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The aim of this paper is to study the formation of delta standing wave for a scalar conservation law with a linear
flux function involving discontinuous coefficients. In order to deal with it, we approximate the discontinuous
coefficients by piecewise affine ones and then apply the method of characteristics to construct a global solution
to the original equation by approximation. Finally, it is proved rigorously that the delta standing wave can be
obtained in the limit of the approximate solution as the perturbation parameter tends to zero. In contrast to the
classical method of vanishing viscosity, it can be seen clearly here how the delta standing wave forms naturally
along the characteristics.
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1. Introduction

In this paper, we are interested in the measure-valued solutions to the Cauchy problem for the
following scalar conservation law with the linear flux function involving discontinuous coefficients
[15, 18]

ut +(k(x)u)x = 0. (1.1)

Here k and u may be regarded as the velocity and the density in the discontinuous flow respectively.
The equation (1.1) arises in many areas, such as the particle flows in applications [3] and the polymer
flooding of an oil reservoir [21] etc.

It is well known that the general linear transport equation in the conservative form can be
expressed as

μt +(k(x, t)μ)x = 0. (1.2)

An appropriate theoretical framework for (1.2) has been established by Bouchut and James [4, 5]
through studying the solution of (1.2) in the duality sense and also by Poupaud and Rascle [27]
through the construction of Filippov characteristics in the multidimensional situation, in which it
was shown that μ is a measure in the space variable x.
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However, one cannot treat a priori this Cauchy problem within the theory of distributions if very
low regularity imposed on the coefficient k(x, t). When k(x, t) is not smooth, the well-posedness of
solutions for (1.2) is much more delicate [1,3]. We notice that (1.1) is a special form of (1.2) in that
k(x, t) only depends on the variable x. If k(x) is allowed to be discontinuous in (1.1), then (1.1) may
not admit a weak solution in the form of locally integrable function. Naturally, we should consider
the solution u(x, t) in some measure space.

In the present paper, the coefficient k(x) is taken in the simplest discontinuous form, namely the
Riemann type discontinuous initial data

k(x) = kl +(kr − kl)H(x), (1.3)

in which H(x) is the Heaviside function. We take one step further and assume that kl > 0 > kr

in (1.3) with initial data u(x,0) = u0(x) � 0 since this is the case where the solution of (1.1) is
measure-valued. The conservation law requires that the quantity u(x, t) concentrates at x = 0. In
fact, the singular measure-valued solution was introduced and named as the delta standing wave
in [29].

The main purpose of this paper is to describe the formation of delta standing wave solution
to (1.1). We adopt a continuous and monotone approximation kε(x) of k(x) in (1.1) in order to
keep the characteristics to never intersect. Then we can construct the approximate solution by the
method of characteristics [9] along the entire time axis. In order to compute explicitly, we linearize
the discontinuous coefficient in the interval [−ε ,ε ] and then study the linearized stability of the
measure-valued solution to (1.1). The approach of linearizing the discontinuous coefficient was
proposed by Godlewski and Raviart in [17] to study the linearized stability of a discontinuous
solution to a hyperbolic system of conservation laws. Recently, the Leray regularization technique
which is through convoluting the discontinuous coefficient with the Helmholtz filter has also been
used to study the formation of the delta standing wave for (1.1) in [30]. We also refer to [6,16,19,20]
for the related equations and results.

More precisely, we take kε(x) as the linear function in the perturbed interval [−ε ,ε ] connecting
kl and kr for the convenience of computation. In this case, the discontinuous coefficient becomes a
continuous one and then the flux function in (1.1) can be defined in the distribution sense. At first,
we shall restrict ourselves to the Riemann problem and we will see that the solution uε(x, t) of the
perturbed Riemann problem can be constructed by the method of characteristics and can also be
expressed in an explicit form. It is worthwhile to notice that the characteristic curves do not follow
straight and uε(x, t) along the characteristic curve is not a constant in the region (x, t) ∈ (−ε ,ε)×
(0,+∞). Moreover, the characteristic curves never intersect and thus the perturbed Riemann solution
uε(x, t) can be constructed smoothly for all the time t. In fact, it is remarkable that the flux function
kε(x)uε (x, t) is invariant along the characteristic curve although uε (x, t) blows up as time passes.

We will show that the delta standing wave can be obtained by taking the limit of the solution
to the perturbed Riemann problem as the perturbation parameter ε → 0. Indeed, we can see that
the delta standing wave is regularized with this perturbation and we can describe the transformation
process from the classical solution to the weak one. In addition, the stability of the delta standing
wave solution to the Riemann problem can be analyzed under this small perturbation in a completely
explicit construction, which enables us to develop a fairly complete study of the solution concerning
both qualitative and quantitative properties.

In the end, we generalize the results from the Riemann problem to the general Cauchy problem
for (1.1) with the discontinuous coefficient (1.3) where for simplicity we assume that the initial data
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u(x,0) = u0(x) is a nonnegative continuous function. It is easy to see from the procedure of proof
that it is also true when u0(x) is a Lebesgue locally integrable nonnegative function. To be more
precise, it can be formally derived that the delta standing wave type solution also appears when
kl > 0 > kr. Furthermore, we can rigorously prove that the delta standing wave type solution to the
Cauchy problem can be obtained as the limit of solutions to the perturbed Cauchy problem for (1.1)
with the linearized continuous coefficient (2.5).

There are also several other approaches to study the measure-valued solutions for systems of
hyperbolic conservation laws, including the δ -shock, δ ′-shock and δ standing wave. For instance,
the delta shock wave appearing in the Riemann solution for systems of conservation laws has been
intensively studied by the self-similar vanishing viscosity approach in [14, 22, 33–37] and the van-
ishing pressure approach in [7,8,23,31] etc. Recently, the weak asymptotic method for studying the
δ -shock and δ ′-shock has been developed in [2, 11–13, 26, 28] etc.

The paper is organized in the following way. In section 2, we study the formation of the delta
standing wave solution to the Riemann problem for the system (2.2) with initial data (1.3) and
(2.1). We first mollify the Riemann problem by applying the linear functions connecting (kl ,ul) and
(kr,ur) in the perturbation interval [−ε ,ε ]. Then, we study the characteristic curves and construct the
global solutions to the perturbed Riemann problem. Finally, the delta standing wave can be obtained
by taking the limit of the solution to the perturbed Riemann problem as ε → 0, which implies that
the delta standing wave is stable under this linearization perturbation. In section 3, we consider the
Cauchy problem for (1.1) with the discontinuous coefficient (1.3). Firstly, we construct the formal
measure-valued solution for the Cauchy problem when the initial data is a nonnegative continuous
function. Then, we prove that the measure-valued solution can be derived from the solution of the
perturbed Cauchy problem with the linearized continuous coefficient (2.5) as ε → 0.

2. Linearization of the Riemann Problem for (1.1)

In this section, we only consider the Riemann type initial data for u(x, t) in order to be easily
understood and explicitly computed, namely

u(x,0) = u0(x) = ul +(ur −ul)H(x), (2.1)

in which ul,ur � 0. In this situation, it is more convenient to add the trivial equation kt = 0 into
Eq. (1.1), namely Eq. (1.1) becomes the system{

kt = 0,

ut +(ku)x = 0.
(2.2)

It is clear to see that the characteristic speeds for (2.2) are λ0 = 0 and λ1 = k. The characteristic
field for λ0 is stationary and both characteristic fields are linear degenerate. Thus the system (2.2) is
nonstrictly hyperbolic and the nonlinear resonant situation occurs when k = 0. It is well known that
the Riemann problem for the system (2.2) with initial data (1.3) and (2.1) cannot be solved by any
combination of shock waves, rarefaction waves and contact discontinuities. Thus the delta standing
wave is introduced in the Riemann solution when kl > 0 > kr, which is a Dirac delta function
supported on the standing wave discontinuity at x = 0. It is worthwhile to notice that the concept
of delta standing wave is analogous to the concept of delta contact discontinuity [24, 25, 32] or the
delta shock wave [22, 28, 35] which is a weighted Dirac delta function supported on the contact
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discontinuity or on the shock wave. In order to define the delta standing wave type solutions, let us
introduce the following definition as in [21, 29].

Definition 2.1. The two-dimensional weighted δ -measure w(t)δΓ supported on the line Γ : {x = 0}
is defined by

〈w(t)δΓ,ψ(x, t)〉 :=
∫ b

a
w(t)ψ(0, t)dt, (2.3)

for any test function ψ(x, t) ∈C∞
0 (R×R+), in which w(t) denotes the strength of the delta standing

wave at the time t.

With the above definition, the Riemann solution is a delta standing wave connecting the two
constant states (kl ,ul) and (kr,ur), namely

(k,u)(x, t) =

⎧⎪⎨
⎪⎩

(kl ,ul), x < 0,

(0,(klul − krur)tδ (x)), x = 0,

(kr,ur), x > 0.

(2.4)

It is proved in [29] that (2.4) is indeed a weak solution of the Riemann problem (2.2) with initial
data (1.3) and (2.1). It should be emphasized that the value of k must be zero on the discontinuity
line {x = 0} in order to satisfy the system (2.2) in the sense of distributions.

We are now in position to linearize the Riemann problem for the system (2.2) with initial data
(1.3) and (2.1). The approach of linearizing the discontinuous coefficient employed here is similar
to that proposed by Godlewski and Raviart in [17] to study the linearized stability of a discontin-
uous solution for a hyperbolic system of conservation laws. More precisely, we take kε(x) as the
affine function in the perturbed interval [−ε ,ε ] connecting kl and kr instead of the discontinuous
coefficient k(x) in (1.3), namely

kε (x) =

⎧⎪⎪⎨
⎪⎪⎩

kl, x <−ε ,
kr + kl

2
+

(kr − kl)x
2ε

, −ε � x � ε ,
kr, x > ε .

(2.5)

For the convenience of explicit computations, we also replace the Riemann initial data (2.1) for u
by the continuous initial data as

uε (x,0) =

⎧⎪⎪⎨
⎪⎪⎩

ul, x <−ε ,
ur +ul

2
+

(ur −ul)x
2ε

, −ε � x � ε ,
ur, x > ε ,

(2.6)

which has no influence on the result below.
In the sequel, the system (2.2) with initial data (2.5) and (2.6) will be called the perturbed

Riemann problem. In the interval [−ε ,ε ], the initial data are given by the affine functions connecting
(kl,ul) and (kr,ur) for convenience when applying the method of characteristics. Then, Eq. (1.1)
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becomes

(uε(x, t))t +(kε(x)uε (x, t))x = 0. (2.7)

Here we notice that Eq. (2.7) becomes a linear equation in uε(x, t) and can be solved by the method
of characteristics through substitution of k(x) by kε(x) in Eq. (1.1).

In the following, we will solve Eq. (2.7) with the continuous data (2.6) by the method of char-
acteristics in detail. Let us denote the characteristic curve through a point (x, t) by x(s) = X(s;x, t),
which is determined by the characteristic equations as follows:⎧⎪⎨

⎪⎩
dX
ds

(s;x, t) = kε (X(s;x, t)),

duε

ds
(X(s;x, t),s) =−k′ε(X(s;x, t))uε (X(s;x, t),s),

(2.8)

and the initial condition (2.6) becomes

uε(y,0) = uε(X(0;x, t),0) with y = X(0;x, t). (2.9)

Clearly, it can be derived from (2.5) that k′ε(x) in (2.8) can be obtained by

k′ε(x) =

⎧⎨
⎩

kr − kl

2ε
, |x|< ε ,

0, |x|> ε .
(2.10)

Although k′ε (x) is not defined at x =±ε , we point out that it has no influence on our results due to
the fact that the solution along each characteristic curve remains continuous at x =±ε .

Now we study the structure of characteristic curves and the behavior of solutions uε(x, t) along
those characteristic curves for the perturbed Riemann problem by the method of characteristics.
In order to calculate the characteristic curve emitting from the initial point (y,0), we divide our
discussion into four parts according to the position of y.

Part A. If y < −ε , then the characteristic curve passing through the initial point (y,0) is first
a straight line X(s;y,0) = kls + y until it intersects the line x = −ε which happens at the time
s−ε = −ε−y

kl
. Obviously we have X(s;y,0) � −ε for s � s−ε , thus it can be derived from (2.5) and

(2.8) that the characteristic curve is determined by the ODE

dX
ds

(s;y,0) =
kr + kl

2
+

(kr − kl)X(s;y,0)
2ε

(2.11)

with the initial condition X(s−ε ;y,0) =−ε .
It is easy to get

X(s;y,0) =
(kr + kl)ε

kl − kr
+

2klε
kr − kl

· exp
{
(kr − kl)(kls+ ε + y)

2klε

}
(2.12)

for s � s−ε . Noticing that kr < 0 < kl , we have

lim
s→+∞

(kr − kl)(kls+ ε + y)
2klε

=−∞ (2.13)
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for fixed ε , which implies that X(s;y,0) tends to
(kr + kl)ε

kl − kr
from the left-hand side as s →+∞. Thus

it is worthwhile to notice that for fixed ε , the characteristic curve has the line x =
(kr + kl)ε

kl − kr
as its

asymptote and cannot pass through this asymptote.
It follows from (2.12) that

∂X
∂y

(s;y,0) = exp
{
(kr − kl)(kls+ ε + y)

2klε

}
> 0, (2.14)

which implies that the characteristic curves x(s) = X(s;y1,0) and x(s) = X(s;y2,0) cannot intersect
if y1 < y2 �−ε .

On the other hand, it follows from (2.8) that uε(X(s;y,0),s) is equal to ul on the characteristic
line before the time s−ε . Otherwise, when s> s−ε , it follows from (2.8) and (2.10) that uε(X(s;y,0),s)
can be calculated by

duε

ds
(X(s;y,0),s) =

(kl − kr)uε(X(s;y,0),s)
2ε

(2.15)

with the initial condition uε(−ε ,s−ε ) = ul . Obviously, for s > s−ε , we have

uε (X(s;y,0),s) = ul · exp
{
(kl − kr)(kls+ ε + y)

2klε

}
. (2.16)

It is clear that uε (X(s;y,0),s) is monotonically increasing with respect to s and tends to +∞ as
s →+∞ for fixed ε .

In addition, when s > s−ε , by substituting (2.12) into (2.5), we obtain

kε (X(s;y,0)) =
kr + kl

2
+

(kr − kl)X(s;y,0)
2ε

= kl · exp
{
(kr − kl)(kls+ ε + y)

2klε

}
, (2.17)

which together with (2.16) implies that

kε(X(s;y,0))uε (X(s;y,0),s) = klul. (2.18)

Thus, we see that the flux function kε(X(s;y,0))uε (X(s;y,0),s) is invariant along the characteristic
curve although uε(X(s;y,0),s) blows up when s →+∞.

Part B. If −ε � y < (kr+kl)ε
kl−kr

, then the characteristic curve starting from the initial point (y,0) is
also determined by Eq. (2.11) but with the initial condition X(0;y,0) = y now. A similar calculation
leads to

X(s;y,0) =
(kr + kl)ε

kl − kr
+

(
(kr + kl)ε

kr − kl
+ y

)
· exp

{
(kr − kl)s

2ε

}
. (2.19)

From (2.19), we have

∂X
∂y

(s;y,0) = exp
{
(kr − kl)s

2ε

}
> 0, (2.20)

which implies that the characteristic curves x(s) = X(s;y,0) cannot intersect if −ε � y < (kr+kl)ε
kl−kr

.
We would like to point out that the characteristic curve x(s) = X(s;−ε ,0) plays a crucial role
here to separate the characteristic curves emanating from the initial intervals (−∞,−ε) and
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(−ε ,
(kr + kl)ε

kl − kr
) on the x-axis respectively. Thus, from (2.14) and (2.20) we conclude that the char-

acteristic curves cannot intersect on the left hand-side of the asymptote x =
(kr + kl)ε

kl − kr
in the (x, t)

plane for fixed ε .
Accordingly, uε(X(s;y,0),s) is also determined by Eq. (2.15), and from (2.6) we see that the

initial condition now is

uε(y,0) =
ur +ul

2
+

(ur −ul)y
2ε

, (2.21)

which implies that

uε (X(s;y,0),s) =
(

ur +ul

2
+

(ur −ul)y
2ε

)
· exp

{
(kl − kr)s

2ε

}
. (2.22)

We can also see that uε(X(s;y,0),s) in (2.22) is monotonically increasing with respect to s and tends
to +∞ as s →+∞ for fixed ε .

Similarly, by substituting (2.19) into (2.5), it leads to

kε(X(s;y,0)) =
(

kr + kl

2
+

(kr − kl)y
2ε

)
· exp

{
(kr − kl)s

2ε

}
, (2.23)

which together with (2.22) implies that

kε(X(s;y,0))uε (X(s;y,0),s) = kε (y)uε (y,0). (2.24)

Thus, we see that the flux function kε (X(s;y,0))uε (X(s;y,0),s) is also invariant along the charac-
teristic curve in this situation.

Part C. If (kr+kl)ε
kl−kr

< y � ε , then the expressions of X(s;y,0) and uε (X(s;y,0),s) are the same as
(2.19) and (2.22) in Part B. The difference lies in that the characteristic curve tends to the asymptote

x =
(kr + kl)ε

kl − kr
from the right-hand side.

Part D. If y > ε , then the situation is similar to that in Part A. The characteristic curve emanating
from the initial point (y,0) is still a straight line X(s;y,0) = krs+ y before it arrives at the line
x = ε which now happens at the time s+ε = ε−y

kr
. Then, for s � s+ε , the characteristic curve is also

determined by Eq. (2.11) but the initial condition becomes X(s+ε ;y,0) = ε , namely

X(s;y,0) =
(kr + kl)ε

kl − kr
+

2krε
kr − kl

· exp
{
(kr − kl)(krs− ε + y)

2krε

}
. (2.25)

The characteristic curve also has x =
(kr + kl)ε

kl − kr
as its asymptote but now tends to it from the right-

hand side. For the same reason as before, the same conclusion can be drawn that the characteristic

curves cannot intersect each other on the right hand-side of the asymptote x =
(kr + kl)ε

kl − kr
for fixed

ε .
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Fig. 1. The characteristic curves for the perturbed Riemann problem (2.5)–(2.7), in the case of

kl > 0 > kr, where the line {x = η = (kl+kr)ε
kl−kr

} is the asymptote for those characteristic curves.

�
t

��

η
�−ε �ε�

0
x

Fig. 2. The limit situation for the perturbed Riemann problem in Fig. 1 above, which is exactly the

Riemann solution of (2.2) with the initial data (1.3) and (2.1).

�

�
t

x
0

kl kr

On the other hand, uε (X(s;y,0),s) is equal to ur on the characteristic before the time s+ε . When
s > s+ε , uε (X(s;y,0),s) can also be calculated by Eq. (2.15) but now with the initial condition
uε(ε ,s+ε ) = ur, namely

uε(X(s;y,0),s) = ur · exp
{
(kl − kr)(krs− ε + y)

2krε

}
. (2.26)

Obviously, uε(X(s;y,0),s) is monotonically increasing with respect to s and tends to infinity as
s → +∞ for fixed ε . Analogously, we can also see that the flux function is still invariant along the
characteristic curve.
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Remark 2.1. We see that the asymptote expressed as x = η(=
(kr + kl)ε

kl − kr
) has small partial differ-

ence with respect to the line of delta standing wave x = 0 in the limit situation if kr + kl �= 0. This

shift is due to the fact that
(kr + kl)ε

kl − kr
is the zero point of kε(x) = 0. Figure 1 is drawn in the case of

kr + kl > 0, where the line x = η is on the right hand-side of the line x = 0.

Through the above analysis for the characteristic curves, we can collect these results together
and obtain Figure 1 to illustrate it in detail. Now we establish that the delta standing wave can be
obtained by taking the limit of the solution to the perturbed Riemann problem as the perturbation
parameter ε → 0, which is depicted in Figure 2 for this limit situation. The perturbed Riemann
solutions constructed above show that for any ε > 0, the local linearization (2.5) of the discontinuous
coefficient k(x) bends the characteristics of Eq. (1.1) in the perturbed interval [−ε ,ε ] so that they
avoid a finite-time collision. The bending is done so that the characteristic curves approach an
asymptote as t → ∞. More precisely, we state our conclusions in the following theorem.

Theorem 2.1. In the case kl > 0 > kr, assume that uε (x, t) is the solution of the perturbed Riemann
problem (2.7) with the continuous initial data (2.6) in which kε(x) is given by (2.5), then the limit of
(kε(x),uε (x, t)) is exactly a delta standing wave connecting the constant states (kl ,ul) and (kr,ur),
which is exactly the corresponding Riemann solution (2.4) to the Riemann problem (2.2) with initial
data (1.3) and (2.1) in the same situation.

Proof. It is easy to check directly that the above constructed uε(x, t) is indeed the solution of
Eq. (2.7) under the initial condition (2.6). Leu us firstly consider the limit ε → 0 of kε(x) in (2.5).
Taking the formal limit ε → 0 in (2.5) leads to

k(x) = lim
ε→0

kε(x) =

⎧⎪⎪⎨
⎪⎪⎩

kl, x < 0,
kr + kl

2
, x = 0,

kr, x > 0.

(2.27)

However, on the other hand, it is clear that the delta standing wave is formed at the position of the

limit ε → 0 of the asymptote x = η(=
(kr + kl)ε

kl − kr
) in which η depends on ε . The above fact implies

that the value of k(0) should be reassigned according to the variation of η along with ε . Thus, it can
be derived from (2.5) that

k(0) = lim
ε→0

kε(η) = lim
ε→0

[
kr + kl

2
+

(kr − kl)η
2ε

]
= 0. (2.28)

Therefore, the above result is identical with that in (2.4) which has been checked in [21, 29] to
satisfy the system (2.2) in the sense of distributions.

In order to prove that the limit of the above constructed uε(x, t) is also the weak entropy solution
(2.4) to the Riemann problem (2.2) with initial data (1.3) and (2.1), let us take a smooth test function
ψ(x, t) ∈C∞

c (R×R+) and then compute the limit as ε → 0 of

〈uε (x, t),ψ(x, t)〉 =
∫ ∞

0

∫ ∞

−∞
uε(x, t)ψ(x, t)dxdt. (2.29)
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The above integral in (2.29) can be decomposed into

∫ ∞

0

{∫ −ε

−∞
+

∫ (kl+kr)ε
kl−kr

−ε
+

∫ ε

(kl+kr)ε
kl−kr

+

∫ +∞

ε

}
uε(x, t)ψ(x, t)dxdt. (2.30)

When x= X(t;y,0)<−ε , namely X(t;y,0) = klt+y<−ε , we have uε(x, t) = uε (X(t;y,0), t) =
ul . By the change of variables y = x− klt, the first integral in (2.30) becomes

∫ ∞

0

∫ −ε

−∞
uε(x, t)ψ(x, t)dxdt =

∫ ∞

0

∫ −ε−klt

−∞
ulψ(klt + y, t)dydt. (2.31)

Obviously, we have

lim
ε→0

∫ ∞

0

∫ −ε

−∞
uε(x, t)ψ(x, t)dxdt =

∫ ∞

0

∫ −klt

−∞
ulψ(klt + y, t)dydt. (2.32)

From (2.12) (or (2.19)), we see that the characteristic curve starting from the initial point (−ε ,0)
can be easily calculated and equals

X(t;−ε ,0) =
(kr + kl)ε

kl − kr
+

2klε
kr − kl

· exp
{
(kr − kl)t

2ε

}
. (2.33)

Therefore, the second integral in (2.30) can also be decomposed into two parts

∫ ∞

0

∫ (kl+kr)ε
kl−kr

−ε
uε(x, t)ψ(x, t)dxdt =

∫ ∞

0

{∫ X(t;−ε ,0)

−ε
+

∫ (kl+kr)ε
kl−kr

X(t;−ε ,0)

}
uε (x, t)ψ(x, t)dxdt. (2.34)

If −ε � x � X(t;−ε ,0), then the value of y = X(0;x, t) (or equivalently x = X(t;y,0)) is deter-
mined by Eq. (2.12) and we can see that −ε − klt � y �−ε . Accordingly, uε(x, t) is determined by
Eq. (2.15) and can be expressed by (2.16). It can be derived from (2.12) that

dx = exp
{
(kr − kl)(kls+ ε + y)

2klε

}
dy. (2.35)

Together with (2.16), we have

∫ ∞

0

∫ X(t;−ε ,0)

−ε
uε(x, t)ψ(x, t)dxdt =

∫ ∞

0

∫ −ε

−ε−klt
ulψ(X(t;y,0), t)dydt (2.36)

in which X(t;y,0) can be expressed by the formula (2.12). It is clear that limε→0 X(t;y,0) = 0, thus
we have

lim
ε→0

∫ ∞

0

∫ X(t;−ε ,0)

−ε
uε(x, t)ψ(x, t)dxdt =

∫ ∞

0

∫ 0

−klt
ulψ(0, t)dydt =

∫ ∞

0
klultψ(0, t)dt. (2.37)

If X(t;−ε ,0)< x < (kr+kl)ε
kl−kr

, then the value of y = X(0;x, t) is determined by Eq. (2.19) and we

can see that −ε < y < (kr+kl)ε
kl−kr

. Accordingly, uε (x, t) can be given by (2.22). It follows from (2.19)
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that

dx = exp
{
(kr − kl)s

2ε

}
dy. (2.38)

Together with (2.22), we have

∫ ∞

0

∫ (kr+kl )ε
kl−kr

X(t;−ε ,0)
uε(x, t)ψ(x, t)dxdt =

∫ ∞

0

∫ (kr+kl )ε
kl−kr

−ε
uε(y,0)ψ(X(t;y,0), t)dydt (2.39)

in which X(t;y,0) is determined by the formula (2.19).
Obviously, we have

lim
ε→0

X(t;−ε ,0) = lim
ε→0

(kr + kl)ε
kl − kr

= 0. (2.40)

Noticing that ψ is bounded with compact support, we have

lim
ε→0

∫ ∞

0

∫ (kr+kl )ε
kl−kr

X(t;−ε ,0)
uε(x, t)ψ(x, t)dxdt = 0. (2.41)

Then, the second integral in (2.30) can be obtained from (2.37) together with (2.41).
Collecting (2.32), (2.37) and (2.41) together, we have

lim
ε→0

∫ ∞

0

{∫ −ε

−∞
+
∫ (kl+kr)ε

kl−kr

−ε

}
uε(x, t)ψ(x, t)dxdt

=
∫ ∞

0

∫ −klt

−∞
ulψ(klt + y, t)dydt +

∫ ∞

0
klultψ(0, t)dt

=
∫ ∞

0

∫ 0

−∞
ulψ(x, t)dxdt +

∫ ∞

0
klultψ(0, t)dt.

(2.42)

By a similar computation, we have

lim
ε→0

∫ ∞

0

{∫ ε

(kl+kr)ε
kl−kr

+

∫ +∞

ε

}
uε(x, t)ψ(x, t)dxdt

=

∫ ∞

0

∫ +∞

−krt
urψ(krt + y, t)dydt −

∫ ∞

0
krurtψ(0, t)dt

=

∫ ∞

0

∫ +∞

0
urψ(x, t)dxdt −

∫ ∞

0
krurtψ(0, t)dt.

(2.43)

Combining (2.42) and (2.43), we conclude that

lim
ε→0

uε (x, t) = ul +(ur −ul)H(x)+ (klul − krur)tδ (x) (2.44)

holds in the weak (distribution) sense, which is exactly the corresponding Riemann solution (2.4).
The proof is completed.

Remark 2.2. In the course of the proof, we have implicitly shown that a small perturbation on
the initial data in (2.6) has no influence on the limit solution. Thus, we can obtain the same result
without perturbing the initial data u(x,0).
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3. Linearization of the Cauchy Problem for (1.1)

In this section, we take one step further in the study of the Cauchy problem for Eq. (1.1) where the
discontinuous coefficient is also given by (1.3) and the initial data are given by

u(x,0) = u0(x). (3.1)

For simplicity, we assume that u0 is a nonnegative continuous function.
At first, we derive formally the solution of the Cauchy problem (1.1) with (1.3) and (3.1). Let

us introduce the function

ũ(x, t) =

{
u0(x− klt) for x < 0,

u0(x− krt) for x > 0.
(3.2)

It is obvious that ũ(x, t) is indeed a solution of the Cauchy problem (1.1) with (1.3) and (3.1) in the
regions D− = {(x, t) | x < 0, t � 0} and D+ = {(x, t) | x > 0, t � 0} respectively.

For any test function ψ(x, t) ∈C∞
c (R×R+), we have

〈ũt +(k(x)ũ)x,ψ〉=−
∫ ∞

0

∫ ∞

−∞
(ũψt + k(x)ũψx)dxdt

=−
{∫ ∫

D−
+

∫ ∫
D+

}
(ũψt + k(x)ũψx)dxdt. (3.3)

By using the integration by parts in each of the two halves, we obtain

〈ũt +(k(x)ũ)x,ψ〉=
∫ ∞

0
(kru0(−krt)− klu0(−klt))ψ(0, t)dt. (3.4)

Thus, we have that the equality

ũt +(k(x)ũ)x = (kru0(−krt)− klu0(−klt))δ (x) (3.5)

holds in the sense of distributions.
In general, the Cauchy problem (1.1) with (1.3) and (3.1) has no solution in the class of functions

but has a solution in the sense of distributions. Furthermore, we can see that u− ũ is necessarily
concentrated on the line {x = 0}. Therefore we look for a delta standing wave type solution which
involves a Dirac measure supported on {x = 0}, namely we should look for a solution in the form

u(x, t) = ũ(x, t)+β (t)δ (x), (3.6)

which satisfies

〈ut +(k(x)u)x,ψ〉= 0 (3.7)

for any ψ(x, t) ∈C∞
c (R×R+) in the distribution sense.

Since k is discontinuous on {x = 0}, we follow the method in [10] to define the product ku at
x = 0 by

k(x)δ (x) = cδ (x) (3.8)

where c is a constant to be determined. Then, we can clarify definition (3.8) that the Cauchy problem
(1.1) and (3.1) possesses a delta standing wave type solution in the following theorem.
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Theorem 3.1. In the case kl > 0 > kr, the Cauchy problem (1.1) and (3.1) has a solution of the
form

u(x, t) =

⎧⎪⎨
⎪⎩

u0(x− klt), x < 0,

β (t)δ (x), x = 0,

u0(x− krt), x > 0,

(3.9)

and β (t) is given by

β (t) =
∫ t

0
(klu0(−kls)− kru0(−krs))ds. (3.10)

In particular, we have c = 0 in (3.8) here.

Proof. Let us check that (3.9) together with (3.10) is indeed a solution of the Cauchy problem (1.1)
with (1.3) and (3.1) for kl > 0 > kr. By substituting (3.6) into (3.7) and by recalling definition (3.8),
we obtain

〈(ũ(x, t)+β (t)δ (x))t +(k(x)ũ(x, t)+ cβ (t)δ (x))x,ψ〉= 0 (3.11)

for any test function ψ(x, t) ∈C∞
c (R×R+).

By combining (3.11) and (3.5), we have

〈(β (t)δ (x))t +(cβ (t)δ (x))x,ψ〉= 〈(klu0(−klt)− kru0(−krt))δ (x),ψ〉, (3.12)

namely

〈β (t)δ (x),ψt 〉+ 〈cβ (t)δ (x),ψx〉=−〈(klu0(−klt)− kru0(−krt))δ (x),ψ〉. (3.13)

By using integration by parts, we obtain that

〈(klu0(−klt)− kru0(−krt))δ (x),ψ〉

=

∫ ∞

0
(klu0(−klt)− kru0(−krt))ψ(0, t)dt

=−
∫ ∞

0

(∫ t

0
(klu0(−kls)− kru0(−krs))ds

)
ψt(0, t)dt. (3.14)

Thus, we can see that (3.9) with (3.10) is indeed a solution of the Cauchy problem (1.1) with (1.3)
and (3.1) when c = 0.

It will be shown that the above constructed measure-valued solution (3.9) with (3.10) for the
Cauchy problem (1.1) with (1.3) and (3.1) can also be obtained as the limit of solutions to the
perturbed Cauchy problem by replacing k(x) in (1.1) with kε(x) given by (2.5) which is a piecewise
linear continuous approximation of k(x). It is easy to see that the structures of characteristic curves
for the perturbed Cauchy problem here are the same as those for the perturbed Riemann problem in
Section 2 due to the fact that the behaviors of characteristic curves only depend on kε(x).

Theorem 3.2. In the case kl > 0 > kr, assume that uε (x, t) is the solution of the regularized Cauchy
problem for Eq. (2.7), in which the coefficient kε (x) and the initial data uε(x,0) = u0(x) are given
by (2.5) and (3.1) respectively, then the limit of uε (x, t) is (3.9) with (3.10) which is exactly the
corresponding measure-valued solution of the Cauchy problem (1.1) with (1.3) and (3.1).

Co-published by Atlantis Press and Taylor & Francis 
                     Copyright: the authors 
                                    241



M. Sun

Proof. The proof is analogous to that of Theorem 2.1, namely we need to calculate the limit of
(2.29) and the integral in (2.29) can also be decomposed into four parts in (2.30).

If x = X(t;y,0) = klt + y < −ε , then we have uε(x, t) = u0(x− klt). By the change of variables
y = x− klt, then the limit ε → 0 of the first integral in (2.30) becomes

lim
ε→0

∫ ∞

0

∫ −ε

−∞
uε (x, t)ψ(x, t)dxdt =

∫ ∞

0

∫ −klt

−∞
u0(y)ψ(klt + y, t)dydt. (3.15)

If −ε � x � X(t;−ε ,0) where X(t;−ε ,0) is given by (2.33), then we obtain that
∫ ∞

0

∫ X(t;−ε ,0)

−ε
uε(x, t)ψ(x, t)dxdt =

∫ ∞

0

∫ −ε

−ε−klt
u0(y)ψ(X(t;y,0), t)dydt, (3.16)

in which X(t;y,0) can be expressed by the formula (2.12). Similarly, we have

lim
ε→0

∫ ∞

0

∫ X(t;−ε ,0)

−ε
uε(x, t)ψ(x, t)dxdt =

∫ ∞

0

(∫ 0

−klt
u0(y)dy

)
ψ(0, t)dt. (3.17)

If X(t;−ε ,0) < x < (kr+kl)ε
kl−kr

, then the value of y = X(0;x, t) (or equivalently x = X(t;y,0)) is

determined by (2.19). It is easy to see that −ε < y < (kr+kl)ε
kl−kr

here. Together with (2.22), we arrive
at

∫ ∞

0

∫ (kr+kl )ε
kl−kr

X(t;−ε ,0)
uε(x, t)ψ(x, t)dxdt =

∫ ∞

0

∫ (kr+kl )ε
kl−kr

−ε
u0(y)ψ(X(t;y,0), t)dydt. (3.18)

Noticing that ψ is bounded with compact support, we can deduce that

lim
ε→0

∫ ∞

0

∫ (kr+kl )ε
kl−kr

X(t;−ε ,0)
uε(x, t)ψ(x, t)dxdt = 0. (3.19)

Collecting (3.15), (3.17) and (3.19) together, we have

lim
ε→0

∫ ∞

0

{∫ −ε

−∞
+
∫ (kl+kr)ε

kl−kr

−ε

}
uε(x, t)ψ(x, t)dxdt

=

∫ ∞

0

∫ −klt

−∞
u0(y)ψ(klt + y, t)dydt +

∫ ∞

0

(∫ 0

−klt
u0(y)dy

)
ψ(0, t)dt

=
∫ ∞

0

∫ 0

−∞
u0(x− klt)ψ(x, t)dxdt +

∫ ∞

0

(∫ t

0
klu0(−kls)ds

)
ψ(0, t)dt.

(3.20)

With the similar computation as before, we also have

lim
ε→0

∫ ∞

0

{∫ ε

(kl+kr)ε
kl−kr

+

∫ +∞

ε

}
uε(x, t)ψ(x, t)dxdt

=

∫ ∞

0

∫ +∞

−krt
u0(y)ψ(krt + y, t)dydt +

∫ ∞

0

(∫ −krt

0
u0(y)dy

)
ψ(0, t)dt

=

∫ ∞

0

∫ +∞

0
u0(x− krt)ψ(x, t)dxdt −

∫ ∞

0

(∫ t

0
kru0(−krs)ds

)
ψ(0, t)dt.

(3.21)

By taking (3.20) and (3.21) together, we see that the limit of uε(x, t) is indeed (3.9) with (3.10),
which is exactly the corresponding measure-valued solution of the Cauchy problem (1.1) with (1.3)
and (3.1).
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Remark 3.1. It is worthwhile to notice that we require c = 0 in (3.8) in order to define the measure-
valued solution which satisfies Eq. (3.7) in the sense of distributions. In fact, it is required that the
characteristic curve emitting from the point (0,0) is a vertical line (namely the line of the delta
standing wave) in the (x, t) plane. Even for the Riemann problem, this requirement is also needed.
We can see it from the Riemann solution (2.4), which is verified in [29] that k(0) = 0 in (2.4) must
be satisfied if (2.4) satisfies Eq. (3.7) in the sense of distributions.
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