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Certain techniques to obtain properties of the zeros of polynomials satisfying second-order ODEs are reviewed.
The application of these techniques to the classical polynomials yields formulas which were already known;
new are instead the formulas for the zeros of the (recently identified, and rather explicitly known) polynomials
satisfying a (recently identified) second-order ODE which features many free parameters and only polyno-
mial solutions. Some of these formulas have a Diophantine connotation. Techniques to manufacture infinite
sequences of second-order ODEs featuring only polynomial solutions are also reported.

Keywords: zeros of polynomials, polynomials satisfying linear second-order ODEs, a linear second-order ODE
with only polynomial solutions, Diophantine relations

1. Introduction

The properties of the zeros of polynomials satisfying linear second-order ODEs is a classical subject
to which significant advances have been made over time by such mathematicians as J.C.F. Sturm,
T.J. Stieltjes, G. Szegö and too many others to be listed here (yet let me heed the suggestion by an
anonymous referee and refer the interested reader to a recent paper reporting new results on this
topic but also having a review character indeed listing 48 references [1]). Many decades ago these
findings were reviewed by Szegö in his classical treatise [2], and some decades ago many algebraic
equations satisfied by the zeros of the classical polynomials were presented in [3], including sum
rules and findings having a Diophantine connotation. Additional and related results of this kind
are reviewed in Section 2.4 (entitled “Finite-dimensional representations of differential operators,
Lagrangian interpolation, and all that”) and Appendix D (entitled “Remarkable matrices and related
identities”) of [4], and in Appendix C (entitled “Diophantine findings and conjectures”) of [5]. The
main purpose of the present paper is to provide a few analogous results for the zeros of the (recently
identified, and rather explicitly known) polynomials satisfying certain (recently identified) second-
order ODEs which feature many free parameters and only polynomial solutions [6]. To this end
we report, in the following Section 2, firstly some general results for the zeros of polynomials
satisfying linear second-order ODEs, and then the specific versions of these results for the zeros of
the polynomials satisfying ODEs featuring only polynomial solutions, on which this paper is mainly
focussed (indeed, techniques to manufacture infinite sequences of second-order ODEs having this
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property are also reported at the end of this section). The proofs of these findings are provided in
the following Section 3. A terse Section 4 entitled Outlook completes this paper.

2. Results

In this paper we focus on (monic) polynomials of degree N,

ψN(z) =
N

∏
n=1

(z− zn) = zN +
N

∑
m=1

(
cm zN−m)=

N

∑
m=0

(
cm zN−m) , c0 = 1, (2.1)

satisfying the linear second-order ODE

a2(z;N) ψ ′′
N(z)+a1(z;N) ψ ′

N(z)+a0(z;N) ψN(z) = 0. (2.2)

Notation 2.1. Above and hereafter N is a positive integer (large enough, see below), ψN(z) is a
(monic) polynomial of degree N satisfying the ODE (2.2) (with appropriate assignments of the 3
functions a2(z;N), a1(z;N) and a0(z;N), depending parametrically on the integer N and on other
parameters, see below), zn are its N zeros and cm its N coefficients. Hereafter we assume for sim-
plicity that the N zeros zn are all different among themselves, zn �= zm if n �= m; the results continue
to hold if some zeros coincide, but generally only after taking appropriate limits. Indices such as
n, m, � take generally all integer values from 1 to N (unless otherwise explicitly indicated). In (2.2)
and hereafter primes appended to a function denote of course differentiations with respect to the
argument of that function, ψ ′

N(z)≡ dψN(z)/dz, ψ ′′
N(z)≡ d2ψN(z)/dz2. �

Proposition 2.1. Provided the function a2(z;N) does not vanish at the zeros zn and the function
a0(z;N) does not diverge at the zeros zn,

a2(zn;N) �= 0, [a0(zn;N)]−1 �= 0, (2.3)

there hold the N sum rules

N

∑
�=1
� �=n

(
1

zn − z�

)
=− a1(zn;N)

2 a2(zn;N)
. (2.4)

�
This result is rather elementary and presumably not new: for instance, in the case of the classical

polynomials (Hermite, Laguerre, respectively Jacobi), see eqs. (3.3a), (4.2a) respectively (5.2a)
of [3].

Corollary 2.1. There holds the sum rule

N

∑
n=1

(
a1(zn)

a2(zn)

)
= 0. (2.5)

�
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Proposition 2.2. Let the N ×N matrix Q be defined, componentwise, as follows:

Qnn =−zn a1(zn;N)

2 a2(zn;N)
; Qnm =

zn

zn − zm
, n �= m. (2.6)

Then the N eigenvalues of the N ×N matrix Q are the N integers from 0 to N −1,

Q v(m) = (m−1) v(m), (2.7a)

and the corresponding eigenvectors v(m) are defined as follows:

v(m) ≡
(

v(m)
1 , . . . ,v(m)

n

)
, v(m)

n = (zn)
m

N

∏
�=1
� �=n

(zn − z�)−1. (2.7b)

�
Notation 2.2. Hereafter N ×N matrices such Q are denoted by underlined upper-case letters, and
N-vectors by underlined lower case letters, so that for instance v ≡ (v1, . . . ,vn). �

Next, we introduce the specific ODE on which we mainly focus in this paper, which is charac-
terized by the following assignment of the functions a2(z;N), a1(z;N) and a0(z;N) in (2.2):

a2(z;N) = 1, a1(z;N) =−
[

N −1
z

+Rk (z;m,x)
]
, a0(z) =

N
z

Rk (z;m,x) . (2.8)

Notation 2.3. Hereafter, for any positive integer K, the rational function Rk (z;m,x) of the inde-
pendent variable z is defined as follows,

Rk (z;m,x) =
K

∑
k=1

(
mk

z− xk

)
, R′

k (z;m,x) =−
K

∑
k=1

[
mk

(z− xk)2

]
, (2.9a)

in terms of the 2K parameters mk respectively xk which are the K components of the two K-vectors
m = (m1,m2, . . . ,mk) respectively x = (x1,x2, . . . ,xk). Hereafter we use the standard convention
according to which a sum vanishes, and a product equals unity, if its upper limit is smaller than its
lower limit. Note that the coefficients of the ODE (2.2) with (2.8) and (2.9a) become polynomial
after multiplication of this ODE by the polynomial z

[
∏K

k=1(z− xk)
]

(of degree 1+K). �
In [6] it is shown that the general solution of the second-order ODE (2.2) with (2.8) and (2.9a)

is a polynomial in z of degree N, provided K is (of course) a positive integer, the K components mk

of the K-vector m are all positive integers and their sum equals N −1,

m ≡ (m1, . . . ,mk) ; mk integer, mk > 0, k = 1, . . . ,K;
K

∑
k=1

mk = N −1, (2.9b)

while the K additional parameters provided by the K components xk of the K-vector x ≡ (x1, . . . ,xk)

are arbitrary numbers (possibly also complex; but obviously without loss of generality one may
assume that these K parameters xk are all different among themselves).
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Indeed in [6] it is shown that the general solution of the ODE (2.2) with (2.8) and (2.9) reads as
follows:

ψN(z)≡ ψN (z; m, x; γ) = zN ϕN (z; m, x; γ) , (2.10a)

ϕN (z; m, x; γ) = 1+
γ
z

m1

∑
μ1=0

· · ·
mk

∑
μk=0

[(
K

∏
k=1

[(
mk

μk

) (
−xk

z

)μk
])

1
1+∑K

�=1 μ�

]

, (2.10b)

where γ is an arbitrary (integration) constant. Here of course
(m

μ
)

is the standard binomial coeffi-
cient,

(
m
μ

)
=

m!
μ! (m−μ)!

. (2.10c)

Remark 2.1. The general solution of the second-order ODE (2.2) should depend on two arbitrary
parameters, one of which has however been fixed here, see (2.10), for consistency with the nota-
tionally convenient requirement (see (2.1)) that the polynomial ψN(z) be monic. �

Remark 2.2. The result reported above, see in particular (2.8) and (2.10), corresponds to the special
case of the results of [6] with J = 0. This restriction is justified by the fact that, in the more general
case with J > 0 (see [6]), the polynomial ψ(z) introduced in [6] (of order N + J) features rather
trivially J zeros y j which can be arbitrarily assigned a priori; while the zeros zn of the polynomial
(2.10) depend nontrivially on the 2K parameters featured by the ODE (2.2) with (2.8) and (2.9), and
also on the arbitrary (integration) constant γ . Moreover the sum rule of Proposition 2.1 obviously
does not hold for the more general ODE considered in [6] (with J > 0). Also note that the number
2K of parameters can be arbitrarily large, but only if the degree N is adequately large, since the last
of the equations (2.9b) clearly entails that N must be adequately larger than K. �

Proposition 2.3. The N ×N matrix C defined componentwise as follows,

Cnn =
N −1

2
+

zn

2

K

∑
k=1

(
mk

zn − xk

)
, Cnm =

zn

zn − zm
, n �= m, (2.11)

features the N integers from 0 to N −1 as its N eigenvalues:

C v(m) = (m−1) v(m), (2.12a)

with the corresponding eigenvectors v(m) defined as above, see (2.7b). Here the parameters mk are
K (arbitrary) positive integers satisfying the single restriction

K

∑
k=1

mk = N −1, (2.12b)

the K parameters xk are K arbitrary numbers (possibly complex), and the N numbers zn are the N
zeros of the polynomial of degree N (2.10) (satisfying the ODE (2.2) with (2.8) and (2.9)). �

Remark 2.3. Let us reemphasize that the N zeros zn of the polynomial (2.10) depend (of course)
on N and on the 2K parameters mk and xk which are featured by the ODE (2.2) with (2.8) and (2.9),
and moreover on the additional arbitrary parameter γ (which does not appear in this ODE but is
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featured by its solution (2.10)). And let us highlight the Diophantine connotation of Proposition 2.3,
which we consider the main result of this paper. �

Let us complete this section by displaying the ODE (2.2) with (2.8) and (2.9), as well as its
solution (2.10), corresponding to the simplest assignments of the parameter K.

For K = 1,

z (z− x1)ψ ′′
N − (N −1) (2 z− x1) ψ ′

N +N (N −1) ψN = 0, (2.13a)

ψN(N −1;x1;γ ;z) = (1+ γ) zN − γ (z− x1)
N

=
(x1

2

)N
pN

(
0,0;−N γ ;

2 z
x1

−1
)
, (2.13b)

with γ and x1 two arbitrary parameters. Here pN(0,0;α ;y) is a para-Jacobi polynomial, see [7].
For K = 2,

z (z− x1) (z− x2) ψ ′′
N −{2(N −1) z2

− [(2 N −2−m1) x1 +(N −1+m1) x2] z+(N −1) x1 x2} ψ ′
N

+N [(N −1) z− (N −1−m1) x1 −m1 x2] ψN = 0, (2.14a)

ψN (m1,N −1−m1;x1,x2;γ ;z) = zN

+γ zN−1
m1

∑
μ1=0

N−1−m1

∑
μ2=0

[(
m1

μ1

) (
N −1−m1

μ2

)
xμ1

1 xμ2
2

(−z)−(μ1+μ2)

1+μ1 +μ2

]

, (2.14b)

with m1 an arbitrary integer in the range 0 � m1 � N −1 and γ , x1, x2 three arbitrary parameters.
And finally let us proffer the following two remarks.

Remark 2.4. If a second-order ODE such as (2.2) admits a general solution which is (up to overall
normalization) a monic polynomial ψN(z) of arbitrary degree N, it is clearly easy to manufacture
other analogous ODEs, say

ã2(z;N) ψ̃ ′′
N(z)+ ã1(z;N) ψ̃ ′

N(z)+ ã0(z;N) ψ̃N(z) = 0, (2.15)

having the same property to feature a general solution which is (up to normalization) a monic
polynomial ψ̃N(z) of degree N. For instance such a (monic) polynomial solution could be

ψ̃N(z) =
ψ ′

N+1(z)
N +1

, (2.16a)

with the coefficients of the corresponding ODE (2.15)—obtained dividing (2.2) (with N replaced
by N + 1) by a0(z;N + 1), then differentiating, then multiplying by a0(z;N + 1))—related to those
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of the ODE (2.2) as follows:

ã2(z;N) = a2(z;N +1), (2.16b)

ã1(z;N) = a1(N +1;z)+a′2(N +1;z)− a′0(N +1;z) a2(N +1;z)
a0(N +1;z)

, (2.16c)

ã0(z;N) = a0(N +1;z)+a′1(N +1;z)− a′0(N +1;z) a1(N +1;z)
a0(N +1;z)

. (2.16d)

The N zeros z̃n of ψ̃N(z) coincide then with the N extrema of ψN+1(z).

Of course this procedure can be applied sequentially an arbitrary number of times, thereby
producing an arbitrarily long sequence of ODEs whose general solution is a polynomial of degree
N in z; to each of these ODEs all the findings reported above therefore apply. Although in special
cases—such as the sequence starting from (2.13)—all these equations might be identical, generally
this shall not be the case: see for instance the sequence starting from the ODE (2.2) with (2.8) and
(2.9) and K � 2, in particular (2.14).

It is also plain how to identify other second-order ODEs—more general than (2.15) with
(2.16)—having the same property to only feature polynomial solutions of degree N: for instance
by replacing ψ̃N(z), see (2.16a), with ψ̌N(z) = [pM(z)ψN+1−M(z)]′ /(N + 1) with pM(z) an arbi-
trary (monic) polynomial of degree M less than, say, N −1, and then following a procedure closely
analogous to that indicated above after (2.16a). �

Remark 2.5. The most general second-order ODE featuring only polynomial solutions ψ(z) can
be formulated as follows:

det

⎛

⎝
ψ(z) p(z) q(z)
ψ ′(z) p′(z) q′(z)
ψ ′′(z) p′′(z) q′′(z)

⎞

⎠= 0, (2.17a)

with p(z) and q(z) two arbitrary (different) polynomials, i. e. (see (2.2)) a2ψ ′′ + a1ψ ′+ a0ψ = 0
with a2 =w, a1 =−w′, a0 = w′′ − pq′′′+ p′′′q and w= pq′ − p′q. Indeed clearly the general solution
of this ODE reads

ψ(z) = b p(z)+ c q(z), (2.17b)

with b and c two arbitrary (integration) constants. I was reminded of this fact by Robert Conte and
Allan Fordy. �

3. Proofs

In this Section 3 we prove the results reported in the preceding Section 2.
Firstly let us proof Proposition 2.1, see in particular (2.4). The very definition of the quantities

zn as the N zeros of the polynomial ψN(z)—so that ψN(zn) = 0—entails that the ODE (2.2) yields
the N relations

a2(zn) ψ ′′
N(zn)+a1(zn) ψ ′

N(zn) = 0 ; (3.1a)

of course provided the function a0(z) does not diverge at z = zn (as assumed in the formulation of
Proposition 2.1, see (2.3)).
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Notation 3.1. Of course above and hereafter notations such as ψ ′
N(zn) indicate the value of the

function ψ ′
N(z) at z = zn. �

Clearly the above relation can be rewritten as follows:

ψ ′′
N(zn)

ψ ′
N(zn)

=−a1(zn)

a2(zn)
(3.1b)

(of course, provided the function a2(zn) �= 0, as assumed in the formulation of Proposition 2.1, see
(2.3)).

We then note that the first of the formulas (2.1) entails the identities

ψ ′
N(z) = ψN(z)

N

∑
n=1

(z− zn)
−1, (3.2a)

ψ ′′
N(z) = ψN(z)

N

∑
n=1

(z− zn)
−1 2

N

∑
�=1
� �=n

(zn − z�)−1. (3.2b)

The first of these two well-known identities—reported, with many analogous formulas, in Appendix
A (entitled “Some useful identities”) of [5]—is immediately obtained by logarithmic differentiation
of the first of the formulas (2.1); and the second is as well easily obtained by differentiating the first
and using some standard algebraic manipulations. Their ratio,

ψ ′′
N(z)

ψ ′
N(z)

=
∑N

m=1(z− zm)
−1 2 ∑N

�=1,� �=m(zm − z�)−1

∑N
m=1(z− zm)−1

, (3.2c)

clearly entails the simple relation

ψ ′′
N(zn)

ψ ′
N(zn)

= 2
N

∑
�=1
� �=n

(zn − z�)−1. (3.3)

And this formula, together with (3.1b), implies (2.4). Proposition 2.1 is thereby proven.
Corollary 2.1 is immediately implied by summing (2.4) over n from 1 to N and noticing that

the left-hand side then vanishes due to the antisymmetry of the summand under the exchange of the
two indices n and �.

Likewise the proof of Proposition 2.2 is an immediate consequence of (1), which implies that the
N ×N matrix Q, see (2.6), coincides with the following N ×N matrix N defined (componentwise)
as follows:

Nnn = zn

N

∑
�=1
� �=n

(zn − z�)−1 ; Nnm =
zn

zn − zm
, n �= m. (3.4)

The fact that this matrix N—for any arbitrary assignment of the N numbers zn—has the N integers
m− 1 from 0 to N − 1 as its eigenvalues and the N vectors v(m) (see (2.7b)) as the corresponding
eigenvalues, is (or should be) a well-known fact (see for instance eqs. (2.4.3-55b) and (2.4.3-56)
of [4]).

And Proposition 2.3 is merely the special case of Proposition 2.2 corresponding to the ODE
(2.2) with (2.8) and (2.9).
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4. Outlook

The approach utilized in this paper might be used to investigate analogous properties to those
reported above, satisfied by the zeros of polynomial solutions of ODEs of higher order than two,
and by the zeros of ODEs the solutions of which are not polynomial and feature an infinite number
of zeros. These developments will be eventually reported if the results thereby obtained are deemed
sufficiently novel and interesting to justify their publication.
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