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A systematic investigation to derive nonlinear lattice equations governed by partial difference equations
(PΔΔE) admitting specific Lax representation is presented. Further it is shown that for a specific value of
the parameter the derived nonlinear PΔΔE’s can be transformed into a linear PΔΔE’s under a global transfor-
mation. Also it is demonstrated how to derive higher order ordinary difference equations (OΔE) or mappings in
general and linearizable ones in particular from the obtained nonlinear PΔΔE’s through periodic reduction. The
question of measure preserving property of the obtained OΔE’s and the construction of more than one integrals
(or invariants) of them is examined wherever possible.
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1. Introduction

The study of discrete systems governed by nonlinear PΔΔEs and OΔEs has attracted researchers
in nonlinear phenomena in recent years. One of the reasons for the interest to study discrete sys-
tems is that they are more fundamental than the continuous ones. Also it is of interest to under-
stand whether or not the discrete systems derived from continuous nonlinear systems governed
by ordinary or partial differential equation especially integrable ones preserve their integrability
characteristics [1, 2, 5, 11, 20–26]. In the last few decades, considerable progress has been accom-
plished and several integrable nonlinear ordinary and partial differential equations were discretized
leading to differential-difference, ordinary difference equations or mappings preserving integrabil-
ity characteristics of their counterpart [7, 12, 14, 27–29, 33, 34]. Several analytical methods have
also been devised to derive both mathematical and physical aspects from integrability to chaos of
discrete nonlinear systems. To the best of our knowledge only a few nonlinear partial difference
equations or lattice equations with two independent variables have been derived whose continuum
limit can be related with known integrable partial differential equations with two independent vari-
ables including soliton possessing systems. It is appropriate to mention that the study of integrable
nonlinear PΔΔE’s enables one to derive integrable higher dimensional nonlinear OΔE’s or inte-
grable mappings, for example through periodic reductions [3,8,16,18,19,21] and hence the search
for integrable lattice equations involving two or more independent variables is interesting.
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It is known that the concept of integrability of nonlinear difference equations is not well defined
like for nonlinear differential equations however there exists some working definitions in the litera-
ture. A nonlinear PΔΔE with two independent variables is said to be integrable

(i) if it arises from the compatibility condition of a system of linear partial difference equations
[1, 2, 18] and the underlying method is referred to as Lax pair method;

(ii) if it possesses multi-soliton solutions [11, 13, 19];
(iii) if it passes the ultra-local singularity confinement criterion [10, 11] and has zero algebraic

entropy [6, 15];
(iv) if it has the Consistency Around the Cube (CAC) property [4];
(v) if it can be transformed into a linear partial difference equation through a global transformation;

We would like to mention that in definition (v), the transformation of a nonlinear differential equa-
tion means that the solutions can be expressed in terms of known functions. Hence in the discrete
case also one would expect the discrete analogues of the known functions to play a crucial role. In
this article a scalar nonlinear PΔΔE with two independent variables having the form

vl+1
m+1 = F(vl

m,v
l+1
m ,vl

m+1), vl
m = v(l,m)

is considered and derived equations admitting specific Lax representation. The identified nonlinear
PΔΔE’s can be classified into two distinct forms namely

(i) vl+1
m+1 =

h11(vl
m)

3 +h12(vl
m)

2 +h13vl
m +h14

h15(vl
m)

3 +h16(vl
m)

2 +h17vl
m +h18

(1.1)

and

(ii) vl+1
m+1 =

F11(vl+1
m ,vl

m+1)+ vl
mF12(vl+1

m ,vl
m+1)

F12(vl+1
m ,vl

m+1)− vl
mF11(vl+1

m ,vl
m+1)

(1.2)

where h1i’s are polynomials in (vl+1
m ,vl

m+1) and F11 and F12 are polynomials of degree (2|r| − 1)
and 2|r| respectively, r ∈ Z\{0}. It is shown that the latter nonlinear PΔΔE with specific forms of
F1i i = 1,2 can be transformed into linear PΔΔE through a global transformation.
The plan of the article is as follows. Given a set of Lax pairs with rational entries having the form,
P
Q where both P and Q are polynomials in vl

m,v
l+1
m and vl

m+1, how to derive the associated non-
linear PΔΔE’s with two independent variables is presented in section 2 which results to the above
equations (1.1) and (1.2). It is shown that equation (1.2) is linearizable under a global transforma-
tion ensuring its integrability. In section 3 it is demonstrated how to derive higher order OΔE’s in
general and linearizable ones in particular from the obtained nonlinear PΔΔE’s through periodic
reductions. The question of measure preserving property of the obtained OΔE’s and construction of
more than one integrals of them is examined wherever possible. In section 4 a brief summary of the
obtained results and concluding remarks are presented.

2. Integrable and Linearizable Nonlinear Partial Difference Equations

Consider a system of linear difference equations with two independent variables l and m given by
(

v1
l+1
m

v2
l+1
m

)
= L(l,m,k)

(
v1

l
m

v2
l
m

)
, (2.1)
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(
v1

l
m+1

v2
l
m+1

)
= M(l,m,k)

(
v1

l
m

v2
l
m

)
, (2.2)

where L(l,m,k) and M(l,m,k) denoted by Ll
m and Ml

m are (2× 2) matrices. Here v1
l
m and v2

l
m are

wave functions defined at the sites of a two-dimensional lattice as functions of the spectral parameter
k. Then the compatibility condition of (2.1) and (2.2) gives

Ml+1
m Ll

m = Ll
m+1Ml

m (2.3)

which is usually referred to as Lax equation. Let us assume that the matrices Ll
m and Ml

m depend only
on the potential (vl

m,v
l+1
m ) and (vl

m,v
l
m+1) respectively. Then the Lax equation (2.3) is equivalent to

a condition of the type

vl+1
m+1 = F(vl

m,v
l+1
m ,vl

m+1). (2.4)

Recently we considered Lax matrices with rational entries, having the form P
Q where both P and

Q are linear in vl
m,v

l+1
m and vl

m+1 and reported several new nonlinear PΔΔE’s satisfying (2.3) and
hence they are integrable in the sense of Lax [30]. In this article we wish to consider Lax matrices
again with rational entries in which P and Q are algebraic polynomials of degree greater than one
and show that there exists a class of nonlinear PΔΔE’s satisfying the compatibility condition (2.3).

We now consider specific Lax matrices Ll
m and Ml

m having the form

Ll
m(k) =

⎛
⎜⎜⎝

0
f11(vl

m,v
l+1
m )

k f12(vl
m,v

l+1
m )

k f13(vl
m,v

l+1
m )

f14(vl
m,v

l+1
m )

0

⎞
⎟⎟⎠ , (2.5)

Ml
m(k) =

⎛
⎜⎜⎜⎝

0
g11(vl

m,v
l
m+1)

kg12(vl
m,vl

m+1)
kg13(vl

m,v
l
m+1)

g14(vl
m,v

l
m+1)

0

⎞
⎟⎟⎟⎠ , (2.6)

where k is the spectral parameter and f1i’s and g1i’s, i = 1, 2, 3 and 4 are arbitrary unknown func-
tions. It is easy to verify that the components (1,1) and (2,2) of the compatibility condition (2.3)
vanish while the components of (1,2) and (2,1) result the following respectively:

f11(vl
m+1,v

l+1
m+1) f14(vl

m,v
l+1
m )

f12(vl
m+1,v

l+1
m+1) f13(vl

m,v
l+1
m )

=
g11(vl+1

m ,vl+1
m+1)g14(vl

m,v
l
m+1)

g12(vl+1
m ,vl+1

m+1)g13(vl
m,vl

m+1)
, (2.7)

f13(vl
m+1,v

l+1
m+1) f12(vl

m,v
l+1
m )

f14(vl
m+1,v

l+1
m+1) f11(vl

m,v
l+1
m )

=
g13(vl+1

m ,vl+1
m+1)g12(vl

m,v
l
m+1)

g14(vl+1
m ,vl+1

m+1)g11(vl
m,vl

m+1)
. (2.8)

From equations (2.7) and (2.8) it is clear that they reduce into a single equation

f11(vl
m+1,v

l+1
m+1) f12(vl

m,v
l+1
m )

f12(vl
m+1,v

l+1
m+1) f11(vl

m,v
l+1
m )

=
g11(vl+1

m ,vl+1
m+1)g12(vl

m,v
l
m+1)

g12(vl+1
m ,vl+1

m+1)g11(vl
m,v

l
m+1)

, (2.9)

provided
f13(vl

m,v
l+1
m ) = f11(vl

m,v
l+1
m ), f14(vl

m,v
l+1
m ) = f12(vl

m,v
l+1
m ),

g13(vl
m,v

l
m+1) = g11(vl

m,v
l
m+1), g14(vl

m,v
l
m+1) = g12(vl

m,v
l
m+1).
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Equation (2.9) is a functional equation and therefore cannot be solved for vl+1
m+1 explicitly. To solve

equation (2.9) for vl+1
m+1 we first consider f1i’s and g1i’s, i = 1,2, are linear which leads to not so

interesting cases. Next we consider both f1i’s and g1i’s are quadratic in (vl
m,v

l+1
m ,vl

m+1). A detailed
calculation show that equation (2.9) can be solved for vl+1

m+1, for the following forms:

f11(vl
m,v

l+1
m ) = (α + vl

m)
2, f12(vl

m,v
l+1
m ) = (αvl

m +1)2

g11(vl
m,v

l
m+1) = (−αvl

m +1)(α − vl
m+1), g12(vl

m,v
l
m+1) = (α − vl

m)(α + vl
m+1),

where α is an arbitrary parameter and so we obtain a nonlinear PΔΔE which can be written as a
ratio of polynomials of degree three in vl

m

vl+1
m+1 =

h11(vl
m)

3 +h12(vl
m)

2 +h13vl
m +h14

h15(vl
m)

3 +h16(vl
m)

2 +h17vl
m +h18

(2.10)

where h1i’s, i = 1, . . .8 are also polynomials in (vl+1
m ,vl

m+1),

h11 = α[1−α6 +α(α4 −1)vl+1
m +2αvl

m+1 −2α2

vl+1
m vl

m+1 +α2(α2 +1)(vl
m+1)

2 −2α3vl+1
m (vl

m+1)
2],

h12 = α2[(1−α4)+α(α2 −1)vl+1
m +2αvl

m+1 −2α2vl+1
m vl

m+1
+2α2(vl

m+1)
2 −α(α2 +1)vl+1

m (vl
m+1)

2],
h13 = α2[α(α2 − 1)−2α2vl

m+1 +2α3vl+1
m vl

m+1
−α(α2 + 1)(vl

m+1)
2 +(α4 +1)vl+1

m (vl
m+1)

2],
h14 = α[α2(α2 − 1)vl+1

m −2α4vl
m+1 +2α5vl+1

m vl
m+1

−α(α4 + 1)(vl
m+1)

2 +(α6 +1)vl+1
m (vl

m+1)
2],

h15 = (α6 + 1)−α(α4 +1)vl+1
m +2αvl

m+1 −2α2vl+1
m vl

m+1
−α2(α2 − 1)(vl

m+1)
2,

h16 = α[(α4 + 1)−α(α2 +1)vl+1
m +2αvl

m+1 −2α2vl+1
m vl

m+1
−α(α2 − 1)vl+1

m (vl
m+1)

2],
h17 = α[−α(α2 + 1)+ 2α2(vl+1

m − vl
m+1)+ 2α3vl+1

m vl
m+1

−α(α2 − 1)(vl
m+1)

2 +(α4 −1)vl+1
m (vl

m+1)
2],

h18 = −2α3 +α2(α2 +1)vl+1
m −2α4vl

m+1 +2α5vl+1
m vl

m+1
−α(α4 − 1)(vl

m+1)
2 +(α6 −1)vl+1

m (vl
m+1)

2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

Thus the equation (2.10) is integrable in the sense of Lax. It is not clear, at the moment, whether
this equation possesses other characteristics of integrability such as CAC (Consistency Around the
Cube) property, ultra-singularity confinement criteria, conservation laws, etc. However we wish to
report that when α2 =−1, equation (2.10) becomes

vl+1
m+1 =

2(i− vl
m+1)((v

l
m)

2 +1)[vl+1
m − vl

m+1 + vl
m(1+ vl+1

m vl
m+1)]

2(i− vl
m+1)((vl

m)
2 +1)[(1+ vl+1

m vl
m+1)− vl

m(v
l+1
m − vl

m+1)]
(2.12)

which can be transformed into a linear PΔΔE

θ l+1
m+1 −θ l+1

m +θ l
m+1 −θ l

m = pπ, θ l
m = tan−1(vl

m), p ∈ Z (2.13)

and thus equation (2.12) is both integrable and linearizable.
Next we consider f1i’s and g1i’s are polynomials of degree three in their respective arguments. A
detailed calculation show that equation (2.9) is solvable for vl+1

m+1 when the degree of g1i is lesser by
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2 than that of f1i. In other words, for the following forms

f11(vl
m,v

l+1
m ) = (α + vl

m)
2(α + vl+1

m ), f12(vl
m,v

l+1
m ) = (αvl

m +1)2(αvl+1
m +1),

g11(vl
m,v

l
m+1) = (−αvl

m +1), g12(vl
m,v

l
m+1) = (α − vl

m)

where α is an arbitrary parameter, equation (2.9) yields a nonlinear PΔΔE which can be written as
ratio of polynomials of degree three in vl

m

vl+1
m+1 =

h̃11(vl
m)

3 + h̃12(vl
m)

2 + h̃13vl
m + h̃14

h̃15(vl
m)

3 + h̃16(vl
m)

2 + h̃17vl
m + h̃18

(2.14)

where h̃1i’s, i = 1, . . .8 are also polynomials in (vl+1
m ,vl

m+1). Since each h̃1i’s involve a lengthy
expression we refrain from presenting its explicit form. Thus the equation (2.14) is integrable in the
sense of Lax. Here again for α2 =−1, equation (2.14), after eliminating common factors appeared
in both numerator and the denominator, becomes a QRT type equation,

vl+1
m+1 =

F11(vl+1
m ,vl

m+1)+ vl
mF12(vl+1

m ,vl
m+1)

F12(vl+1
m ,vl

m+1)− vl
mF11(vl+1

m ,vl
m+1)

, (2.15)

where
F11 = 2(vl+1

m − vl
m+1)(1+ vl+1

m vl
m+1),

F12 = (1+ vl+1
m − vl

m+1 + vl+1
m vl

m+1)(1− vl+1
m + vl

m+1 + vl+1
m vl

m+1).
which can also be transformed into a linear PΔΔE

θ l+1
m+1 −2(θ l+1

m −θ l
m+1)−θ l

m = pπ, θ l
m = tan−1(vl

m), p ∈ Z (2.16)

and hence integrable and linearizable as well.
Next we consider f1i’s and g1i’s are polynomials of degree four in their respective arguments and
find that the solution of (2.9), that is for vl+1

m+1 involve irrational functions and hence not pursued
further. The situation remains the same when f1i’s and g1i’s are polynomials of degree > 4. However
for the following forms of f1i’s and g1i’s

f11(vl
m,v

l+1
m ) = (α + vl

m)
2(α + vl+1

m )r−1,

f12(vl
m,v

l+1
m ) = (αvl

m +1)2(αvl+1
m +1)r−1,

g11(vl
m,v

l
m+1) = (−αvl

m +1)(α + vl
m+1)

r−2,

g12(vl
m,v

l
m+1) = (α − vl

m)(α − vl
m+1)

r−2

⎫⎪⎪⎬
⎪⎪⎭

(2.17)

with α2 =−1, equation (2.9) leads to QRT type nonlinear PΔΔE of the form

vl+1
m+1 =

F11(vl+1
m ,vl

m+1)+ vl
mF12(vl+1

m ,vl
m+1)

F12(vl+1
m ,vl

m+1)− vl
mF11(vl+1

m ,vl
m+1)

, (2.18)

where F11 and F12 are specific polynomials of degree (2|r| − 1) and 2|r| respectively and their
explicit expression for different values of r are given in Table 1 and Table 2.
Here again equation (2.18) can be transformed into a linear PΔΔE

θ l+1
m+1 − r(θ l+1

m −θ l
m+1)−θ l

m = pπ, θ l
m = tan−1(vl

m), p ∈ Z, r ∈ Z\{0}. (2.19)

Hence equation (2.18) is integrable in the sense of Lax as well as being linearizable under a global
transformation.
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r Explicit expressions of F11 and F12 in equation (2.18)

r = 1
F11 = (vl+1

m − vl
m+1),

F12 = (1+ vl+1
m vl

m+1)

r = 2
F11 = 2(vl+1

m − vl
m+1)(1+ vl+1

m vl
m+1)

F12 = (1+ vl+1
m − vl

m+1 + vl+1
m vl

m+1)(1− vl+1
m + vl

m+1 + vl+1
m vl

m+1)

r = 3
F11 = (vl+1

m − vl
m+1)[3− (vl+1

m )2 − (vl
m+1)

2 +8vl+1
m vl

m+1 +3(vl+1
m )2(vl

m+1)
2]

F12 = (1+ vl+1
m vl

m+1)[1−3(vl+1
m )2 −3(vl

m+1)
2 +8vl+1

m vl
m+1 +(vl+1

m )2(vl
m+1)

2]

r = 4

F11 = 2(vl+1
m − vl

m+1)(1+ vl+1
m vl

m+1)(1+ vl+1
m − vl

m+1 + vl+1
m vl

m+1)

(1− vl+1
m + vl

m+1 + vl+1
m vl

m+1)

F12 = [1+2(vl+1
m − vl

m+1)− (vl+1
m )2 − (vl

m+1)
2 +4vl+1

m vl
m+1

+2vl+1
m vl

m+1(v
l+1
m − vl

m+1)+ (vl+1
m )2(vl

m+1)
2][1−2(vl+1

m − vl
m+1)

−(vl+1
m )2 − (vl

m+1)
2 +4vl+1

m vl
m+1 −2vl+1

m vl
m+1(v

l+1
m − vl

m+1)

+(vl+1
m )2(vl

m+1)
2]

r = 5

F11 = (vl+1
m − vl

m+1)[5−2
(
(vl+1

m )2 +(vl
m+1)

2
)(

5+12vl+1
m vl

m+1
+5(vl+1

m )2(vl
m+1)

2)+ vl+1
m vl

m+1
(
40+76vl+1

m vl
m+1 +40(vl+1

m )2(vl
m+1)

2

+5(vl+1
m )3(vl

m+1)
3
)
+(vl+1

m )4 +(vl
m+1)

4]

F12 = (1+ vl+1
m vl

m+1)[1−10
(
(vl+1

m )2 +(vl
m+1)

2
)(

1+4vl+1
m vl

m+1 +(vl+1
m )2(vl

m+1)
2
)

+vl+1
m vl

m+1

(
24+76vl+1

m vl
m+1 +24(vl+1

m )2(vl
m+1)

2 +(vl+1
m )3(vl

m+1)
3
)

+5(vl+1
m )4 +5(vl

m+1)
4]

r = 6

F11 = 2(vl+1
m − vl

m+1)(1+ vl+1
m vl

m+1)[3− (vl+1
m )2 − (vl

m+1)
2 +8vl+1

m vl
m+1

+3(vl+1
m )2(vl

m+1)
2][1−3(vl+1

m )2 −3(vl
m+1)

2 +8vl+1
m vl

m+1 +(vl+1
m )2(vl

m+1)
2]

F12 = (1+ vl+1
m − vl

m+1 + vl+1
m vl

m+1)(1− vl+1
m + vl

m+1 + vl+1
m vl

m+1)

[1+4(vl+1
m − vl

m+1)+ (vl+1
m )2 +(vl

m+1)
2 +4vl+1

m vl
m+1(v

l+1
m − vl

m+1)+ (vl+1
m )2

(vl
m+1)

2][1−4(vl+1
m − vl

m+1)+ (vl+1
m )2 +(vl

m+1)
2 −4vl+1

m vl
m+1(v

l+1
m − vl

m+1)

+(vl+1
m )2(vl

m+1)
2]

etc., etc.,

Table 1: Explicit expressions of F11 and F12 in equation (2.18) with r ∈ Z
+

r Explicit expressions of F11 and F12 in equation (2.18)

r-odd

F11 =
|r|
∑
i=1

i−odd

(−1)
i−1

2
(|r|

i

)(
sgn(r)(vl+1

m − vl
m+1)

)i
(1+ vl+1

m vl
m+1)

|r|−i

F12 =
|r−1|
∑
i=0

i−even

(−1)�
i−1

2 �(|r|
i

)(
sgn(r)(vl+1

m − vl
m+1)

)i
(1+ vl+1

m vl
m+1)

|r|−i

r-even

F11 =
|r−1|
∑
i=1

i−odd

(−1)
i−1

2
(|r|

i

)(
sgn(r)(vl+1

m − vl
m+1)

)i
(1+ vl+1

m vl
m+1)

|r|−i

F12 =
|r|
∑
i=0

i−even

(−1)�
i−1

2 �(|r|
i

)(
sgn(r)(vl+1

m − vl
m+1)

)i
(1+ vl+1

m vl
m+1)

|r|−i

Table 2: Explicit expressions of F11 and F12 in equation (2.18) with r ∈ Z\{0}.
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where � i−1
2 � is the smallest integer greater than or equal to i−1

2 and

sgn(r) =

⎧⎨
⎩

1, if r > 0
0, if r = 0

−1, if r < 0.
(2.20)

It is appropriate to mention that Levi and Scimiterna [9] have derived a set of necessary conditions
for a nonlinear PΔΔE (2.4) to be linearizable [9] and we checked that equation (2.18) satisfies those
conditions [9].

3. Reductions to ordinary difference equations

In this section we would like to show that how periodic reduction of the obtained nonlinear PΔΔE’s
result to higher order autonomous OΔE’s. With this, we consider a solution vl

m of the nonlinear
PΔΔE (2.4) satisfying the periodicity property

vl−z2
m+z1

= vl,m = vn, (3.1)

where gcd(z1,z2) = 1, z1,z2 ∈ Z. Here n = mz1 + lz2 and so

vl
m+1 = vn+z1 , vl+1

m = vn+z2 , vl+1
m+1 = vn+z1+z2

. As a consequence equation (2.4) becomes an OΔE of order (z1 + z2), that is

vn+z1+z2 = F(vn,vn+z1 ,vn+z2).

We wish to report that the periodic reduction of each of the obtained PΔΔE’s in section 2 namely
(2.10), (2.12), (2.14) and (2.18) results to higher order OΔE’s. We explain how to derive them below.
To begin with we consider equation (2.10) which reduces into an OΔE of order (z1 + z2)

vn+z+1 =
h11v3

n +h12v2
n +h13vn +h14

h15v3
n +h16v2

n +h17vn +h18
, (3.2)

where h′1is, i = 1, . . .8 are polynomials in (vn+z2 ,vn+z1) given by,

h11 = α [1−α6 +α(α4 −1)vn+z2 +2αvn+z1 −2α2

vn+z2vn+z1 +α2(α2 +1)v2
n+z1

−2α3vn+z2v2
n+z1

],

h12 = α2[(1−α4)+α(α2 −1)vn+z2 +2αvn+z1 −2α2vn+z2vn+z1

+2α2v2
n+z1

−α(α2 +1)vn+z2v2
n+z1

],

h13 = α2[α(α2 −1)−2α2vn+z1 +2α3vn+z2vn+z1

−α(α2 +1)v2
n+z1

+(α4 +1)vn+z2v2
n+z1

],

h14 = α [α2(α2 −1)vn+z2 −2α4vn+z1 +2α5vn+z2 vn+z1

−α(α4 +1)v2
n+z1

+(α6 +1)vn+z2v2
n+z1

],

h15 = (α6 +1)−α(α4 +1)vn+z2 +2αvn+z1 −2α2vn+z2vn+z1

−α2(α2 −1)v2
n+z1

,

h16 = α [(α4 +1)−α(α2 +1)vn+z2 +2αvn+z1 −2α2vn+z2vn+z1

−α(α2 −1)vn+z2v2
n+z1

],

h17 = α [−α(α2 +1)+2α2(vn+z2 − vn+z1)+2α3vn+z2vn+z1

−α(α2 −1)v2
n+z1

+(α4 −1)vn+z2v2
n+z1

],

h18 = −2α3 +α2(α2 +1)vn+z2 −2α4vn+z1 +2α5vn+z2vn+z1

−α(α4 −1)v2
n+z1

+(α6 −1)vn+z2v2
n+z1

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

Co-published by Atlantis Press and Taylor & Francis 
                      Copyright: the authors 
                                     185



R. Sahadevan and G. Nagavigneshwari

By assigning distinct values for z1 and z2 one can derive higher order OΔE’s and its integrability is
an open question. However equation (3.2) with α2 =−1 or equation (2.12) becomes

vn+z1+z2 =
vn+z2 − vn+z1 + vn(1+ vn+z1vn+z2)

(1+ vn+z1vn+z2)− vn(vn+z2 − vn+z1)
(3.4)

which can be transformed into a linear OΔE

θn+z1+z2 − (θn+z2 −θn+z1)−θn = pπ, θn = tan−1(vn), p ∈ Z (3.5)

and hence the reduced OΔE of order (z1 + z2) is linearizable and so integrable.
Similar conclusion can be arrived at for the reduced equation, obtained from equation (2.14), given
by

vn+z+1 =
h̃11v3

n + h̃12v2
n + h̃13vn + h̃14

h̃15v3
n + h̃16v2

n + h̃17vn + h̃18
(3.6)

where h̃1i’s, i = 1, . . .8 are polynomials in (vn+z2 ,vn+z1) and its integrability is an open question.
As before equation (3.6) with α2 =−1 can be transformed into linear OΔE . Next, the OΔE arising
from equation (2.18) reads

vn+z1+z2 =
F11(vn+z2 ,vn+z1)+ vnF12(vn+z2 ,vn+z1)

F12(vn+z2 ,vn+z1)− vnF11(vn+z2 ,vn+z1)
, (3.7)

where F11 and F12 are specific polynomials of degree (2|r| − 1) and 2|r| respectively and their
explicit expression for different values of r are given in Table 3 and Table 4.

Equation (3.7) can be transformed into a linear OΔE of order (z1 + z2) with constant coefficients

θn+z1+z2 − r(θn+z2 −θn+z1)−θn = pπ, θn = tan−1(vn), p ∈ Z, r ∈ Z\{0} (3.8)

and so integrable.
We wish to add that the linearizable equation (3.7) also possesses more than one integrals for lower
order with specific values of r. Some of them are as follows:

Case I: r = 1, z1 = 1, z2 = 2
Equation (3.4) becomes a third order OΔE

vn+3 =
vn+2 − vn+1 +(1+ vn+1vn+2)vn

(1+ vn+1vn+2)− (vn+2 − vn+1)vn
(3.9)

which admits two integrals J1(n) and J2(n)

J1(n) =
1− vnvn+2

1− vnvn+2 + vn + vn+2
,

J2(n) =
P1(n)
P2(n)

,

where
P1(n) = (v2

n+1vn+2 − v2
n+2 + vn+1vn+2 + vn+1)v2

n + vn+1v2
n+2 − v2

n+1
+(1+ vn+1)vn+2 +(1+ vn+1)(1+ vn+2)(1+ vn+1vn+2)vn,

P2(n) = [vn+1vn+2(vn+1vn+2 + vn+1 +1)+ v2
n+1 + vn+1 +1]v2

n + v2
n+1v2

n+2 +1
+(1+ vn+1)(1+ vn+2)(1+ vn+1vn+2)vn +(1+ vn+1)(vn+2 + v2

n+2).
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r Explicit expressions of F11 and F12 in equation (3.7)

r = 1
F11 = (vn+z2 − vn+z1),

F12 = (1+ vn+z2vn+z1)

r = 2
F11 = 2(vn+z2 − vn+z1)(1+ vn+z2vn+z1)

F12 = (1+ vn+z2 − vn+z1 + vn+z2vn+z1)(1− vn+z2 + vn+z1 + vn+z2vn+z1)

r = 3
F11 = (vn+z2 − vn+z1)[3− (vn+z2)

2 − (vn+z1)
2 +8vn+z2vn+z1 +3(vn+z2)

2(vn+z1)
2]

F12 = (1+ vn+z2vn+z1)[1−3(vn+z2)
2 −3(vn+z1)

2 +8vn+z2vn+z1 +(vn+z2)
2(vn+z1)

2]

r = 4

F11 = 2(vn+z2 − vn+z1)(1+ vn+z2vn+z1)(1+ vn+z2 − vn+z1 + vn+z2vn+z1)

(1− vn+z2 + vn+z1 + vn+z2vn+z1)

F12 = [1+2(vn+z2 − vn+z1)− (vn+z2)
2 − (vn+z1)

2 +4vn+z2vn+z1

+2vn+z2vn+z1(vn+z2 − vn+z1)+ (vn+z2)
2(vn+z1)

2][1−2(vn+z2 − vn+z1)

−(vn+z2)
2 − (vn+z1)

2 +4vn+z2vn+z1 −2vn+z2vn+z1(vn+z2 − vn+z1)

+(vn+z2)
2(vn+z1)

2]

r = 5

F11 = (vn+z2 − vn+z1)[5−2
(
(vn+z2)

2 +(vn+z1)
2
)(

5+12vn+z2vn+z1

+5(vn+z2)
2(vn+z1)

2)+ vn+z2vn+z1

(
40+76vn+z2 vn+z1 +40(vn+z2)

2(vn+z1)
2

+5(vn+z2)
3(vn+z1)

3
)
+(vn+z2)

4 +(vn+z1)
4]

F12 = (1+ vn+z2vn+z1)[1−10
(
(vn+z2)

2 +(vn+z1)
2
)(

1+4vn+z2vn+z1

+(vn+z2)
2(vn+z1)

2
)
+ vn+z2vn+z1

(
24+76vn+z2 vn+z1 +24(vn+z2)

2(vn+z1)
2

+(vn+z2)
3(vn+z1)

3)+5(vn+z2)
4 +5(vn+z1)

4]

r = 6

F11 = 2(vn+z2 − vn+z1)(1+ vn+z2vn+z1)[3− (vn+z2)
2 − (vn+z1)

2 +8vn+z2vn+z1

+3(vn+z2)
2(vn+z1)

2][1−3(vn+z2)
2 −3(vn+z1)

2 +8vn+z2vn+z1

+(vn+z2)
2(vn+z1)

2]

F12 = (1+ vn+z2 − vn+z1 + vn+z2vn+z1)(1− vn+z2 + vn+z1 + vn+z2vn+z1)

[1+4(vn+z2 − vn+z1)+ (vn+z2)
2 +(vn+z1)

2 +4vn+z2vn+z1(vn+z2 − vn+z1)

+(vn+z2)
2(vn+z1)

2][1−4(vn+z2 − vn+z1)+ (vn+z2)
2 +(vn+z1)

2 −4vn+z2vn+z1

(vn+z2 − vn+z1)+ (vn+z2)
2(vn+z1)

2]

etc., etc.,

Table 3: Explicit expressions of F11 and F12 in equation (3.7) with r ∈ Z
+

It is easy to check that equation (3.9) is measure preserving with measure 1
P2(n)

[31].

Case II: r = 1, z1 = 1, z2 = 3
Here equation (3.4) becomes a fourth order OΔE

vn+4 =
vn+3 − vn+1 +(1+ vn+1vn+3)vn

(1+ vn+1vn+3)− (vn+3 − vn+1)vn
(3.10)

which admits two integrals J1(n) and J2(n)

J1(n) =
1− vnvn+3

1− vnvn+3 + vn + vn+3
,

J2(n) =
Q1(n)+Q2(n)
−Q1(n)+Q2(n)

,
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r Explicit expressions of F11 and F12 in equation (3.7)

r-odd

F11 =
|r|
∑
i=1

i−odd

(−1)
i−1

2
(|r|

i

)(
sgn(r)(vn+z2 − vn+z1)

)i
(1+ vn+z2vn+z1)

|r|−i

F12 =
|r−1|
∑
i=0

i−even

(−1)�
i−1

2 �(|r|
i

)(
sgn(r)(vn+z2 − vn+z1)

)i
(1+ vn+z2vn+z1)

|r|−i

r-even

F11 =
|r−1|
∑
i=1

i−odd

(−1)
i−1

2
(|r|

i

)(
sgn(r)(vn+z2 − vn+z1)

)i
(1+ vn+z2vn+z1)

|r|−i

F12 =
|r|
∑
i=0

i−even

(−1)�
i−1

2 �(|r|
i

)(
sgn(r)(vn+z2 − vn+z1)

)i
(1+ vn+z2vn+z1)

|r|−i

Table 4: Explicit expressions of F11 and F12 in equation (3.7) with r ∈ Z\{0}.

where
Q1(n) = (vn + vn+3)(vn+2vn+3 +1)(vn+1vn +1)(vn+2vn+1 +1),
Q2(n) = (1+ v2

n)(1+ v2
n+1)(1+ v2

n+2)(1+ v2
n+3).

We have verified that equation (3.10) is a measure preserving one with measure 1
[−Q1(n)+Q2(n)]

[32].

Case III: r = 2, z1 = 1,z2 = 2
Equation (3.7) becomes a third order OΔE

vn+3 =
F11(vn+2,vn+1)+ vnF12(vn+2,vn+1)

F12(vn+2,vn+1)− vnF11(vn+2,vn+1)
(3.11)

where
F11 = 2(vn+2 − vn+1)(1+ vn+1vn+2),

F12 = (1+ vn+2 − vn+1 + vn+1vn+2)(1− vn+2 + vn+1 + vn+1vn+2).
which admits two integrals J1(n) and J2(n) given by

J1(n) =
2[(vn+1 −1)(vn + vn+2)− (vn+1 +1)(vnvn+2 −1)]

vn+1(vn + vn+2)− (vnvn+2 −1)
,

J2(n) =
R1(n)
R2(n)

,

where
R1(n) = [γ3(n)v2

n+2 − γ2(n)vn+2 + γ1(n)]v2
n +[−γ2(n)(v2

n+2 −1)−4vn+1vn+2]vn

+[γ1(n)v2
n+2 + γ2(n)vn+2 + γ3(n)],

R2(n) = −[γ1(n)v2
n+2 + γ2(n)vn+2 + γ3(n)]v2

n +[−γ2(n)(v2
n+2 −1)−4vn+1vn+2]vn

−[γ3(n)v2
n+2 − γ2(n)vn+2 + γ1(n)],

γ1(n) = −(v2
n+1 + vn+1 +1), γ2(n) = (v2

n+1 −1),
γ3(n) = (−v2

n+1 + vn+1 −1).
We have verified that equation (3.10) is measure preserving with measure 1

R2(n)
[31].

Similarly higher order OΔE’s can be obtained by taking different values for z1 and z2 in equation
(3.7) which may admit more than one integral.
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4. Summary and Concluding Remarks

In this article, a systematic investigation has been made to derive autonomous nonlinear PΔΔE’s
admitting specific Lax representation. In Section 2, we have derived two nonlinear PΔΔE’s equa-
tions (2.10) and (2.14) possessing Lax pair but not belonging to QRT type. Also we have derived
another nonlinear PΔΔE (2.18) which is a QRT type and shown that it is linearizable with r ∈Z\{0}.
We would like to mention that nonlinear PΔΔE’s (2.10) and (2.14) fall into equation (2.18) when
r = 1 and r = 2 respectively, for a particular parametric restriction. Equation (2.12) gives a particular
case of equation (2.18) when r = 1.

In Section 3, we have shown how OΔE’s of order (z1 + z2) namely equations (3.2), (3.6) and
(3.7) can be derived from each of the identified nonlinear PΔΔE’s (2.10), (2.14) and (2.18) respec-
tively. Among them, the reduced equations (3.2) and (3.6) obtained from equations (2.10) and (2.14)
respectively are nonintegrable in general and their integrability nature is under investigation. The
reduced equation of order (z1 + z2) obtained from equation (2.18), given in equation (3.7) can be
transformed into a linear OΔE (3.8) ensuring its integrability. Further we have discussed the inte-
grability of lower orders of equation (3.7) in three different cases giving different values for z1 and
z2. We obtain one third order OΔE each in Case I and III, from equation (3.7), namely equation
(3.9) and equation (3.11) respectively, admitting two integrals. Next in Case II, from equation (3.7)
we get a fourth order OΔE (3.10) admitting two integrals.

Equations (3.9), (3.10) and (3.11) are measure preserving and the corresponding measures are
given in each case. We would like to caution the reader that the analysis carried out in this arti-
cle is not an exhaustive one. It is also interesting to find the most general form of Lax integrable
and linearizable nonlinear PΔΔE’s with the above mentioned global transformation which is under
investigation. In addition examining the corresponding OΔE’s, obtained through periodic reductions
of the PΔΔE’s, for integrability is also under investigation.
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