23+6℘23℘22−2λ̄3℘33,

(III−8) : ℘3333 = −8λ̄4λ̄8+2λ̄5λ̄7+6℘2
33+16λ̄8℘13−12λ̄8℘22+4λ̄7℘23+4λ̄6℘33, (2.7)
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together with relations (II-6), (II-7), (II-10) and (II-12)-(II-15), and ∆ which have the same form as
those in proposition 2.3 by replacing the λ with the λ̄.

3. Applications of the hyperelliptic function

In this section, we will consider hyperelliptic solutions of some nonlinear differential equations such
as a general (2+1)-dimensional breaking soliton equation (3.1) and static Veselov-Novikov(SVN)
equation (3.18).

3.1. A general (2+1)-dimensional breaking soliton equation

A general (2+1)-dimensional breaking soliton equation reads [32–34, 43]

ut +uxxx+uxxy+6ux+4uuy+4ux∂
−1
x uy = 0, (3.1)

which describe the interaction of a Riemann wave propagating along the y-axis with a long wave
along the x-axis, where α and β are the real parameters. We make the transformation v = ∂−1

x uy, then
the Eq.(3.1) becames ut +uxxx+uxxy+6ux+4uuy+4uxv = 0,

uy = vx.
(3.2)

In the following, we will give some Theorems to obtain its hyperelliptic function solutions with
genus G = 2, and G = 3 of hyperelliptic curve of (2g+1)-degree and (2g+2)-degree, respectively.

Theorem 3.1. The following {u,v} are two families of hyperelliptic function solutions of the (2+1)-
dimensional breaking soliton equation(3.2) with genus G = 2, and G = 3 of hyperelliptic curve of
(2g+1)-degree and (2g+2)-degree, respectively.
(i) When G = 2, u, v are given of the form

u(t, x,y) =U0−
3b2

2(b2+ c2)
2c2

×℘22
(
−4b2

2(b2+ c2)t,
(
−6b2−4c2U0−4b2V0−λ4b2

2(b2+ c2)
)
t+b2x+ c2y

)
, (3.3a)

v(t, x,y) =V0−
3b2(b2+ c2)

2
×℘22

(
−4b2

2(b2+ c2)t,
(
−6b2−4c2U0−4b2V0−λ4b2

2(b2+ c2)
)
t+b2x+ c2y

)
, (3.3b)

where λ4, b2, c2(, 0), U0 and V0 are arbitrary constants in C.
(ii) When (2g+1)-degree, u, v are given of the form

u(t, x,y) = U0+U33℘33 (a1t+b1x−b1y,a2t+b2x−b2y,a3t+b3x−b3y) , (3.4a)

v(t, x,y) = V0+V33℘33 (a1t+b1x−b1y,a2t+b2x−b2y,a3t+b3x−b3y) , (3.4b)

where ai = −6bi+4biU0−4biV0, bi, U0, V0, U33 and V33 are arbitrary constants in C (i=1,2,3).
(iii) When (2g+2)-degree, u, v are given of the form

u(t, x,y) = U0−
3b2

3(b3+ c3)
2c3

℘33
(
−16λ̄8b2

3(b3+ c3)t,−4λ̄7b2
3(b3+ c3)t,a3t+b3x+ c3y

)
, (3.5a)

v(t, x,y) = V0−
3b3(b3+ c3)

2
℘33

(
−16λ̄8b2

3(b3+ c3)t,−4λ̄7b2
3(b3+ c3)t,a3t+b3x+ c3y

)
, (3.5b)
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where a3 = −6b3 − 4c3U0 − 4b3V0 − 4λ̄6b2
3(b3 + c3), λ̄6, λ̄7, λ̄8, b3, c3(, 0), U0, V0 are arbitrary

constants in C.

Proof. According to the arithmetic given in Sec. 3, we prove them in (i),(ii) and (iii) by using
propositions 2.1,2.3 and 2.4, respectively.
(i) We make a transformation u(t, x,y)=U(ω1,ω2), v(t, x,y)=V(ω1,ω2),ωi = ait+bix+ciy (i= 1,2),
then Eq.(3.2) becomes

(a1+6αb1)Uω1 + (a2+6αb2)Uω2 + (αb3
1+βb

2
1c1)Uω1ω1ω1 + (αb3

2+βb
2
2c2)Uω2ω2ω2

+ (3αb2
1b2+βb2

1c2+2βb1b2c1)Uω1ω1ω2 + (3αb1b2
2+2βb1b2c2+βb2

2c1)Uω1ω2ω2

+4βc1UUω1 +4βc2UUω2 +4βb1Uω1V +4βb2Uω2V = 0,

c1Uω1 + c2Uω2 −b1Vω1 −b2Vω2 = 0. (3.6)

Substituting U = U0 +
∑2

j,k=1 U jk℘ jk, V = V0 +
∑2

j,k=1 V jk℘ jk and the relations (I-1)-(I-14) into
Eq.(3.6), it becomes overdetermined equations in ℘ jk i, j = 1,2. Making each coefficient of the
overdetermined equations to zero yields equations about ai, bi, ci, U0, V0, U jk and V jk(i, j,k = 1,2).
Solving the equations, we obtain

b1 = c1 = U jk = V jk = 0, a1 = −4b2
2(b2+ c2), a2 = −6b2−4c2U0−4b2V0

−λ4b2
2(b2+ c2), U33 = −

3b2
2(b2+ c2)

2c2
, V33 = −

3b2(b2+ c2)
2

, (3.7)

where j,k = 1,2 and ( j,k) , (2,2), λ4, b2, c2(, 0), U0 and V0 are arbitrary constants in C. Now
substituting the above values in U = U0 +

∑2
j,k=1 U jk℘ jk and V = V0 +

∑2
j,k=1 V jk℘ jk, we achieve a

hyperelliptic function solution (3.3a) and (3.3b) with genus G = 2 of the (2+1)-dimensional break-
ing soliton equation(3.2).
(ii) We make a transformation u(t, x,y) =U(ω1,ω2,ω3), v(t, x,y) = V(ω1,ω2,ω3), ωi = ait+bix+ciy
(i = 1,2,3), then Eq.(3.2) becomes

a1Uω1 +a2Uω2 +a3Uω3 + (b3
1+b2

1c1)Uω1ω1ω1 + (b3
2+b2

2c2)Uω2ω2ω2 + (b3
3+b2

3c3)Uω3ω3ω3

+ (3b2
1b2+b2

1c2+2b1b2c1)Uω1ω1ω2 + (3b2
1b3+b2

1c3+2b1b2c1)Uω1ω1ω3 + (3b1b2
2

+2b1b2c2+b2
2c1)Uω1ω2ω2 + (3b2

2b3+b2
2c3+2b2b3c2)Uω2ω2ω3 + (3b1b2

3+2b1b3c3

+b2
3c1)Uω1ω3ω3 + (3b2b2

3+2b2b3c3+b2
3c2)Uω2ω3ω3 + (6b1b2b3+2b1b2c3+2b1b3c2

+2b2b3c1)Uω1ω2ω3 +6b1Uω1 +6b2Uω2 +6b3Uω3 +4c1UUω1 +4c2UUω2 +4c3UUω3

+4b1Uω1V +4b2Uω2V +4b3Uω3V = 0, c1Uω1 + c2Uω2 + c3Uω3 −b1Vω1

−b2Vω2 −b3Vω3 = 0. (3.8)

Substituting U = U0 +
∑3

j,k=1 U jk℘ jk, V = V0 +
∑3

j,k=1 V jk℘ jk and the relations (II-1)-(II-15) into
Eq.(3.8), it becomes overdetermined equations in ℘ jk i, j = 1,2,3. Making each coefficient of the
overdetermined equations to zero yields equations about ai, bi, ci, U0, V0, U jk and V jk(i, j,k= 1,2,3).
Solving the equations, we obtain

U jk = V jk = 0, ai = −6bi+4biU0−4biV0, ci = −bi, (3.9)

where j,k = 1,2,3 and ( j,k) , (3,3), bi(i=1,2,3), U0, V0, U33 and V33 are arbitrary constants in
C. Now substituting the above values in U = U0 +

∑3
j,k=1 U jk℘ jk and V = V0 +

∑3
j,k=1 V jk℘ jk, we
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achieve a hyperelliptic function solution (3.4a) and (3.4b) with genus G=3 of the (2+1)-dimensional
breaking soliton equation(3.2).
(iii) Substituting U = U0 +

∑3
j,k=1 U jk℘ jk, V = V0 +

∑3
j,k=1 V jk℘ jk and the relations (III-1)-(III-15)

into Eq.(3.8), it becomes overdetermined equations in ℘ jk i, j= 1,2,3. Making each coefficient of the
overdetermined equations to zero yields equations about ai, bi, ci, U0, V0, U jk and V jk(i, j,k= 1,2,3).
Solving the equations, we obtain

bi = ci = U jk = V jk = 0, a1 = −16λ̄8b2
3(b3+ c3), a2 = −4λ̄7b2

3(b3+ c3), a3 = −6b3

−4c3U0−4b3V0−4λ̄6b2
3(b3+ c3), U33 = −

3b2
3(b3+ c3)

2c3
, V33 = −

3b3(b3+ c3)
2

, (3.10)

where i=1,2, j,k=1,2,3 with ( j,k) , (3,3), and λ̄6, λ̄7, λ̄8, b3, c3(, 0), U0, V0 are arbitrary constants
in C. Now substituting the above values in U = U0 +

∑3
j,k=1 U jk℘ jk and V = V0 +

∑3
j,k=1 V jk℘ jk, we

achieve a hyperelliptic function solution (3.5a) and (3.5b) with genus G=3 of the (2+1)-dimensional
breaking soliton equation(3.2). �

Theorem 3.2. If {U =U(t, x,y),V =V(t, x,y)} is a solution of the (2+1)-dimensional breaking soliton
equation(3.2) then so is

u(t, x,y) =
τtty

12αβτt
− δg

′(t)

4β(τt)
1
3

+δ(τt)
2
3 U(τ,ξ,η), (3.11a)

v(t, x,y) =
3ατt −3 f ′(t)−3δα(τt)

1
3 −δ(τt)−

2
3 τtt x

12δαβ(τt)
1
3

+
1
δ

(τt)
2
3 V(τ,ξ,η), (3.11b)

where τ = τ(t), ξ = δ(τt)
1
3 x+ f (t), η = 1

δ (τt)
1
3 y+ g(t), f (t), g(t) are arbitrary function of t, and the

discrete value of the constant δ with δ3 = 1.

Proof. We show here that it is sufficient to seek a similarity reduction of the (2+1)-dimensional
breaking soliton equation(3.2) in the form

u(t, x,y) = A+BU(τ,ξ,η), v(t, x,y) =C+DV(τ,ξ,η), (3.12)

where A, B, C, D, ξ, η, τ are functions of x, y, t, and U(τ,ξ,η), V(τ,ξ,η) satisfy the same equation
as (3.2) of the form Uτ+αUξξξ+βuξξη+6αUξ+4βUUη+4βUξV = 0,

Uη = Vξ.
(3.13)

Substituting (3.12) into (3.2) and requiring {U(τ,ξ,η),V(τ,ξ,η)} also satisfies Eq.(3.13) but with
independent variables, we have two differential equations about U(τ,ξ,η) and V(τ,ξ,η). Making
each coefficient of U(τ,ξ,η),V(τ,ξ,η) and its derivatives to zero [eliminating Uτ,Vξ and its higher
order derivatives by means of the (2+1)-dimensional breaking soliton equation], we obtain overde-
termined equations for A, B, C, D, ξ, η and τ. It is straightforward to find out the overdetermined
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equations. The result reads

τ = τ(t), ξ = δ(τt)
1
3 x+ f (t), η =

1
δ

(τt)
1
3 y+g(t), A =

τtty
12αβτt

− δg
′(t)

4β(τt)
1
3

,

B = δ(τt)
2
3 , C =

3ατt −3 f ′(t)−3δα(τt)
1
3 − δ(τt)−

2
3 τtt x

12δαβ(τt)
1
3

, D =
1
δ

(τt)
2
3 , (3.14)

where f (t), g(t) are arbitrary function of t, and the discrete value of the constant δ with δ3 = 1. Now
substituting the above values in transformation(3.12), we achieve a new solution (3.11a) and (3.11b)
of the (2+1)-dimensional breaking soliton equation(3.2). �

Theorem 3.3. Both the following {u,v} are two new families of hyperelliptic function solutions of
the (2+1)-dimensional breaking soliton equation(3.2) with genus G = 3 of hyperelliptic curve of
(2g+1)-degree and (2g+2)-degree, respectively, given by
(i) When G = 2, the new solution u, v are given of the form

u(t, x,y) = U0−
3b2

2B(b2+ c2)
2βc2

℘22
(
−4b2

2(b2+ c2)τ,
(
−6b2−4c2U0−4b2V0−λ4b2

2(b2+ c2)
)
τ+b2ξ+ c2η

)
,

(3.15a)

v(t, x,y) = V0−
3b2D(b2+ c2)

2
℘22

(
−4b2

2(b2+ c2)τ,
(
−6b2−4c2U0−4b2V0−λ4b2

2(b2+ c2)
)
τ+b2ξ+ c2η

)
,

(3.15b)

where τ, ξ, η, A, B, C and D are accurately given in Eq.(3.14) with f (t), g(t) are arbitrary function
of t, U0 = A+δ(τt)

2
3 U0, V0 =C+ 1

δ (τt)
2
3 V0, λ4, b1, b2, c1, c2(, 0), U0, V0 and δ(δ3 = 1) are arbitrary

constants in C.
(ii) When G = 3: hyperelliptic curve of (2g+1)-degree, the new solution u, v are given of the form

u(t, x,y) = U0+ δ(τt)
2
3 U33℘33

(
a1τ+b1ξ−b1η,a2τ+b2ξ−b2η,a3τ+b3ξ−b3η

)
, (3.16a)

v(t, x,y) = V0+
1
δ

(τt)
2
3 V33℘33

(
a1τ+b1ξ−b1η,a2τ+b2ξ−b2η,a3τ+b3ξ−b3η

)
, (3.16b)

where τ, ξ, η, A, B, C and D are accurately given in Eq.(3.14) with f (t), g(t) are arbitrary function
of t, and ai = −6bi+4biU0−4biV0, U0 = A+BU0, V0 =C+DV0, bi, U0, V0, U33, V33 and δ(δ3 = 1)
are arbitrary constants in C (i=1,2,3).
(iii) When G = 3: hyperelliptic curve of (2g+2)-degree, the new solution u, v are given of the form

u(t, x,y) = U0−
3δb2

3(τt)
2
3 (b3+ c3)

2c3
℘33

(
−16λ̄8b2

3(b3+ c3)τ,−4λ̄7b2
3(b3+ c3)τ,a3τ+b3ξ+ c3η

)
,

(3.17a)

v(t, x,y) = V0−
3b3(τt)

2
3 (b3+ c3)
2δ

℘33
(
−16λ̄8b2

3(b3+ c3)τ,−4λ̄7b2
3(b3+ c3)τ,a3τ+b3ξ+ c3η

)
,

(3.17b)

where τ, ξ, η, A, B, C and D are accurately given in Eq.(3.14) with f (t), g(t) are arbitrary function
of t, ai = −6bi+4biU0−4biV0, U0 = A+BU0a1, V0 =C+DV0a1, λ̄6, λ̄7, λ̄8, b3, c3(, 0), U0, V0 are
arbitrary constants in C.

Proof. It is straightforward to prove this Theorem by using the Theorems 3.1 and 3.2. �
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Remark 3.4. (i) Theorems 3.1-3.3 and the definition of ℘ mean that solutions of the (2+1)-
dimensional breaking soliton equation are explicitly constructed. The quantities in definitions 1.3
and 1.5 can be, in principle, evaluated in terms of numerical computations because there is no
ambiguous parameter.
(ii) The dispersion relations: ω j behaves like (1/x̄)2(g− j)−1 and (1/x̄)g− j around the infinity point if
we use the local coordinate x̄2 := x, respectively. By comparing the order of x̄, denoted by ordx̄, we
have the relations

ordx̄(ω2) = 3ordx̄(ω1), ordx̄(ω2) = ordx̄(ω3),

which is the dispersion relations of the (2+1)-dimensional breaking soliton equation(3.2).

3.2. The static Veselov-Novikov equation

The static Veselov-Novikov(SVN) equation is given as
uxxx+uyyy−2(uv)x−3(uw)y = 0,

ux = vy,

uy = wx,

(3.18)

The families of hyperelliptic function solutions of the SVN equation(3.18) with genus G = 2 and 3
of the static Veselov-Novikov(SVN) equation are investigated in Theorem 4.18.

Theorem 3.5. The following {u,v,w} are three families of hyperelliptic function solutions of the SVN
equation(3.18) with genus G = 2, and G = 3 of hyperelliptic curve of (2g+1)-degree and (2g+2)-
degree, respectively, given by
(i) When G = 2, u, v, w are given of the form

u(t, x,y) = 2℘12(y, x), (3.19a)

v(t, x,y) =
1
3

(
λ4−

1
2
λ1

)
+2℘22(y, x), (3.19b)

w(t, x,y) =
1
3

(λ2−2λ1)+2℘11(y, x), (3.19c)

where λ1, λ2 and λ4 are arbitrary constants in C.
(ii) When G = 3 of hyperelliptic curve of (2g+1)-degree, u, v, w are given of the form

u(x,y) = U0+U33℘33 (a1x−a1y,a2x−a2y,a3x−a3y) , (3.20a)

v(x,y) = V0−U33℘33 (a1x−a1y,a2x−a2y,a3x−a3y) , (3.20b)

w(x,y) = −5
3

U0+
2
3

V0−U33℘33 (a1x−a1y,a2x−a2y,a3x−a3y) , (3.20c)

where a1, a2, a3, U0, V0 and U33 are arbitrary constants in C.
(iii) When G = 3 of hyperelliptic curve of (2g+2)-degree, u, v, w are given of the form

u(x,y) =U0+9℘33
(
(λ̄6−2V0−2W0)x, (λ̄7−3U0−3W0)y, x+ y

)
, (3.21a)

v(x,y) =V0− (9λ̄6−18V0−18W0)℘13
(
(λ̄6−2V0−2W0)x, (λ̄7−3U0−3W0)y, x+ y

)
, (3.21b)

w(x,y) =W0+ (9λ̄7−27U0−27W0)℘23
(
(λ̄6−2V0−2W0)x, (λ̄7−3U0−3W0)y, x+ y

)
, (3.21c)
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where λ̄6, λ̄7, U0, V0 and W0 are arbitrary constants in C.

The proof of Theorem 3.5 is given in Appendix. By virtue of the above theorem, one can further
present the analogues, such as Theorems 3.2 and 3.3, of static Veselov-Novikov equation. We here
do not give more information for that.
Remark 3.6. In Ref. [22], the authors gave the KdV equation by the ℘-functions, while the method
only got the solutions of single equation. In our method, we can solve the coupled equations and
systems of equations.

4. Conclusions and remarks

In Ref. [22], the authors gave the KdV equation by the ℘-functions, while the method only got
the solutions of single equation. In our method, we can solve the coupled equations and systems
of equations. Furthermore, we observe that the proposed method generalizes the auxiliary method
[35] through which only travelling waves solutions are obtained. In Refs. [43, 44, 46], we give
some results to explicitly construct multiperiodic Riemann theta function periodic wave solutions
of some discrete soliton equations, nonlinear equations and supersymmetric equations, respectively,
which is a lucid and straightforward generalization of the Hirota-Riemann method. In this paper,
we present the algorithm for obtain particular solutions of a general (2+1)-dimensional breaking
soliton equation (3.1) and static Veselov-Novikov(SVN) equation (3.18), whose solutions can be
expressed in terms of the Kleinian hyperelliptic functions of a given curve y2= f (x) of (2g+1)- and
(2g+2)- degrees with genus G , respectively. We hope the method could help to better understand
the diversity and integrability of nonlinear differential equations in mathematical physics.
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Appendix A. Proof of Theorem 3.5.

Proof. According to the arithmetic given in Sec. 3.1, we prove them in (i), (ii) and (iii), respectively.
(i) We make a transformation u(x,y) = U(ω1,ω2), v(x,y) = V(ω1,ω2), w(x,y) = W(ω1,ω2), ωi =

aix+biy (i = 1,2), then Eq.(3.18) becomes

a3
1Uω1ω1ω1 +a3

2Uω2ω2ω2 +3a2
1a2Uω1ω1ω2 +3a1a2

2Uω1ω2ω2 +b3
1Uω1ω1ω1 +b3

2Uω2ω2ω2

+3b2
1b2Uω1ω1ω2 +3b1b2

2Uω1ω2ω2 −2a1Uω1V −2a2Uω2V −2a1UVω1 −2a2UVω2

−3b1Uω1W −3b2Uω2W −3Ub1Wω1 −3b2UWω2 = 0, a1Uω1 +a2Uω2 −b1Vω1

−b2Vω2 = 0, b1Uω1 +b2Uω2 −a1Wω1 −a2Wω2 = 0. (A.1)

Substituting U = U0+
∑2

j,k=1 U jk℘ jk, V = V0+
∑2

j,k=1 V jk℘ jk, W =W0+
∑2

j,k=1 W jk℘ jk, and the rela-
tions (I-1)-(I-14) into Eq.(A.1), it becomes overdetermined equations in ℘11, ℘12 and ℘22. Making
each coefficient of the overdetermined equations to zero yields equations about ai, bi, ci, U0, V0,W0,
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U jk, V jk and W jk (i, j,k=1,2). Solving the equations, we have

a1 = b2 = 0, a2 = b1 = 1, U0 = U11 = U22 = V11 = V12 =W12 =W22 = 0,

U12 = V22 =W11 = 2, V0 =
1
3

(
λ4−

1
2
λ1

)
, W0 =

1
3

(λ2−2λ1) , (A.2)

where λ1, λ2 and λ4 are arbitrary constants in C. Now substituting the above values in U =
U0 +

∑2
j,k=1 U jk℘ jk, V = V0 +

∑2
j,k=1 V jk℘ jk and W = W0 +

∑2
j,k=1 W jk℘ jk we achieve a hyperellip-

tic function solution (3.19a),(3.19b) and (3.19c) with genus G = 2 of the SVN equation(3.18).
(ii) We make a transformation u(x,y) = U(ω1,ω2,ω3), v(x,y) = V(ω1,ω2,ω3), w(x,y) =
W(ω1,ω2,ω3), ωi = aix+biy (i = 1,2,3), then Eq.(3.18) becomes

(a3
1Uω1ω1ω1 +a3

2Uω2ω2ω2 +a3
3Uω3ω3ω3 +3a2

1a2Uω1ω1ω2 +3a2
1a3Uω1ω1ω3 +3a1a2

2Uω1ω2ω2

+3a2
2a3Uω2ω2ω3 +3a1a2

3Uω1ω3ω3 +3a2a2
3Uω2ω3ω3 +6a1a2a3Uω1ω2ω3)+ (b3

1Uω1ω1ω1 +b3
2Uω2ω2ω2

+b3
3Uω3ω3ω3 +3b2

1b2Uω1ω1ω2 +3b2
1b3Uω1ω1ω3 +3b1b2

2Uω1ω2ω2 +3b2
2b3Uω2ω2ω3 +3b1b2

3Uω1ω3ω3

+3b2b2
3Uω2ω3ω3 +6b1b2b3Uω1ω2ω3)−2(a1Uω1 +a2Uω2 +a3Uω3)V −2U(a1Vω1 +a2Vω2 +a3Vω3)

−3(b1Uω1 +b2Uω2 +b3Uω3)W −3U(b1Wω1 +b2Wω2 +b3Wω3) = 0, a1Uω1 +a2Uω2 +a3Uω3

−b1Vω1 −b2Vω2 −b3Vω3 = 0, b1Uω1 +b2Uω2 +b3Uω3 −a1Wω1 −a2Wω2 −a3Wω3 = 0. (A.3)

Substituting U = U0+
∑3

j,k=1 U jk℘ jk, V = V0+
∑3

j,k=1 V jk℘ jk, W =W0+
∑3

j,k=1 W jk℘ jk, and the rela-
tions (II-1)-(II-15) into Eq.(A.3), it becomes overdetermined equations in ℘ jk i, j = 1,2,3. Making
each coefficient of the overdetermined equations to zero yields equations about ai, bi, ci, U0, V0,W0,
U jk, V jk and W jk(i, j,k = 1,2,3). Solving the equations, we obtain

U jk = V jk =W jk = 0, bi = −ai, V33 = −U33, W33 = −U33, W0 = −
5
3

U0+
2
3

V0, (A.4)

where (( j,k) , (3,3)), a1 ,a2, a3, U0, V0 and U33 are arbitrary constants in C. Now substituting the
above values in U = U0 +

∑3
j,k=1 U jk℘ jk, V = V0 +

∑3
j,k=1 V jk℘ jk and W = W0 +

∑3
j,k=1 W jk℘ jk, we

achieve a hyperelliptic function solution (3.20a),(3.20b) and (3.20c) with genus G = 3 of the SVN
equation(3.18).
(iii) Similarly, substituting U = U0+

∑3
j,k=1 U jk℘ jk, V = V0+

∑3
j,k=1 V jk℘ jk, W =W0+

∑3
j,k=1 W jk℘ jk

and the relations (III-1)-(III-15) into Eq.(A.3), we can achieve overdetermined equations in ℘ jk

i, j = 1,2,3. Making each coefficient of the overdetermined equations to zero yields equations about
ai, bi, ci, U0, V0,W0, U jk, V jk and W jk(i, j,k = 1,2,3). Solving the equations, we obtain

U j1k1 = V j2k2 =W j3k3 = 0, a1 = λ̄6−2V0−2W0, b2 = λ̄7−2U0−2W0, U33 = 9,

V13 = 9λ̄6−18V0−18W0, W23 = 9λ̄7−27U0−27W0, b1 = a2 = 0, a3 = b3 = 1, (A.5)

where i1, i2, i3, j1, j2, j3,k1,k2,k3 = 1,2,3(( j1,k1) , (3,3), ( j2,k2) , (1,3), ( j3,k3) , (2,3)), λ̄6, λ̄7, U0,
V0 and W0 are arbitrary constants in C. Now substituting the above values in U =U0+

∑3
j,k=1 U jk℘ jk,

V = V0 +
∑3

j,k=1 V jk℘ jk and W = W0 +
∑3

j,k=1 W jk℘ jk, we achieve a hyperelliptic function solution
(3.21a),(3.21b) and (3.21c) with genus G = 3 of the SVN equation(3.18). �
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