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1. Introduction

The discrete Kadomtsev-Petviashvili (dKP) hierarchy [11,13] is an important research object in the
field of the discrete integrable system, which is defined by the difference operator ∆ (see Section 2)
instead of ∂x in the usual KP hierarchy [8]. Recently, many researches have been done in this field.
For example, 1) the additional symmetry and the gauge transformation for the dKP hierarchy and its
constrained case [17–20]; 2) the squared eigenfunction symmetry (or the “ghost” symmetry) [14];
3) the extended dKP hierarchy and its solutions [22]; 4) Lie algebraic structure of the dKP hierarchy
and the links between the dKP hierarchy and the usual KP hierarchy [10, 23].

The additional symmetry [1,4–7,9,12,15,16,21,24–26] is a kind of symmetry depending explic-
itly on the space and time variables. It is involved in so-called string equation and the generalized
Virasoro constraints in matrix models of the 2d quantum gravity (see [8,27] and references therein).
The additional symmetry of the dKP hierarchy is investigated in [20]. However for the constrained
dKP hierarchy, the conventional additional symmetry can not preserve the form of the Lax operator
with additional constraint (see (3.1)) and some modification must be needed. In [18], Virasoro sym-
metry (one kind of the additional symmetries) for the constrained dKP hierarchy is constructed by
adding the squared eigenfunction symmetry flows to the standard additional symmetry flows, and
the corresponding algebraic structure is studied on the space of the Lax operator. But the action of
the Virasoro symmetry on the tau function of the constrained dKP hierarchy has not been obtained.

∗Corresponding author.

Journal of Nonlinear Mathematical Physics, Vol. 20, No. 4 (December 2013), 529-538

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

529



J.P.Cheng, M. H. LI & J. S. He

The study of the Virasoro action on the tau function will be useful in establishing the link between
the constrained dKP hierarchy and matrix models [2, 3]. Similar to the usual constrained KP hier-
archy [3], in this paper, we use the squared eigenfunction potential to investigate the action of the
Virasoro symmetry on the tau function.

This paper is organized in the following way. In Section 2, we review some backgrounds on
the dKP hierarchy. In Section 3, the Virasoro action on the tau function of the constrained dKP
hierarchy is obtained. At last, some conclusions and discussions are given in Section 4.

2. Backgrounds on the dKP hierarchy

In this section, we will recall some basic facts about the dKP hierarchy. One can refer to [11,14,20]
for more details.

The dKP hierarchy can be expressed as

∂L
∂ ti

= [(Li)+,L], i = 1,2,3, · · · (2.1)

where the Lax operator L is given by a general first - order pseudo difference operator:

L = L(n) = ∆+
∞

∑
j=0

f j(n)∆− j. (2.2)

Here ∆ is the difference operator: ∆ f (n) = f (n+1)− f (n), with the following rules for the multi-
plication of the function operators and the difference operators:

∆
j f =

∞

∑
i=0

Ci
j∆( f )(n+ j− i)∆ j−i, Ci

j =
j( j−1) · · ·( j− i+1)

i!
, (2.3)

and f j(n) is the function of n and the time variables t =(t1, t2, t3, · · ·). For the pseudo difference oper-
ator R = R(n) = ∑

k
j=−∞ f j(n)∆ j and the function f = f (n), R+ = ∑

k
j=0 f j(n)∆ j, R− = ∑ j<0 f j(n)∆ j,

res∆R = f−1(n), and R( f ) means the action of R on f . The conjugation operation is defined in the
following way: (AB)∗ = B∗A∗, ∆∗ = −∆Λ and f ∗ = f , where A and B are the pseduo difference
operator, and Λ is the shift operator: Λ f (n) = f (n+1).

The dressing operator is defined as follows:

W (n; t) = 1+
∞

∑
j=1

w j(n; t)∆− j, (2.4)

which satisfies

L =W∆W−1. (2.5)

Then the Lax equation(2.1) is equivalent to the Sato equation

∂W
∂ ti

=−(Li)−W. (2.6)

The dKP hierarchy can be viewed as the compatibility conditions of the following linear prob-
lems:

Lk(ψBA(n; t,λ )) = λ
k
ψBA(n; t,λ ), ∂tmψBA(n; t,λ ) = Lm

+(ψBA(n; t,λ )) (2.7)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

530



Virasoro action on tau function for constrained dKP hierarchy

and

(L∗(n−1))k(ψ∗BA(n; t,λ )) = zk
ψ
∗
BA(n; t,λ ), ∂tmψ

∗
BA(n; t,λ ) =−(L∗(n−1))m

+(ψ
∗
BA(n; t,λ )), (2.8)

where ψBA(n; t,λ ) is the Baker-Akhiezer (BA) wave function defined via:

ψBA(n; t,λ ) = W (n; t)
(
(1+λ )neξ (t,λ )

)
=

(
1+

w1(n; t)
λ

+
w2(n; t)

λ 2 + · · ·
)
(1+λ )neξ (t,λ ) (2.9)

and ψ∗BA(n; t,λ ) is the adjoint BA function:

ψ
∗
BA(n; t,λ ) = (W−1(n−1; t))∗

(
(1+λ )−ne−ξ (t,λ )

)
=

(
1+

w∗1(n; t)
λ

+
w∗2(n; t)

λ 2 + · · ·
)
(1+λ )−ne−ξ (t,λ ), (2.10)

where ξ (t,λ ) = ∑
∞
i=0 tiλ i.

The dKP hierarchy can also be expressed in terms of a single function called the tau function
τ∆ = τ(n; t), which is related with the wave function and the adjoint wave function in the following
way,

ψBA(n; t,λ ) =
τ(n; t− [λ−1])

τ(n; t)
(1+λ )neξ (t,λ ), (2.11)

ψ
∗
BA(n; t,λ ) =

τ(n; t +[λ−1])

τ(n; t)
(1+λ )−ne−ξ (t,λ ), (2.12)

where [λ ] = (λ , λ 2

2 , λ 3

3 , · · ·). There is a connection [11] between τ(t) of the usual KP hierarchy and
τ(n; t) of the dKP hierarchy, that is

τ∆ = τ(n; t) = τ

(
t1 +n, t2−

n
2
, t3 +

n
3
, · · ·
)
. (2.13)

If the functions q(n; t) and r(n; t) satisfy

∂tmq(n; t) = L(n)m
+(q(n; t)), ∂tmr(n; t) =−(L(n)m)∗+(r(n; t)), (2.14)

then they are called the eigenfunction and the adjoint eigenfunction of the dKP hierarchy respec-
tively. Obviously, ψBA(n; t,λ ) is the eigenfunction, while ψ∗BA(n+1; t,λ ) is the adjoint eigenfunc-
tion. The relations between the (adjoint) eigenfunction and the (adjoint) wave function can be
showed as the spectral representation below

q(n; t) =
∫

dλϕ(n;λ )ψBA(n; t,λ ), r(n; t) =
∫

dλϕ
∗(n;λ )ψ∗BA(n+1; t,λ ), (2.15)

where two density functions ϕ(n;λ ) and ϕ∗(n;λ ) can be expressed by using the squared eigenfunc-
tion potentials

ϕ(n;λ ) =−S(q(n; t ′),ψ∗BA(n+1; t ′,λ )), ϕ
∗(n;λ ) = S(ψBA(n; t ′,λ ),r(n; t ′)). (2.16)
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Here for any pair of (adjoint) eigenfunctions q(n; t) and r(n; t), the squared eigenfunction potential
S(q(n; t),r(n; t))are determined by the following equations [14]:

∆S(q(n; t),r(n; t)) = q(n; t)r(n; t),

∂tmS(q(n; t),r(n; t)) = res∆

(
∆
−1r(n; t)L(n)m

+q(n; t)∆−1) (2.17)

Note that the definition of S(q(n; t),r(n; t)) can be up to a constant. We listed some useful expres-
sions of S(q(n; t),r(n; t)) which will be used later

S(ψBA(n; t,µ),ψ∗BA(n+1; t,λ )) =− 1
λ

ψBA(n; t +[λ−1],µ)ψ∗BA(n; t,λ )

=
1
µ

ψBA(n; t,µ)ψ∗BA(n; t− [µ−1],λ )+ constant, (2.18)

S(q(n; t),ψ∗BA(n+1; t,λ )) =− 1
λ

q(n; t +[λ−1])ψ∗BA(n; t,λ ), (2.19)

S(ψBA(n; t,λ ),r(n; t)) =
1
λ

ψBA(n; t,λ )r(n−1; t− [λ−1]), (2.20)

S(q(n; t),r(n; t)) =
∫ ∫

dλdµϕ
∗(n;λ )ϕ(n; µ)S(ψBA(n; t,µ),ψ∗BA(n+1; t,λ )). (2.21)

The squared eigenfunction symmetry for the dKP hierarchy, also called the “ghost” symme-
try, is constructed in [14], which is defined by using pairs of the eigenfunctions and the adjoint
eigenfunctions, i.e.,qi(n; t) and ri(n; t), i = 1,2, · · ·m, that is,

∂αL =

[
m

∑
i=1

qi(n; t)∆−1ri(n; t),L

]
, ∂αW =

(
m

∑
i=1

qi(n; t)∆−1ri(n; t)

)
W, (2.22)

and its action on the tau function is

∂ατ(n; t) =−
m

∑
i=1

S(qi(n; t),ri(n; t))τ(n; t). (2.23)

The additional symmetry for the dKP hierarchy is defined by introducing the additional variables
t̂ml [20],

∂̂mlL = [−(Mm
∆ Ll)−,L], ∂̂mlW =−(Mm

∆ Ll)−W, (2.24)

where

M∆ =WΓ∆W−1, Γ∆ =
∞

∑
i=1

(
iti∆i−1 +(−1)i−1n∆

i−1) . (2.25)

In particular, the additional symmetry ∂̂1,k acts on the tau function in the way below [20]

∂̂1,kτ(n; t) =
1
2

Ŵ (2)
k−1τ(n; t), (2.26)

where

Ŵ (2)
k = 2 ∑

i≥1
(iti +(−1)i−1n)

∂

∂ ti+k
− (k+1)

∂

∂ tk
+

k−1

∑
i=1

∂ 2

∂ ti∂ tk−i
. (2.27)
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3. The Virasoro action on the tau function for the constrained dKP hierarchy

In general, the constrained dKP hierarchy with m components is defined by restricting the Lax
operator in the following form of L(n)− = ∑

m
σ=1 qσ (n; t)∆−1rσ (n; t), where qσ (n; t) and rσ (n; t) are

the eigenfunction and the adjoint eigenfunction of the dKP hierarchy respectively. In this section,
we only consider one-component constrained dKP hierarchy, that is,

L(n)− = q(n; t)∆−1r(n; t). (3.1)

For the constrained dKP hierarchy (3.1), the conventional additional flow ∂̂ml can not preserve
the space of the Lax operators given by (3.1). Thus some modification must be needed, which is
realized in [18] by adding the squared eigenfunction symmetry flow to ∂̂1,k, that is,

∂
∗
k L = [−

(
M∆Lk

)
−
+Yk−1,L], . (3.2)

Here

Yk =
k−1

∑
j=0

(
j− 1

2
(k−1)

)
Lk−1− j(q)∆−1(L∗) j(r), k ≥ 1, (3.3)

which spans the Virasoro algebra, i.e.

[∂ ∗l ,∂
∗
k ] = (k− l)∂ ∗k+l−1, (3.4)

on the space of the Lax operator. If let ∂αm be the squared eigenfunction symmetry generated by(
j− 1

2(k−1)
)

Lk−1− j(q) and (L∗) j(r) for j = 1,2, · · · ,m, then

∂
∗
k = ∂̂1,k−1 +∂αm . (3.5)

Next we will investigate the action of ∂ ∗k on the tau function τ(n; t).
In order to get the Virasoro action on the tau function of the constrained dKP hierarchy, we need

to first rewrite (3.1) into the form of the tau function.
The negative part of arbitrary power of the the Lax operator for the constrained dKP hierarchy

(3.1) has the following explicit form [18]

(Lk)− =
k−1

∑
j=0

Lk− j−1(q)∆−1(L∗) j(r). (3.6)

Before further investigating the constrained dKP hierarchy, the identity [14] below about the wave
function and the adjoint wave function of the dKP hierarchy is needed.

1
λ

∆̂z
(
ψBA(n; t +[λ−1],µ)ψ∗BA(n; t,λ )

)
=

1
z

ψBA(n; t,µ)ψ∗BA(n; t− [z−1],λ ). (3.7)

where

∆̂z f (t) = f (t− [z−1])− f (t). (3.8)

Further by (2.15), (2.18) and (2.21), one can get

∆̂zS(q(n; t),r(n; t)) =−1
z

q(n; t)r(n−1; t− [z−1]). (3.9)
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Next due to (2.7), (2.20) and (3.9),

λ
k
ψBA(n; t,λ ) = L(n)k (ψBA(n; t,λ ))

= L(n)k
+ (ψBA(n; t,λ ))+

k−1

∑
j=0

Lk− j−1(q)(n; t)S(ψBA(n; t,λ ),(L∗) j(r)(n; t))

= ∂tk ψBA(n; t,λ )+
1
λ

k−1

∑
j=0

Lk− j−1(q)(n; t)(L∗) j(r)(n−1; t− [λ−1])ψBA(n; t,λ )

= ∂tk ψBA(n; t,λ )−
k−1

∑
j=0

ψBA(n; t,λ )∆̂zS(Lk− j−1(q),(L∗) j(r)). (3.10)

On the other hand, according to (2.11),

∂tk lnψBA(n; t,λ )−λ
k = ∆̂z∂tk lnτ(n; t). (3.11)

Therefore the comparison of (3.10) and (3.11) leads to the following proposition.

Proposition 3.1. For the constrained dKP hierarchy (3.1), the tau function satisfies the following
identities.

∂

∂ tk
τ(n; t) =

k−1

∑
j=0

S
(

Lk−1− j(q),(L∗) j(r)
)

τ(n; t). (3.12)

Remark 1: Note that the right hand side of (3.12) is just the action of the squared eigenfunction
symmetry on the tau function according to (2.23). Thus it is showed that the constrained dKP hier-
archy can be derived just by identifying the squared eigenfunction symmetry with the negative of
the time flow.

According to (2.23) and (2.26), the action of ∂ ∗k on tau function can be obtained.

Proposition 3.2. For the constrained dKP hierarchy (3.1),

∂
∗
k τ(n; t) =

1
2

Ŵ (2)
k−1τ(n; t)+

k−2

∑
j=0

(
1
2
(k−2)− j

)
S
(

Lk−2− j(q),(L∗) j(r)
)

τ(n; t), (3.13)

Next our goal is to express the second term in the right hand side of (3.13) as a differential
operator acting on τ(n; t) in the form similar to (2.27). For this, the following lemma must be
needed.
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Lemma 3.1. For any eigenfunction f (n; t) and any adjoint eigenfunction g(n; t) of the constrained
dKP hierarchy (3.1), the relation below holds

∂

∂ tk
S( f ,g) = S(Lk( f ),g)−S( f ,(L∗)k(g))

−
k−1

∑
j=0

S( f ,(L∗) j(r))S(Lk− j−1(q),g). (3.14)

Proof. We first prove (3.14) holds for the wave function ψBA(n; t,λ ) and the adjoint wave function
ψ∗BA(n+1; t,µ). Then by the spectral representation (2.15), it can be proved that it is true for f and
g.

From the proof of (3.10), one can know that

∂tk ΨBA(n; t,λ ) = λ
k
ψBA(n; t,λ )

− 1
λ

k−1

∑
j=0

Lk− j−1(q)(n; t)(L∗) j(r)(n−1; t− [λ−1])ψBA(n; t,λ ). (3.15)

Similarly, one can also obtain

∂tk Ψ
∗
BA(n; t,µ) =−µ

k
ψ
∗
BA(n; t,µ)

+
1
µ

k−1

∑
j=0

Lk− j−1(q)(n; t +[µ−1])(L∗) j(r)(n−1; t)ψ∗BA(n; t,µ). (3.16)

Substituting (3.15) and (3.16) and according to (2.18), (2.20) and (3.9),

∂tk S(ψBA(n; t,λ ),ψ∗BA(n+1; t,λ )) = ∂tk
(
λ
−1

ψBA(n; t,λ )ψ∗BA(n; t− [λ−1],µ)
)

= λ
−1

∂tk ψBA(n; t,λ )ψ∗BA(n; t− [λ−1],µ)+λ
−1

ψBA(n; t,λ )∂tk ψ
∗
BA(n; t− [λ−1],µ)

= S(L(n)k(ψBA(n; t,λ )),ψ∗BA(n+1; t,µ))−S(ψBA(n; t,λ ),(L(n)∗)k(ψ∗BA(n+1; t,µ)))

+
k−1

∑
j=0

S(ψBA(n; t,λ ),(L∗) j(r)(n; t))
(
−λ

−1Lk− j−1(q)(n; t)ψ∗BA(n; t− [λ−1],µ)

−S(Lk− j−1(q)(n; t− [λ−1]),ψ∗BA(n+1; t− [λ−1],µ))
)

= S
(

L(n)k(ψBA(n; t,λ )),ψ∗BA(n+1; t,µ)
)
−S
(

ψBA(n; t,λ ),(L(n)∗)k(
ψ
∗
BA(n+1; t,µ)

))
−

k−1

∑
j=0

S(ψBA(n; t,λ ),(L∗) j(r)(n; t))S(Lk− j−1(q)(n; t),ψ∗BA(n+1; t,µ)). (3.17)

So (3.14) holds for the (adjoint) wave function. And further by the spectral representation, it leads
to the general case.

After the preparation above, now we can get the main result of this paper, which is showed in
the proposition below.

Proposition 3.3. For the constrained dKP hierarchy (3.1),

∂
∗
k τ(n; t) =

(
∑
i≥1

(iti +(−1)i−1n)
∂

∂ ti+k−1
− k

2
∂

∂ tk−1
+

k−2

∑
i=1

∂ 2

∂ ti∂ tk−1−i

)
τ(n; t). (3.18)
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Proof. By (3.13), it is only to show

k−2

∑
j=0

(
1
2
(k−2)− j

)
S
(

Lk−2− j(q),L∗ j(r)
)
=

1
2τ(n; t)

k−2

∑
l=1

∂ 2τ(n; t)
∂ tl∂ tk−1−l

. (3.19)

For this, according to (3.12),

∂ 2τ(n; t)
∂ tl∂ tk

=
k−1

∑
i=0

(
∂

∂ tl
S
(

Lk−1−i(q),(L∗)i(r)
)

τ(n; t)+S
(

Lk−1−i(q),L∗i(r)
)

∂

∂ tl
τ(n; t)

)
=

k−1

∑
i=0

(
S(Lk+l−1−i(q),(L∗)i(r))−S(Lk−1−i(q),(L∗)i+l(r))

)
τ(n; t)

+
k−1

∑
i=0

l−1

∑
j=0

(
S(Lk−1−i(q),(L∗)i(r))S(Ll−1− j(q),(L∗) j(r))

−S(Lk−1−i(q),(L∗) j(r))S(Ll−1− j(q),(L∗)i(r))
)

τ(n; t). (3.20)

Substitute (3.20) into the right hand side of (3.19),

1
τ(n; t)

k−2

∑
l=1

∂ 2τ(n; t)
∂ tl∂ tk−1−l

=
k−2

∑
l=1

k−2−l

∑
i=0

(
S(Lk−2−i(q),(L∗)i(r))︸ ︷︷ ︸

(a)

−S(Lk−2−i−l(q),(L∗)i+l(r))︸ ︷︷ ︸
(b)

)

+
k−2

∑
l=1

l−1

∑
j=0

k−2−l

∑
i=0

(
S(Lk−2−i−l(q),(L∗)i(r))S(Ll−1− j(q),(L∗) j(r))︸ ︷︷ ︸

(c)

−S(Lk−2−i−l(q),(L∗) j(r))S(Ll−1− j(q),(L∗)i(r))︸ ︷︷ ︸
(d)

)
. (3.21)

Then

(a) =
k−3

∑
i=0

k−2−i

∑
i=l

S(Lk−2−i(q),(L∗)i(r)) =
k−2

∑
i=0

(k−2− i)S(Lk−2−i(q),(L∗)i(r)),

(b) =
k−2

∑
l=1

k−2

∑
i=l

S(Lk−2−i(q),(L∗)i(r)) =
k−2

∑
i=1

i

∑
l=1

S(Lk−2−i(q),(L∗)i(r))

=
k−2

∑
i=0

iS(Lk−2−i(q),(L∗)i(r)),

(c) =
k−3

∑
j=0

k− j−3

∑
i=0

k−2−i

∑
l= j+1

S(Lk−2−i−l(q),(L∗)i(r))S(Ll−1− j(q),(L∗) j(r))

=
k−3

∑
j=0

k− j−3

∑
i=0

k−2−i

∑
l= j+1

S(Lk−2−i−l(q),(L∗) j(r))S(Ll−1− j(q),(L∗)i(r)) = (d),
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where in the first identity of (b)-term, i becomes into i− l, and for the second identity of (c)-term,
we have let l → k− 1− i+ j− l. Therefore after substituting (a)(b)(c) into 1

τ(n;t) ∑
k−2
l=1

∂ 2τ(n;t)
∂ tl∂ tk−1−l

,
(3.19) is proved.

Remark 2: For the constrained dKP hierarchy with m components (m > 1), the relations (3.12),
(3.13) and (3.14) still hold. But (3.19) will become into

∂ 2τ(n; t)
∂ tl∂ tk

=
m

∑
σ=1

k−1

∑
i=0

S(Lk+l−1−i(qσ ),(L∗)i(rσ ))−S(Lk−1−i(qσ ),(L∗)i+l(rσ ))

+
m

∑
σ ,ρ=1

k−1

∑
i=0

l−1

∑
j=0

(
S(Lk−1−i(qσ ),(L∗)i(rσ ))S(Ll−1− j(qρ),(L∗) j(rρ))

−S(Lk−1−i(qσ ),(L∗) j(rρ))S(Ll−1− j(qρ),(L∗)i(rσ ))
)

Though the corresponding (a)(b)-terms in (3.21) can lead to the corresponding term in the left hand
side of (3.19), the (c)(d)-terms can not be cancelled.
Remark 3: (−1)i−1n terms in (3.18) is the difference between the dKP hierarchy and the usual
KP hierarchy. And by (3.18), one can easily show [∂ ∗k ,∂

∗
l ] = (k− l)∂ ∗k+l−1 on the space of the tau

functions.

4. Conclusions and Discussions

In this paper, the action of the Virasoro symmetry on the tau function of the constrained dKP hier-
archy is derived (see Proposition 4), which is expected to be helpful in the study of the algebraic
constraint of the discrete system and the links between the dKP hierarchy and the matrix models.
Note that if letting ti +(−1)i−1n/i→ ti, then (3.18) will be the same as the case of the usual KP
hierarchy, which is consistent with the relation (2.13) between τ(t) of the usual KP hierarchy and
τ(n; t) of the dKP hierarchy. What’s more, the constraint on the tau function of the constrained dKP
hierarchy is showed in (3.12) and an important property about the squared eigenfunction potential
of the constrained dKP hierarchy is obtained in (3.14).
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