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1. Introduction

In a previous paper we highlighted certain properties of the zeros of the sum of two polynomials

[6]. In the last section (“Outlook”) of that paper we wrote that the “extension of these findings to

the zeros of the sums of more than two polynomials will be reported in subsequent papers if these

results will be deemed sufficiently novel and neat to justify their publication.” In this paper we

indeed report the extension of some of those findings to the sum of three polynomials.

Let p
( j)
N j
(z), j = 1, 2, 3, be 3 arbitrary (for definiteness, monic) polynomials of the independent

(complex) variable z, of degree N j with, for definiteness and simplicity, N1 ≤ N2 < N3; and let us

define as follows the, also monic, polynomial ψN(z; t1, t2) of degree N ≡ N3 in z and depending on

the 2 parameters t1 and t2:

ψN (z; t1, t2) = p
(3)
N (z)+ t2 p

(2)
N2
(z)+ t1 p

(1)
N1
(z) . (1.1)

Here and hereafter N is an arbitrary positive integer (say, larger than unity, to avoid that some of

the formulas written below become too degenerate and trivial).

Hereafter we denote as zn ≡ zn(t1, t2) the N (generally complex) zeros of this polynomial:

ψN(z; t1, t2) =
N

∏
n=1

[z− zn(t1, t2)] . (1.2)

For simplicity, we hereafter assume these N zeros to be all different among themselves; the formulas

displayed below remain generally valid when this assumption is violated, but possibly only after

taking an appropriate limit.

In this paper we report a system of algebraic equations satisfied by these N zeros zn(t1, t2). A

solvable system of N nonlinear second-order partial differential equations (PDEs) satisfied by these
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N functions of two variables is also identified; and it is shown that it belongs to a known class of “C-

integrable” PDEs in multidimensions [2,7]. In the following Section 2 these findings are displayed,

and they are then proven in Section 3. A terse Section 4 mentions possible extensions of these

findings.

2. Results

Hereafter we denote as W ( f ;g) the wronskian of the two (monic) polynomials f (z) and g(z),

W ( f ;g)≡ f ′(z) g(z)−g′(z) f (z) . (2.1)

Here and hereafter appended primes denote differentiations with respect to the variable z. Of course

W
(

p
( j)
N j

; p
(k)
Nk

)

is a polynomial of degree N j +Nk −1 if N j 6= Nk (and then W
(

p
( j)
N j

; p
(k)
Nk

)

/(N j −Nk)

is monic); while if instead N j = Nk, then W
(

p
( j)
N j

; p
(k)
Nk

)

is a (generally not monic) polynomial of

degree N j +Nk −2.

Proposition 2.1. The N zeros zn ≡ zn(t1, t2) of the polynomial ψN(z; t1, t2), see (1.1) and (1.2),

satisfy the following system of N nonlinear algebraic equations:

∑
j=1,2,3 mod(3)

{

3
[

p
( j)′′
N j

(zn) w j+1, j+2(zn)
]

·

·
N

∑
ℓ=1, ℓ 6=n,m 6=n,ℓ 6=m

[(

1

zn − zℓ

) (

1

zn − zm

)]

−2 p
( j)′′′
N j

(zn) w j+1, j+2(zn)
N

∑
ℓ=1, ℓ 6=n

(

1

zn − zℓ

)

+
[

p
( j)′′′
N j

(zn) w′
j+1, j+2(zn)

]}

= 0 , n = 1, . . . ,N , (2.2a)

where

w j,k(z)≡W
(

p
( j)
N j
(z), p

(k)
Nk
(z)

)

, j,k = 1,2,3 mod(3) . (2.2b)

Note that, for notational simplicity, we omitted to display explicitly in (2.2a) the dependence

of the N zeros zk ≡ zk(t1, t2), k = 1, . . . ,N, on the two parameters t1 and t2. And of course, above

and hereafter, the notation f ′(zn) denotes the z-derivative of the function f (z) evaluated at z = zn ≡

zn(t1, t2).

Proposition 2.2. The N zeros zn ≡ zn(t1, t2) of the polynomial ψN(z; t1, t2), see (1.1) and (1.2),

satisfy the following system of N nonlinear second-order hyperbolic PDEs,

zn,t1t2 =
N

∑
ℓ=1, ℓ 6=n

(

zn,t1 zℓ,t2 + zn,t2 zℓ,t1
zn − zℓ

)

, n = 1, . . . ,N , (2.3)

provided the boundary conditions zn(t,0) and zn(0, t) are assigned so that zn(t,0) are the N zeros

of the polynomial ψN(z; t,0) = p
(3)
N (z) + t p

(2)
N2
(z) and zn(0, t) are the N zeros of the polynomial
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ψN(z;0, t) = p
(3)
N (z)+ t p

(1)
N1
(z):

ψN(z; t,0) = p
(3)
N (z)+ t p

(2)
N2
(z) =

N

∏
n=1

[z− zn(t,0)] , (2.4a)

ψN(z;0, t) = p
(3)
N (z)+ t p

(1)
N1
(z) =

N

∏
n=1

[z− zn(0, t)] . (2.4b)

Note that again, for notational simplicity, we omitted to display explicitly in (2.3) the depen-

dence of the N zeros zk ≡ zk(t1, t2), k = 1, . . . ,N, on the two parameters t1 and t2. And of

course, above and hereafter, the subscripted variables t1 and t2 denote partial differentiations with

respect to these variables, zn,t1 ≡ zn,t1(t1, t2) ≡ ∂ zn(t1, t2)/∂ t1, zn,t2 ≡ zn,t2(t1, t2) ≡ ∂ zn(t1, t2)/∂ t2,

zn,t1t2 ≡ zn,t1t2(t1, t2)≡ ∂ 2zn(t1, t2)/∂ t1∂ t2.

Via the change of variables

zn(t1, t2) = ϕn(x, t) , t1 = x− c t , t2 = x+ c t ; n = 1, . . . ,N , (2.5)

the system of PDEs (2.3) becomes

ϕn,tt − c2 ϕn,xx =
N

∑
ℓ=1, ℓ 6=n

(

ϕn,t ϕℓ,t − c2 ϕn,x ϕℓ,x

ϕn −ϕℓ

)

, n = 1, . . . ,N , (2.6)

which has the interesting feature of being invariant under (two-dimensional) Lorentz transforma-

tions. It is moreover clear that this system of nonlinear PDEs is a neat extension of the standard

“goldfish” model [4,1,3,5], to which the system (2.6) indeed reduces for c = 0 (and likewise the sys-

tem (2.3) for t1 = t2 = t, implying N1 = N2, p
(1)
N1
(z) = p

(2)
N2
(z); see (2.4)). Clearly this system, (2.6),

is a special case of the systems of C-integrable PDEs introduced in [2] and investigated (including

the display of solutions in the guise of animations) in [7].

3. Proofs

To prove Proposition 2.1 we start from the well-known observation that, up to its normalization

and an appropriate identification of the 2 parameters t1 and t2 (both specified above, see (1.1)), the

polynomial ψN(z; t1, t2) can be identified as the solution of the third-order ODE

det













ψ ′′′
N (z; t1, t2) p

(3)′′′
N (z) p

(2)′′′
N2

(z) p
(1)′′′
N1

(z)

ψ ′′
N(z; t1, t2) p

(3)′′
N (z) p

(2)′′
N2

(z) p
(1)′′
N1

(z)

ψ ′
N(z; t1, t2) p

(3)′
N (z) p

(2)′
N2

(z) p
(1)′
N1

(z)

ψN(z; t1, t2) p
(3)
N (z) p

(2)
N2
(z) p

(1)
N1
(z)













= 0 , (3.1a)

or equivalently

a3(z) ψ ′′′
N (z; t1, t2)−a2(z) ψ ′′

N(z; t1, t2)

+a1(z) ψ ′
N(z; t1, t2)−a0(z) ψN(z; t1, t2) = 0 (3.1b)

where (see (2.1))

a3(z) = ∑
j=1,2,3 mod(3)

[

p
( j)′′
N j

(z) W
(

p
( j+1)
N j+1

(z), p
( j+2)
N j+2

(z)
)]

, (3.2a)
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a2(z) = ∑
j=1,2,3 mod(3)

[

p
( j)′′′
N j

(z) W
(

p
( j+1)
N j+1

(z), p
( j+2)
N j+2

(z)
)]

, (3.2b)

a1(z) = ∑
j=1,2,3 mod(3)

[

p
( j)′′′
N j

(z) W ′
(

p
( j+1)
N j+1

(z), p
( j+2)
N j+2

(z)
)]

, (3.2c)

a0(z) = ∑
j=1,2,3 mod(3)

[

p
( j)′
N j

(z) W
(

p
( j+1)′′
N j+1

(z), p
( j+2)′′
N j+2

(z)
)]

. (3.2d)

At z = zn ≡ zn(t1, t2) (where ψN(z; t1, t2) vanishes, see (1.2)) formula (3.1b) clearly entails  that

a3(zn) ψ ′′′
N (zn; t1, t2)−a2(zn) ψ ′′

N(zn; t1, t2)

+a1(zn) ψ ′
N(zn; t1, t2) = 0 , n = 1, . . . ,N . (3.3)

Here and below, for notational simplicity, we often omit to display explicitly the dependence of the

zeros zn ≡ zn(t1, t2) on the two parameters t1 and t2; as we already did in the preceding section.

On the other hand logarithmic z-differentiation of (1.2) implies

ψ ′
N(z; t1, t2) = ψN(z; t1, t2)

N

∑
ℓ=1

(

1

z− zℓ

)

, (3.4a)

a second z-differentiation yields (via (3.4a) and a neat cancellation of the terms featuring double

poles)

ψ ′′
N(z; t1, t2) = ψN(z; t1, t2)

N

∑
ℓ,m=1, ℓ 6=m

[(

1

z− zℓ

) (

1

z− zm

)]

, (3.4b)

and a third z-differentiation yields (again via (3.4a) and a neat cancellation of the terms featuring

double poles)

ψ ′′′
N (z; t1, t2) = ψN(z; t1, t2)·

·
N

∑
ℓ,m,k=1, ℓ 6=m,m 6=k,k 6=ℓ

[(

1

z− zℓ

) (

1

z− zm

) (

1

z− zk

)]

. (3.4c)

Hence

ψ ′′
N(z; t1, t2)

ψ ′
N(z; t1, t2)

=
N

∑
ℓ,m=1, ℓ 6=m

[(

1

z− zℓ

) (

1

z− zm

)]

{

N

∑
n=1

(

1

z− zn

)

}−1

, (3.5a)

ψ ′′′
N (z; t1, t2)

ψ ′
N(z; t1, t2)

=
N

∑
ℓ,m,k=1, ℓ 6=m,m 6=k,k 6=ℓ

[(

1

z− zℓ

) (

1

z− zm

) (

1

z− zk

)]

·

·

{

N

∑
n=1

(

1

z− zn

)

}−1

. (3.5b)
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And clearly for z = zn ≡ zn(t1, t2) these formulas yield (for n = 1, . . . ,N)

ψ ′′
N(zn; t1, t2)

ψ ′
N(zn; t1, t2)

= 2
N

∑
ℓ=1, ℓ 6=n

(

1

zn − zℓ

)

, (3.6a)

ψ ′′′
N (zn; t1, t2)

ψ ′
N(zn; t1, t2)

= 3
N

∑
ℓ=1, ℓ 6=n,m 6=n,ℓ 6=m

[(

1

zn − zℓ

) (

1

zn − zm

)]

. (3.6b)

Hence the insertion of these formulas in (3.3) (divided by ψ ′
N(zn; t1, t2)) yields the equation

3 a3(zn)
N

∑
ℓ=1, ℓ 6=n,m 6=n,ℓ 6=m

[(

1

zn − zℓ

) (

1

zn − zm

)]

−2 a2(zn)
N

∑
ℓ=1, ℓ 6=n

(

1

zn − zℓ

)

+a1(zn) = 0 , n = 1, . . . ,N , (3.7)

and via the first 3 formulas (3.2) one then gets (2.2). Proposition 2.1 is thereby proven. �

To prove Proposition 2.2 we start from the obvious observation that the polynomial ψN(z; t1, t2),

see (1.1), satisfies the PDE

ψN,t1t2(z; t1, t2) = 0 . (3.8)

Let us recall that here and below subscripted variables denote partial differentiations, ψN,t1t2 ≡

∂ 2ψ/∂ t1∂ t2.

We then note that (logarithmic, partial) t1-differentiation of (1.2) yields

ψN,t1(z; t1, t2) =−ψN(z; t1, t2)
N

∑
n=1

(

zn,t1

zn − zℓ

)

, (3.9a)

and a (partial) t2-differentiation of this formula yields (after a neat cancellation of the double-pole

terms, and an appropriate renaming of dummy indices), the formula

ψN,t1t2(z; t1, t2) = ψN(z; t1, t2)
N

∑
n=1

{

(z− zn)
−1·

·

[

−zn,t1t2 +
N

∑
ℓ=1, ℓ 6=n

(

zn,t1 zℓ,t2 + zn,t2 zℓ,t1
zn − zℓ

)

]}

. (3.9b)

Note that again, for notational simplicity, in the right-hand side of this formula we omitted to

display the dependence of the zeros zn ≡ zn(t1, t2) on the two parameters t1 and t2. And clearly

this formula, via (3.8), implies (2.3). While the formulas (2.4) are an easy consequence of (1.1).

Proposition 2.2 is thereby proven. �

4. Outlook

A natural extension of these results is to treat a linear combination of an arbitrary number of

polynomials. Other interesting extensions may obtain by replacing polynomials with trigonomet-

ric polynomials or other combinations of seed functions, and/or replacing the parameters tk with
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functions of (a smaller number of) other parameters. And of course other, potentially interesting,

findings may emerge from the investigation of isochronous variants of the solvable systems (2.3)

and (2.6)—obtained via the, by now well-known, “trick” generating such systems, see for instance

Section 2.1 (entitled “The trick”) and Chapter 7 (entitled “Isochronous PDEs”) of [5]—and from

further investigations of the application of this development to the more general class of solvable

systems considered in [2] and [7].
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