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We provide a current expansion for the classical equations of motion of the massles Wess-Zumino model. In
the low-energy limit, there appears a massive behavior for bosonic degrees of freedom and, at small coupling,
the fermion field shows the same mass and supersymmetry is overall preserved. In the limit of the coupling
running to infinity, the fermion field displays a different equation of motion, a Nambu-Jona-Lasinio-like one,
and we cannot draw an identical conclusion.
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1. Introduction

Supersymmetry (SUSY) is a mathematical framework showing how a symmetry exists relating
bosonic and fermionic degrees of freedom. In order for it to hold in any theoretical formulation,
known observed particles should have a partner with the same mass. This is not seen and so one
expects that, if it is realized in nature, some mechanism should break this symmetry making super-
partners very high in mass.

Some mechanism for supersymmetry breaking have been proposed so far. Spontaneous sym-
metry breaking has been proposed by Fayet and Iliopolous and by O’Raifeartaigh [3, 6]. In this
case, auxiliary fields, F or D, have a non-null vacuum expectation value. But these approaches do
not apply to the minimal supersymmetric standard model (MSSM) and possible extensions. MSSM
was firstly proposed by Georgi and Dimopolous [2]. In order to overcome the difficulties with break-
ing of supersymmetry and obtain low-energy phenomenology, they adopted “softly” broken SUSY.
The idea is to use explicitly breaking terms in the Lagrangian of the model but granting renormal-
izability and invariance under electroweak symmetry group. A fundamental result due to Witten
shows how an index can be computed for a given supersymmetric theory that immediately shows if
symmetry breaking can occur [8].

Our aim in this letter is to provide a way to solve the classical equations of motion of a super-
symmetric model in a regime where the value of the coupling can be varied arbitrarily. We choose
the Wess-Zumino model as this is the simplest paradigm of supersymmetry [7]. The approach we
use is a series in powers of currents as already devised in [1] for quantum chromodynamics but we
will keep our computations in a completely classical realm.

The reason why this analysis is relevant is that these classical solutions show an interesting
behavior: In a small coupling limit supersymmetry is seen to be preserved why all the fields acquire
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an identical mass. On the other limit, taking the coupling running to infinity, a Nambu-Jona-Lasinio-
like equation is seen to emerge for the fermion field and no conclusion can be drawn about super-
symmetry being preserved or not.

2. Massless Wess-Zumino model

Massless Wess-Zumino model has the Lagrangian [7]

L =
1
2
(∂A)2 +

1
2
(∂B)2 +

1
2

ψ̄i/∂ψ

−1
2

g2(A2 +B2)2 −g(ψ̄ψA− ψ̄γ5ψB) (2.1)

being ψ a Majorana field, A = A† a scalar field and B = B† a pseudo-scalar field. This Lagrangian
is invariant under supersymmetric variations that can be stated in the form

δA(x) = ε̄ψ(x)

δB(x) = ε̄γ5ψ(x)

δψ(x) = ∂µ(A− γ5B)γµε. (2.2)

These hold on-shell because we have already removed the auxiliary fields using the equations of
motion. From Witten index we know that for this model spontaneous symmetry breaking does not
occur [8]. Equations of motion are

∂ 2A+2g2A(A2 +B2) = −gψ̄ψ
∂ 2B+2g2B(A2 +B2) = gψ̄γ5ψ

i/∂ψ = 2g(A− γ5B)ψ. (2.3)

Now, let us consider the following two equations

∂ 2A+2g2A(A2 +B2) = j

∂ 2B+2g2B(A2 +B2) = j5 (2.4)

being j = −gψ̄ψ and j5 = gψ̄γ5ψ These imply that A = A[x; j, j5] and B = B[x; j, j5] and so we
take the functional Taylor series

A = A0(x)+
∫

dx′
δA

δ j(x′)

∣∣∣∣
j, j5=0

j(x′)+
∫

dx′
δA

δ j5(x′)

∣∣∣∣
j, j5=0

j5(x′)

+
1
2

∫
dx′dx′′

δ 2A
δ j(x′)δ j(x′′)

∣∣∣∣
j, j5=0

j(x′) j(x′′)+
∫

dx′dx′′
δ 2A

δ j5(x′)δ j(x′′)

∣∣∣∣
j, j5=0

j5(x′) j(x′′)

+
1
2

∫
dx′dx′′

δ 2A
δ j5(x′)δ j5(x′′)

∣∣∣∣
j, j5=0

j5(x′) j5(x′′)+ . . .

B = B0(x)+
∫

dx′
δB

δ j(x′)

∣∣∣∣
j, j5=0

j(x′)+
∫

dx′
δB

δ j5(x′)

∣∣∣∣
j, j5=0

j5(x′)

+
1
2

∫
dx′dx′′

δ 2B
δ j(x′)δ j(x′′)

∣∣∣∣
j, j5=0

j(x′) j(x′′)+
∫

dx′dx′′
δ 2B

δ j5(x′)δ j(x′′)

∣∣∣∣
j, j5=0

j5(x′) j(x′′)

+
1
2

∫
dx′dx′′

δ 2B
δ j5(x′)δ j5(x′′)

∣∣∣∣
j, j5=0

j5(x′) j5(x′′)+ . . . (2.5)
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having set A0(x) = A[x;0,0] and B0(x) = B[x;0,0]. Then we insert this series into eqs.(2.4) and we
get the leading order equations

∂ 2A0 +2g2(A2
0 +B2

0)A0 = 0

∂ 2B0 +2g2(A2
0 +B2

0)B0 = 0 (2.6)

that can be solved exactly [4]. This is easy to see as we set B0 = ηpA0 with η2
p = 1 the parity factor.

Then, setting A0 = ϕ , we have to solve the equation ∂ 2ϕ +4g2ϕ 3 = 0 that has the solution ϕ(x) =
µ(1/2

1
4 g

1
2 )sn(p ·x+θ , i) being µ and θ integration constants and sn a Jacobi elliptic function. This

holds provided p2 =
√

2µ2g that can be interpreted as a dispersion relation for a massive particle.
At this order both boson fields get a mass but supersymmetry is preserved as we will also see for
the Fermion field at small coupling. Next-to-leading order equations give

∂ 2A1 +8g2ϕ 2A1 +4g2ϕ 2ηpB̄1 = δ 4(x)

∂ 2Ā1 +8g2ϕ 2Ā1 +4g2ϕ 2ηpB1 = 0

∂ 2B1 +8g2ϕ 2B1 +4g2ϕ 2ηpĀ1 = δ 4(x)

∂ 2B̄1 +8g2ϕ 2B̄1 +4g2ϕ 2ηpA1 = 0 (2.7)

where we have set A1 = δA/δ j(x)| j, j5=0, Ā1 = δA/δ j5(x)| j, j5=0, B1 = δB/δ j5(x)| j, j5=0, B̄1 =

δB/δ j(x)| j, j5=0. Now, introducing the Green function ∂ 2∆+8g2ϕ 2∆ = δ 4(x), this set of equations
can be turned into a single integral equation by noting that B1 = A1 = ϕ1 and so, we get

ϕ1(x) = ∆(x)+16g4
∫

d4x′∆(x− x′)ϕ 2(x′)
∫

d4x′′∆(x′− x′′)ϕ 2(x′′)ϕ1(x′′). (2.8)

Use has been made of the equations

Ā1 = −4g2
∫

d4x′∆(x− x′)ϕ 2(x′)ηpB1

B̄1 = −4g2
∫

d4x′∆(x− x′)ϕ 2(x′)ηpA1 (2.9)

that can be given by ϕ1. Now we turn to the computation of the Green function ∆(x). This can be
obtained immediately [5] as

∆(p2) =
∞

∑
n=0

Bn

p2 −m2
n + iε

(2.10)

being

Bn = (2n+1)2 π3

4K3(i)
e−(n+ 1

2 )π

1+ e−(2n+1)π . (2.11)

and mn = (2n+ 1)(π/2K(i))(4/3)
1
4 g

1
2 µ a possible mass spectrum when this propagator enters in

quantum field theory and K(i) an elliptic integral
∫ π

2
0 1/

√
1+ sin2 θdθ and the phase of ϕ is chosen

to be K(i). Eq.(2.8) admits a simple solution in the limit of very low momenta. In this case we get
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the simple expression

∆0(x− x′) =−
√

3
4µ2g

δ 4(x− x′) (2.12)

proper to a contact interaction. So, putting this into eq.(2.10) one gets

ϕ1(x) =

√
3

2µ2g
δ 4(x) (2.13)

and so,

Ā1 = B̄1 = ηp
3

2
√

2
1

µ2g
δ 4(x) (2.14)

Finally, the low-energy series for our solution is given by

A = A0(x)+

√
3

2
1

µ2g

(
j(x)+

√
3
2

ηp j5(x)

)
+O( j2)+O( j2

5)+O( j j5)

B = B0(x)+

√
3

2
1

µ2g

(
j5(x)+

√
3
2

ηp j(x)

)
+O( j2)+O( j2

5)+O( j j5) (2.15)

Now, turning our attention to the fermion field, we get

i/∂ψ −2gϕ(1−ηpγ5)ψ =−
√

3
g

µ2

(
1−
√

3
2

ηpγ5

)
(ψ̄ψ + γ5ψ̄γ5ψ)ψ. (2.16)

Looking at the limit g → 0, we observe that Fermion field has the same mass of the bosonic degrees
of freedom. In this case one gets the equation of motion

i/∂ψc −2gϕ(1−ηpγ5)ψc = 0. (2.17)

This equation can be solved by putting ψc = e−ikS(x)ups, being k a real constant, and we get kγ ·
∂Sups − 2gϕ(1−ηpγ5)ups = 0. But we notice that ϕ depends just on the product ξ = p · x and
we choose ∂ξ S(ξ ) = 2gϕ(ξ ). So, we are left with the algebraic equation [/p− k−1(1−ηpγ5)]ups =

0. We solve this equation by remembering that p2 =
√

2µ2g and we get our proof: In the small
coupling limit supersymmetry is preserved at classical level as also happens in quantum field theory
in agreement with Witten index for this theory.

This equation appears interesting instead when the limit g → ∞ is taken. Then, at the leading
order, the contribution coming from the external field ϕ drops out with respect to the non-linear one
as one has ϕ ∼ 1/

√
g and an overall

√
g with respect the latter going like g. So, one gets

i/∂ψ0 =−
√

3
g

µ2

(
1−
√

3
2

ηpγ5

)
(ψ̄0ψ0 + γ5ψ̄0γ5ψ0)ψ0 (2.18)

that is a Nambu-Jona-Lasinio-like equation of motion. Working in quantum field theory, this could
give rise to a symmetry breaking but already at classical level we observe a fermion with a different
mass from the boson fields. Supersymmetry appears to be broken in classical equations of motion
but we cannot exclude that quantum corrections can change the situation in agreement with Witten
index.
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3. Conclusions

We have provided an approach to solve the classical equations of motion for the Wess-Zumino
model. This is a series in powers of currents. The solutions we obtained can be analyzed both
at small and large coupling showing different behavior for the fermion field. In the former case,
supersymmetry appears to be preserved as both bosonic and fermionic degrees of freedom acquire
the same mass. This does not happen in the limit of the coupling running to infinity. In this case
a Nambu-Jona-Lasinio-like equation is obtained and no conclusion about the mass of the fermion
field can be drawn unless we turn to a quantum field theory.

References
[1] R. T. Cahill, C. D. Roberts, Phys. Rev. D32, 2419 (1985).
[2] S. Dimopoulos and H. Georgi, Nucl. Phys. B 193, 150 (1981).
[3] P. Fayet and J. Iliopoulos, Phys. Lett. B 51, 461 (1974).
[4] M. Frasca, J. Nonlin. Math. Phys. 18, 291 (2011).
[5] M. Frasca, arXiv:0909.2428 [hep-th].
[6] L. O’Raifeartaigh, Nucl. Phys. B 96, 331 (1975).
[7] S. Weinberg, “The quantum theory of fields. Vol. 3: Supersymmetry”, Cambridge, UK: Univ. Pr. (2000),

pp. 6-7.
[8] E. Witten, Nucl. Phys. B 202, 253 (1982).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

468


