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Starting from known solutions of the functional Yang-Baxter equations, we construct a series of non-
autonomous integrable recurrences, “median graphs”, and give their explicit solution.

PACS numbers: 02.30.1k, 05.45.Yv

1. Introduction

A number of discrete integrable systems have been described in the literature in the last decades.
They are mostly discrete versions of known integrable differential equations and partial differential
equations, retaining fundamental features of integrability, as for example the existence of a suffi-
cient number of invariant tori and hierarchies of associated integrable equations. Important classifi-
cation results [1] have been obtained, both for the ordinary difference equations case (in particular
integrable maps [2] and discrete Painlevé equations [3]) and for the partial difference equations
(integrable lattice equations and Yang-Baxter maps among others [4—6]).

The present paper is motivated by recent results on Yang-Baxter maps obtained by Adler,
Bobenko and Suris [5] and complemented by Papageorgiou, Suris, Tongas and Veselov [6]. Here
we shall introduce a new dynamical interpretation of the Yang-Baxter maps, the “median graph
reduction”. Obviously, this is but one among many possible interpretations of Yang-Baxter maps.
However, the one presented here has the interesting feature to lead to a set of linearisable mappings
for which we are able to construct the explicit solution. This is made possible essentially thanks to a
previous construction [7] of the explicit solution of the equation obtained here from a compatibility
condition, equation which was initially derived in [8].

2. The setting

The underlying geometry behind the models is a two dimensional square lattice with variables
associated to the edges. Each elementary cell is labelled by a pair of integers (m,n), which is the
pair of coordinates of the lower left corner of the cell. The elementary cell is depicted in Figure 1.
The variables (x,y,u,v) are assigned to the bonds as shown in Figure 1. The models are defined
by giving a 2 — 2 map (x,y) — (u,v), verifying the functional Yang-Baxter equations (aka Yang-
Baxter maps). We start from the models described in [4, 6] and use the same labelling, namely the
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Fig. 1. Original cell

“F” and “H” families, which we reproduce here:

(1=B)x+p—o+(ax—1)y
B(1—a)x+ (o —B)xy+a(f—1)y

u=ayP, v=pxP P=

o — 0o —
],[:XP’ V:iP’ P = X+B By

o B x—y

u:XP, v:iP, pzw
o B x—y

_a_

u=yP, v=xP, P:X7+B 4
X=y

B—a

and

u=yQ ', v=xQ, Q=

o+ (B—a)y—Bxy
B+ (a—pB)x—oxy

u=yQ'', v=x0, Q=

y x ax+ By
u—=— s V== s = ——
aQ ﬁQ Qo Tty
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Fig. 2. A change of point of view
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Fig. 3. New cell
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u=y—P v=x+P P=

= H
xX+y v

We remark that the cases HI‘?I and Hvy are equivalent respectively to Fyir and Fy, through the change
u— —uand v — —v.

3. The median graph construction

One may view the original lattice in a different way: the bond variables may be assigned to the
vertices of a finer square lattice, as shown in Figure 3.

. . . T
We get a new square lattice whose elementary square cell is, after rotation of ——:

For all the models described in [9] the conditions relating u, v, x, y allow to define various ratio-
nal 2 x 2 maps: they give u and v in terms of x and y, but also x and y in terms of « and v, as well
as u and y in terms of v and x, or v and x in terms of u and y. This is the “quadrirationality” prop-
erty. We obtain in such a way four 2 x 2 maps, defined for each elementary cell. These cells form
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X
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Fig. 4. Local compatibility condition around vertex (m,n)

a new two-dimensional lattice. Notice that there are two kinds of cells in this lattice. Half of them
contained a vertex of the original lattice, and the other half did not. In the original lattice, we had
relations only for the latter kind of cells. We will impose the existence of relations as above for all
the cells, allowing non constant parameters. This is where the reduction takes place.

This will lead to a possibly non autonomous recurrence of order two. The variables, denoted
by X, are assigned to the vertices of the new lattice. Since on each cell we have four (m,n)
dependent 2 x 2 maps, we may, once given initial conditions xo o and xo_ 1, calculate x over the whole
lattice, provided some compatibility (zero monodromy around each vertex) condition is fulfilled.
The compatibility condition is a constraint on the (non-constant) parameters of the map, derived by
requiring that compatibility be present for all initial values of the dependent variable.

We use the coordinates of the lower left corner to label the cells. Starting from x;,, , and X, 11,
we compute X, 11, and x,,11,+1 using the F and H equations given in the previous section, with
(m,n) dependent set of parameters I';, ,. Going around the vertex (m,n) we calculate the surround-
ing values of x. This yields after four steps a value for x,, ,1 which has to coincide with the initial
condition.

Remark: Doing so we reduce the dimensionality of the system, going from partial difference
equation to ordinary difference equation. The reason is that we impose relations between variables
which were not related in the original model, actually exactly on half of the cells of the new lattice.

In what follows, we shall show that it is indeed possible to satisfy the compatibility constraint.
Moreover the resulting equations are explicitly solvable ones and given that the compatibility con-
straints are also explicitly solvable this allows us to give the solution for all x’s in closed form.

4. Explicit solution of the diffference equations

The dynamical interpretation of the F and H systems as median graphs is tantamount to that of
defining a difference system with a parameter. Thus the two dimensional character would result
from the evolution along what can be considered as the independent dynamical variable, on the one
hand, and along contiguity relations between solutions for varying values of the parameter on the
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other. The image here resembles closely that of discrete Painlevé equations and their geometrical
interpretation along what one considers the equation together with its Schlesinger transformations.

The F equations

We start with Fy and the equations in the form

u=y+P v=x+P, P= 4 “4.1)
X=Yy
where Y = a — 8, which we rewrite as
Y, Y,
Xm+1n+1 = Xmpt+1+ La Xm+1,n = Xmp + — 4.2)
Xmn — Xm,n+1 Xmn — Xm,n+1
The compatibility condition in this case turns out to be
Ym+1,041Ymn = Ym+1,0Ymn+1 (43)

the solution of which is %,, = ¢ (m)y(n), where ¢ and y are free functions of their argument. At
this point is is convenient to introduce two functions f(m) and g(n) such that f(m+1) — f(m) =
¢(m) and g(n+1) — g(n) = y(n). It is straightforward to verify that

8(n) +b (4.4)
a

X = af (m)+

is the general solution of system (4.2), where a, b are constants.
Next we turn to Fry

4.5)

which we rewrite as

Xm4-1,n+1 = Xm,n+1 <1 - ymn> 5 Xm+1,n = Xm,n <1 - M) (46)
Xm,n

Xm,n — Xm,n+1 — Xm,n+1
with the same definition of y as before. The compatibility condition is exactly the same as in the

previous case, namely (4.3). Here also we shall introduce the same auxiliary functions f and g. The
general solution here can be written as

X = (f(m) +a)(g(n) +b) 4.7)

where a, b are constants.
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In the case of Fp
X ox —
u=2p v=2p p= By
o B x=y
we introduce the parameter Y = a/f3. We rewrite the equations as
Xmap — X 1 , nXman — X, 1
Xt Lt ] = Xont < m,n m,n+ /?’m,n> 7 Xmt1n = Xmp <7m,n m,n m,n+ ) (4.9)

Xmn — Xm,n+1 Xmn — Xm,n+1

(4.8)

The compatibility condition is now

Ym+l,n+l %n+1,n’}/m,n+l ’}/m,n - ')/erl,n')/m,nJrl 'Ym,n - ’}/m+l,n+1 Ym+1,n}/m,n+l + ’}/m+1,n + ’}/m,nJrl —1=0
(4.10)

which can be rewritten as

(1 - 7m+1,n+1)(1 - Ym,n) = (1 - I/Ym—&-l,n)(] - I/Ym.,n—&-l) (4'1 1)

which can be recognized as the linearisable equation proposed by Hydon-Viallet, equation (22) of
reference [8]. (The latter was originally given in terms of the variable z = 1/(1 — 7)). The solution
to (4.11) can be obtained most easily if we introduce an auxiliary variable @ and express Y as

o Wm+1 n+1 a)m,n

= (4.12)
T Wm4-1,0 DO n+1
and take o satisfying the equation
Opt1n+1+ Onp = Omt1.0 + Oppt1 (4.13)
i.e. w is the sum of two free functions @y, , = f(m) + g(n) which leads to the solution for y
_ fm+ 1) +g(n+1)(f(m) +g(n))
Ynn = 4.14)
(flm+1) +¢(n))(f(m) +g(n+1))
The general solution for x can now be given
b —b
o QU b)) —b) wis)
| f(m)+g(n)
where a, b are constants.
For the case Fy1 we start from the equations
u=2p ,-fp p_®P+f-c (4.16)
o B x—y

which we rewrite, introducing y = o/, as

i Xm,n _xm7n+1/ym,n +1-— I/Ym,n
Xm+1,n+1 = Xmn+1 )
Xman — Xmpn+1 4.17)

YnnXmpn — Xmat+1 + Ympn — 1 )
Xmyn — Xmn+1

Xm+1,n = Xmn <

The compatibility condition is exactly the same as before, namely 7 satisfies equation (4.11). The
ansatz of ¥ in terms of w is the same but it is more convenient in this case to introduce another
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(1 _%m-‘rl,n-‘rl)(l _Xm,n)
(1 _Xm+1,rz)(1 _meH—l)

Xm-+1n+1Xmn = Xm+1.nXmn+1 (4 1 8)

auxiliary variable y by ¥, = , with ¥ satisfying the equation

i.e. x is the product of two free functions X, , = f(m)g(n). Using this solution we can obtain the
general solution for x as

o af(m)g(n) +bf(m)+cg(n) +a+1
1~ f(m)g(n)

where a, b, ¢ are constants related by a(a+ 1) = bc.
In the case of Fj the two parameters o and 3 cannot be combined into a single parameter

(I-B)x+B—a+(a—1)y

4.19)

u= oyP, v =PBxP, P= (4.20)
B(1—a)x+(a—P)xy+a(f—1)
which we rewrite as
(1 _ﬁm.n>xm n+ﬁm n— O n+t (am n— l)xm.n+1
=0 )T TP = T3, / 421
merl,nJrl m7nxm7n+1 ﬁm,n (1 - am,n)xm,n+ (am,n _ﬁm,n )xm,nxm.,n—&-l +am,n (ﬁm,n - l)xm,n—l-l ( )
1-— 'm,n )JAm,n mn — Om,n amn_l m,n
S 11 = B (0 Brn )i + P~ O + (O — Do (422)
' ' ﬁmJl(l - am,n)xm,n + (am,n - ﬁm,n)xmmxmm—}—l + O‘mJl (ﬁm,n - l)xm,n-i-l
The compatibility conditions for the o and f3 are
O+ 1.n+1 = Oy s ﬁm-i—l,n = Bm.,n-&-l (423)
and
Ont1n = ﬁm,nﬁin,n+lR> ﬁm+l,n+l = am,nam,n+1R (424)
where
((Xm,n - 1)(am,n+l - l) - (ﬁm,n - 1)(Bm,n+1 - 1) (425)

B .1 O p+1 (Bm,n + .Bm7n+1 - 1) - Bm,an,nJrl (am,n + Onn+1 — 1)

The set of compatibility equations is itself overdetermined but it turns out that it is consistent and
the solution is periodic in both m and n. We have

O3m3n = OBm+1,3n+1 = OB3m+23n4+2 = O
O3m3n+1 = OBm+1 3042 = OBm+23n = A

O3m3n+2 = OB3m+13n = OBm+23n+1 = O
’ ’ (4.26)

B3m,3n = ﬁ3m+2,3n+1 = ﬁ3m+l,3n+2 = ﬁ()

Bam3n+1 = Bamt2,3n+2 = Bam+1,3n = Pi

[33m,3n+2 - ﬂ3m+2,3n - ﬁ3m+1,3n+1 = BZ

where o, B, are given in terms of @, o, PBo, Bi using (4.24). The solution for x,,, is equally
periodic, with period 3 in both m and n directions however in this case all nine x3,,4 3« for
j, k=0,1,2 are generically different.
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The H equations
We can now turn to the remaining equations of the H family and start with Hy
W=y—P, v=x+4P, P=-1_ 4.27)
xX+y

where ¥ = o — 3, which we rewrite as

Yinn Yim,n

- X, =X +
’ m+1,n m,n
Xmap + Xmp+1 ' Xmn + Xmp+1

Xm+1,n+1 = Xman+1 — (4.28)
Next we introduce a new variable X, , = (—1)"x,,, whereupon (4.28) becomes identical to (4.2),
written for X. Thus the solution of (4.28) is given by (4.4) with an overall factor (—1)".

The same change of variables allows us to relate HIAH

y x ox+ By
U= 20, v="_0, == 7 4.29
aQ BQ 0 Xty (4.29)
or equivalently
Xmn + Xmon+1 , 2Xma T Xmoap+1
Xm+1,n+1 = Xmn+1 < m; f;ﬁ_ /Tmn) , Xm+1,n = Xmn <men mjrx mnl-i- ) (4.30)
m,n m,n+ m,n m,n-+

to Fyip, equation (4.9), and thus to obtain its solution from (4.15) again with an overall factor (—1)".
Equation HE’I

oxy+1
U=, v =x0Q, =
0 Q ¢ Bxy+1

is special in the sense that the compatibility condition must be obtained on a and 3 separately. We
start from

(4.31)

ﬁm,nxmmxmm-&-l +1 X x O nXm nXm,n+1 +1
) m—+1,n = Xmn
O nXmnXman+1 + 1 ﬁm,nxm,nxm,nJrl +1

(4.32)

Xm+1,n+1 = Xmn+1

and obtain the compatibility conditions. The latter can be written in more compact form if we
introduce oo = Y+ 3 and B = y— 8. We obtain

Sm,n6m+1,n+1 = 5m,n+16m+l,n (433)
(7m+1,n - }/m,n)6m+l,n+1 + (Ym-&-l,n—&-l — Ym.n+1 )6m+1.,n =0 (4-34)
which can be readily integrated to
O = f (1) (h(n) + (=1)"k(m) + g(m)) (4.35)
Brn = f(n)(h(n) +(=1)"k(m) — g(m)) (4.36)

Next we remark that from (4.32) we have

XmnXmn+1 = Xm+-10Xm+-1,n4+1 = ¢(n) (4.37)

where ¢ is, obviously, independent of m. Given the expressions of @ and 8 we can obtain the value
of 1/¢ = f(n)(—h(n)+ (—1)"c), where c is an integration constant, the value of which is fixed by
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the initial conditions. The values of x can now be obtained from the recursion

1
Xmrt2 = %xmﬁ (438)

Using the expression for ¢ we can, starting from some initial condition xg o, xo,; obtain all xq , for
all n. Once the xq , are obtained we can compute x,, , by

¢ —k(m) —g(m)

m+12n = ——F ~— ~Xm2n 4.39
Tt 120 = T 0N g(m) ™2 (4.39)
— k(m) +
X1 2n41 = Mxm,znﬂ (4.40)
¢ —k(m) —g(m)

Thus the solution to (4.32) can be expressed as a double infinite product.
The last but one case we shall examine is that of Hyy

o+ (B —a)y—Bxy

-1
u=y0"',  v=x0, - 4.41
which can be cast into the form
14 (Ym n— l)xm n — YmnXmnXmn+1
Xm+1.n+1 = Xmn+1 . : ’ ’ ’ 4.42)
b et Ynn + (1 - Ym,n)xm,n+1 — XmnXmn+1
1— _
Xt L = Xoun Yinn + ( ym,n)xm,n+l XmnXm,n+1 (4.43)

I+ (’Ym,n - 1)xm,n — YmpnXmnXmn+1

where Y= /. It turns out that the compatibility condition for 7 is precisely (4.10) i.e. the Hydon-
Viallet equation. We give the solution for 7y in the same form as in the case of Fj;, namely

" _ (= f(r+1)g(m+1))(1 = f(n)g(m))
(1= fn+1)g(m)) (1= f(n)g(m+1))

We can now give the solution for x which turns out to possess an even-odd freedom

o Ot afm)(sim) +ap) wss)

(1+ans1f(n))(g(m) +an)

where a,, is a period-two constant, i.e. a,+> = a,.
The last case we are going to examine is Hj

(4.44)

(1=B)xy+(B-a)y+B(ax—1)

-1

u=yQ -, v=xQ, 0= (4.46)

(I—o)xy+(a—PBlx+a(f—1)

which we rewrite, after a translation @ = y+ 1, B =8 + 1, as

Y nXm nXmp+1 — (ym.n - 5m n)xm.n - 5mn(Ym nt l)

X =X — : —— — (4.47)
bt ot Sm,nxm,nxm,n+l + (Ym,n - Bm,n)xm,nJrl - Ym,n(sm,n + 1)

Xt 1n = X 6m,nxm,nxm,n+1 + ('Ym,n - 5m,n)xm,n+l - Ym,n(am,n + 1) (4.48)

Ym.nXmnXmn+1 — (%n,n - 5m,n)xm,n - 5m,n(}/m,n + 1)
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In this case the two parameters ¥ and 8 cannot be combined into a single parameter. The compati-
bility condition turns out to be

Ym+1n = 6m7n7 6m+l,n = Ym,n (4.49)

which means that y and 6 can be expressed in terms of two free functions f,g of n alone: Y5, , =
Omtin = f(1), Yomt1.n = Oamn = g(n). The solution of (4.47), (4.48) is also periodic in the m-
direction: X,,42 5 = X;,. Thus the equation becomes a one-dimensional one for the variable x at
given parity of m. Once we have obtained the solution for one parity the solution at the other parity
is obtained through (4.47) or (4.48). Taking the index m to be even we obtain the equation for x

(g(n)g(n—1) = f(n)f(n—=1))x0 12602011+ 8(n) (f (n = 1) = g(n = 1))xn X011
+f(n=1)(f(n) = g(n))xuxn1 + f(n=1)(g(n—1) + 1)(f(n) — &(n))xn11
+8(n)(f(n) + 1) (f(n—1) —g(n—1))xn—1 +g(n)g(n—1)(f(n) + f(n—1) +1)
—f)f(n—1)(g(n) +gn-1)+1)=0 (4.50)

where we have dropped the even index m. (In fact the equation for odd-m is the same up to the
permutation of f and g). Equation (4.50) is linearisable. A study of the growth of the degrees of the
iterates on an initial condition, using algebraic entropy techniques, leads to the following sequence
of degrees: 0,1,1,2,2,3,3,4,4,5, .... This suggest that the mapping (4.50) is of Gambier type [10]
and this turns out to be indeed the case. We find for (4.50) the invariant

S+ 1) (K1 — 1) +8(1) (6 — 1) (g1 +1) — 2/ (n)g(n)
(f(n) —&(n)) (%0 = 1) (a1 — 1)
which allows to reduce (4.50) to a homographic mapping.
This completes the integration of the equations of the F and H families in their interpretation as
median graph reductions.

K=(-1)" 4.51)

5. Conclusion

Integrable discrete equations appear in an innumerable number of avatars. It is no surprise that the
Yang-Baxter maps possess various dynamical interpretations. In this paper we have addressed this
question and proposed a dynamical interpretation which reduces the Yang-Baxter maps to ordinary
difference equations. It turned out that in all cases the equations obtained were linearisable, provided
some compatibility condition was satisfied by the parameters of the equation. An interesting result
was the appearance, in the compatibility condition, of a linearisable lattice equation proposed in [8]
and integrated in [7]. In all cases we have been able to present the general solution of the system.

The study presented here cannot be exhaustive. There are other types of transformations estab-
lishing relations between different integrable systems, and the links between these various corre-
spondences and the one we presented here still need to be explored.
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