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1. Introduction

In 1978, Newell presented a long wave-short wave model [17]

At = 2σK1(|B|2)x, σ =±1,

Bt − iK2Bxx =−K3AxB+ iK4A2B−2iσK5B|B|2,
(1.1)

where A(x, t) and B(x, t) represent the amplitude of the long wave and the envelope of the short wave
respectively. The system (1.1) is integrable for the choices of parameters Ki = 1, i = 1,2,3,4,5 [17].
Another relative long wave-short wave model was derived by Benney in 1977 [2], which had been
widely researched, such as [8, 12, 15, 16, 19]. However, there is few research about the model (1.1).

In this work, we consider the long wave-short wave model (1.1) with the choices Ki = 1 and
σ = 1

iBt +Bxx +(iAx +A2)B+2|B|2B = 0,

At +2(|B|2)x = 0.
(1.2)
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It is readily to see that the equations (1.2) possess the scalings invariant property x → λx, t → λ 2t,
A → A/λ and B → B/λ . Owning to the integrability of the long wave-short wave model (1.2), we
can rewritten it as the compatibility condition of the following linear system [17]

Φx =UΦ,

Φt =V Φ,
(1.3)

where

U =

 iλ B iA
−B∗ 0 −B∗

iA B −iλ

 ,

V =

 − i
3 λ 2 + i|B|2 −Bλ + iBx −AB −i|B|2

B∗λ + iB∗
x +AB∗ 2i

3 λ 2 −2i|B|2 −B∗λ + iB∗
x +AB∗

−i|B|2 Bλ + iBx −AB − i
3 λ 2 + i|B|2

 .

From above spectral problem (1.3), we can see that it is nothing but deep reduction of three wave res-
onance interaction(3WRI) [13,20]. Also, the 3WRI model is well researched by lots of researchers,
such as [3, 4, 6, 13, 20]. Soliton solutions of 3WRI can be classified in three main classes, depend-
ing on the boundary conditions. The first one is the bright-bright-bright solitons [13, 20], where the
pulses of the three interacting waves vanish sufficiently fast at infinity. The second class, bright-
bright-dark solitons, is given by two bright pulses which vanish sufficiently fast at infinity and a
kink-like pulse which asymptotically behaves like a plane wave [3]. The third class, dark-dark-dark
solitons, is given in [4]. The detailed analysis of the 3WRI spectral problem presented in refer-
ence [6].

As we well known that, the Darboux transformation method [7,16] is an efficient way to generate
the soliton solution. In paper [5], the author establishes the relations between different construction
methods. However, the classical Darboux transformation can not tackle with the high-order spectral.
Recently, Guo, Ling and Liu [9, 10] develop the Darboux transformation, so that it can be used to
yield the high order solution. Afterwards, Bian, Guo and Ling combine the generalized Darboux
transformation with the inverse scattering method, so that the inverse scattering method can be used
to generate the high-order solution readily [1].

In reference [14], the authors give the Darboux transformation for about linear system (1.3)
and present some simple exact solutions. In reference [11], the authors give a method to solve the
Lax pair with the nonzero seed solution. In this paper, we combine the method in [11] with [14] to
construct some novel solutions of equations (1.2).

This paper is organized as following. In section 2, we give the Darboux transformation by the
loop group method. We prove the equivalence between the loop group representation and gauge
transformation representation. In section 3, we give some novel solutions and classification of solu-
tion. We analyse the asymptotical behavior of the new types soliton solution in detail. Final section
involves some conclusions and discussions.

2. Darboux transformation

We use loop group method [18] to derive the Darboux transformation. Since the spectral problem
(1.3) is the 3×3 AKNS spectral problem, then the elementary Darboux transformation of (1.3) can
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be represented as the following form [18]:

T = I +
P

λ −λ ∗
1

where P is the projector operator. On the other hand, we introduce the involution relation for linear
system (1.3). It is evidently that the matrices U(λ ) and V (λ ) possess the following involution
relations

U†(λ ∗) =−U(λ ), V †(λ ∗) =−V (λ ), (2.1)

and

σ2U(λ )σ2 =U(−λ ), σ2V (λ )σ2 =V (−λ ), (2.2)

where

σ2 =

0 0 1
0 1 0
1 0 0

 .

Based on the above involution relations, we establish the following lemma:

Lemma 2.1. If U and V satisfy the involution relations (2.1) and (2.2), then there exists a funda-
mental solution Φ(λ ) for linear system (1.3) which satisfies the symmetry relations Φ†(λ ∗)Φ(λ )= I
and Φ(−λ ) = σ2Φ(λ )σ2; and vice versa.

Proof: Since the symmetry relation (2.1), we can deduce that the fundamental solution Φ†(λ ∗)

satisfies the following conjugation equation

−Φ†
x(λ ∗) = Φ†(λ ∗)U(λ ),

−Φ†
t (λ ∗) = Φ†(λ ∗)V (λ ).

On the other hand, the solution Φ−1(λ ) satisfy the above conjugation linear system. Moreover, we
have Φ(λ )Φ†(λ ∗) =C1. Specially, we can choose the constant matrix C1 = I. Similarly, by relation
(2.2), we can obtain the matrix σ2Φ(λ )σ2 satisfies the following system

σ2Φx(λ )σ2 =U(−λ )σ2Φ(λ )σ2,

σ2Φt(λ )σ2 =V (−λ )σ2Φ(λ )σ2.

Then we have Φ(−λ ) = σ2Φ(λ )σ2C2. In particular, we choose the matrix C2 = I. By the above
analysis, converse process is evidently valid. �

By above lemma, we can obtain the symmetry relation for Darboux matrix T , i.e. T (x, t;−λ ) =
σ2T (x, t;λ )σ2 and T †(x, t;λ ∗)T (x, t;λ ) = I. Furthermore, we can suppose

T = I +
A1

λ −λ ∗
1
− σ2A1σ2

λ +λ ∗
1
, T−1 = I +

A†
1

λ −λ1
−

σ2A†
1σ2

λ +λ1
. (2.3)

The matrix A1 has two distinct cases. One case is the rank of matrix A1 equals to one. Another case
is the rank of matrix A1 equals to two. Although its possess different rank, its are equivalence each
other actually. In what following, we would like to verify this fact.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

516

Administrator
插入号
s



Huang,Guo and Ling

Prior to prove the fact, we give the following lemma. The lemma establishes the relation between
loop group method and gauge transformation method.

Lemma 2.2. The Darboux matrix

T = I +
λ ∗

1 −λ1

λ −λ ∗
1

P, P is a projector matrix,

can be rewritten as

T = M

 λ−λ1
λ−λ ∗

1
0 0

0 1 0
0 0 1

M−1, M = [Φ1(λ1),Φ2(λ ∗
1 ),Φ3(λ ∗

1 )] , (2.4)

or

T = N


λ−λ1
λ−λ ∗

1
0 0

0 λ−λ1
λ−λ ∗

1
0

0 0 1

N−1, N = [Φ1(λ1),Φ2(λ1),Φ3(λ ∗
1 )] , (2.5)

Proof: Assume the rank of P equals to one, and the kernel of matrix I−P is Φ1. By the relation
Φ†(λ ∗)Φ(λ ) = I, we can deduce that the Φ2(λ ∗

1 ) and Φ3(λ ∗
1 ) are the kernel of P. Therefore, we

can obtain that the

P = M

1 0 0
0 0 0
0 0 0

M−1.

It follows that the equation (2.4) is valid. Similarly, if the rank of P equals to two, the equation (2.5)
is valid. �

Theorem 2.1. The Darboux matrix (2.5) can be rewritten as the following form

T =
λ −λ ∗

1
λ −λ1

(
I +

λ1 −λ ∗
1

λ −λ1
P1

)
,

where

P1 =
Φ3(λ ∗

1 )Φ
†
3(λ

∗
1 )

Φ†
3(λ ∗

1 )Φ3(λ ∗
1 )

.

Proof: The directly calculating. �
By above theorem, we know that the rank of matrix P1 equals to one. Thus for the 3×3 spectral

problem, we merely need to choose the rank of matrix P equals to one. It follows that the rank of
matrix A1 equals to one, since the form of Darboux matrix (2.3) is nothing but iteration of elemen-
tary Darboux transformation twice. Then we can suppose the matrix A1 = |y1⟩⟨x1|, where |y1⟩ is a
row vector, ⟨x1| is a column vector, and |x1⟩= ⟨x1|†, ⟩y1|= |y1⟩†. By the relation T (λ )T †(λ ∗) = I,
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we have the following residue relation

Resλ=λ ∗
1
(T (λ )T †(λ ∗)) = 0.

Then we can have (
I +

|y1⟩⟨x1|
λ1 −λ ∗

1
− σ2|y1⟩⟨x1|σ2

λ1 +λ ∗
1

)
|y1⟩= 0.

We can obtain two messages from above equation. Firstly, we can suppose that |x1⟩=Φ1(λ1), where
Φ1(λ1) is a special solution for linear system (1.3) with λ = λ1. Secondly, we can solve the |y1⟩ by
above linear equations. Denote

α =
⟨x1|σ2|x1⟩
λ1 +λ ∗

1
, β =

⟨x1|x1⟩
λ1 −λ ∗

1
.

It follows that

|y1⟩=
1

α2 −β 2 (ασ2 +β )|x1⟩.

Because the Darboux transformation keep the matrix form, then we have the following relation
Tx + TU = ÛT . Taking the spectral parameter large enough λ → ∞, we have the transformation
between the fields, i.e.

A[1] =A− 2
α2 −β 2

[
β (ϕ1ϕ ∗

3 −ϕ3ϕ ∗
1 )+α(|ϕ3|2 −|ϕ1|2)

]
,

B[1] =B− i
(ϕ3 −ϕ1)ϕ ∗

2
α +β

,

(2.6)

where ϕi equals to the i-th component of |x1⟩. The N-fold Darboux transformation is given in refer-
ence [14], we omit it in this work.

3. Exact solution with non-vanishing background

In reference [14], the authors choose two special seed solutions. In this paper, we consider the
general seed solution. It is readily to obtain the seed solution

A = d, B = cexp [i(ax+(d2 +2c2 −a2)t)] (3.1)

readily, where a,b,c and d are real constants. In what following, we use the method in reference [11]
to solve the linear system (1.3) with seed solution (3.1). Although we can solve the linear system
with a unified formula, there are two cases to simple formulas. Thus we classify three different cases
to construct the fundamental solution.

3.1. The case I

In this case, we consider the special case in (3.1) with c= 0 and d ̸= 0. Under scaling transformation,
we merely need to consider d = 1. In order to avoid the radical sign, we use a simple substitution
λ1 = 1

2(k−
1
k ). We can obtain a general vector solution for linear system (1.3). We would like to
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give the detailed calculating in subsection 3.3. In this subsection, we merely give the results. We
can obtain that

|x1⟩=


exp[− i

12(k− k−1)2t](c1 exp[ i
2(k+ k−1)x]+ c2 exp[− i

2(k+ k−1)x])

c3 exp[ i
6(k− k−1)2t]

exp[− i
12(k− k−1)2t](c1k−1 exp[ i

2(k+ k−1)x]− c2k exp[− i
2(k+ k−1)x])

 ,

where c1 and c2 are complex constants. For convenience, we choose the parameter c3 = 1 and divide
|x1⟩ by the factor exp[ i

6(k− k−1)2t], then we can obtain

|x1⟩=


exp[− i

4(k− k−1)2t](c1 exp[ i
2(k+ k−1)x]+ c2 exp[− i

2(k+ k−1)x])

1

exp[− i
4(k− k−1)2t](c1k−1 exp[ i

2(k+ k−1)x]− c2k exp[− i
2(k+ k−1)x])

 . (3.2)

Together with equations (2.6), (3.1) and (3.2), we can obtain the exact solutions. Because the exact
solution formulas are rather complex, we omit the explicit expression. We can obtain three kinds of
nontrivial solution by formulas (2.6).

3.1.1. Bright-Dark pair

If we choose the parameters c1 = 0 and c2 ̸= 0, k = e+ i f , e f ̸= 0 and e > 0, we can obtain the exact
expression for A and B:

A = 1− γ
δ [e2(ω +1)2e2X1 +ωe−2X1 ]+1

,

B =
e f (ω2 −1)eiY1

ω[e(ω +1)(1− e+ i f )eX1 − (ω − e+ i f )e−X1 ]
,

(3.3)

where

X1 =
f
2

(
1− 1

ω

)(
x+

(
e+

e
ω

)
t +g1

)
, ω = e2 + f 2,

Y1 =− e
2

(
1+

1
ω

)(
x+

(
e
2
+

e
ω

− f 2 +1
2e

− 2e
ω +1

)
t +g2

)
,

γ =
(ω −1)2 f 2

[e((e−1)2 + f 2)−2 f 2]ω
, g1 =

2ω ln |c2|
f (ω −1)

,

δ =
((e−1)2 + f 2)

2e(ω +1)(e((e−1)2 + f 2)−2 f 2)
, g2 =

−2ωarg(c2)

e(1+ω)
.

The trajectories of A and |B|2 are along the line X1 + ln(|e|(1+ω))− 1
2 ln(ω) = 0. The cavity depth

for A is

Acd =
(ω −1)2 f 2

ω[(e+ sign(e)ω1/2)[(e−1)2 + f 2]−2 f 2]
.

The maximum value of |B|2 is

Bpv =
e(1+ω)(ω −1)2 f 2

2ω2[(e+ sign(e)ω1/2)[(e−1)2 + f 2]−2 f 2]
.
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(a)
(b)

(c)
(d)

Fig. 1. (Color online)(a): Picture of A(x, t); (b): Density plot of A(x, t); (c): Picture of |B(x, t)|; (d): Density plot of |B(x, t)|;
We can see that A is a dark soliton and |B| is a bright soliton. From the density plot, we can see that the trajectory of A
and |B| is along the same line.

To give us a clear understanding of the solutions, we exhibit the dynamics of solution A and
|B| by plotting the picture. Choosing parameters c1 = 0, c2 = 1 and e = f = 1, we plot the explicit
picture by Maple (Fig. 1). It is seen that the solution A is a dark soliton, and |B| is a bright soliton.

If we choose the parameters c1 ̸= 0 and c2 = 0, k = e+ i f , e f ̸= 0 and e < 0, we can obtain the
exact expression for A and B:

A = 1+
γ

δ [e2(ω +1)2e2X1 +ω3e−2X1 ]+1
,

B =
e f (1−ω2)eiY1

ω2(1+ e+ i f )eX1 + e(1+ω)(ω + e+ i f )e−X1
,

(3.4)
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where

X1 =
f
2

(
1
ω

−1
)(

x−
(

e+
e
ω

)
t +g1

)
, ω = e2 + f 2,

Y1 =
e
2

(
1+

1
ω

)(
x+

(
− e

2
− e

ω
+

( f 2 +1)
2e

+
2e

ω +1

)
t +g2

)
,

γ =
(ω −1)2 f 2

ω[e((e+1)2 + f 2)+2 f 2]
, g1 =

2ω ln |c2|
f (1−ω)

,

δ =
(e+1)2 + f 2

2eω(ω +1)[e((e+1)2 + f 2)+2 f 2]
, g2 =

2arg(c2)ω
e(1+ω)

.

The trajectories of A and |B|2 are along the line X1 + ln(|e|(1+ω))− 3
2 ln(ω) = 0. The cavity depth

for A is

Acd =
−(ω −1)2 f 2

ω[(e+ sign(e)ω1/2)[(e+1)2 + f 2]+2 f 2]
.

The maximum value of |B|2 is

Bpv =
e(1+ω)(ω −1)2 f 2

2ω2[(e+ sign(e)ω1/2)[(e+1)2 + f 2]+2 f 2]
.

3.1.2. Bright-Bright pair

If we choose the parameters c1 = 0 and c2 ̸= 0, k = e+ i f , e f ̸= 0 and e < 0, we can obtain the exact
expression for A and B (3.3). If we choose the parameters c1 ̸= 0 and c2 = 0, k = e+ i f , e f ̸= 0 and
e > 0, we can obtain the exact expression for A and B (3.4). Because the properties are similar with
the Bright-Dark pair, we ignore it in this subsection.

To give us a clear understanding of the solutions, we exhibit the dynamics of solution A and |B|
by plotting the picture. Choosing parameters c1 = 1, c2 = 0 and e = f = 1, we can plot the picture
of A(x, t) and |B(x, t)| (Fig. 2) by Maple.

3.1.3. New type soliton pair

Before giving this kind of soliton solution, we choose the parameters c2 = 1, c3 = 0 and divide |x1⟩
by the factor exp[ i

6(k− k−1)2t − i
4(k− k−1)2t], then components of the vector solution |x1⟩ are

ϕ1 = c1 exp[
i
2
(k+ k−1)x]+ c2 exp[− i

2
(k+ k−1)x],

ϕ2 = 0,

ϕ3 = c1k−1 exp[
i
2
(k+ k−1)x]− c2k exp[− i

2
(k+ k−1)x].

(3.5)

Then we can obtain the trivial solutions by formulas (2.6)

A =− 2
α2 −β 2

[
β (ϕ1ϕ ∗

3 −ϕ3ϕ ∗
1 )+α(|ϕ3|2 −|ϕ1|2)

]
,

B = 0,
(3.6)
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(a)
(b)

(c)
(d)

Fig. 2. (Color online) (a): Picture of A(x, t); (b): Density picture of A(x, t);(c): Picture of |B(x, t)|; (d): Density picture
of |B(x, t)|; We can see that they are both bright soliton. However, the amplitude of bright-bright pair is lower than the
bright-dark pair.

where

α =
Re(ϕ ∗

1 ϕ3)

Re2(λ1)
, β =

|ϕ1|2 + |ϕ3|2

2iIm2(λ1)
.

We can see that the solution A(x, t) is independent with t. On the other hand, we know that any
solution A(x) and B = 0 satisfy the equation (1.2). Thus the solution (3.6) is a trivial solution.

If we choose the parameters c1c2 ̸= 0 and c3 = 1, then we could obtain the new type soliton
solution. In mathematical view, this kind of solution is nothing but the nonlinear superposition for
different type solutions. For convenience, we merely consider the parameters e > 0.
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We analyse the asymptotic behavior of new type soliton solution. If e2 + f 2 > 1, e f > 0 and
t > 0, then the vector solution (3.2), as t →+∞

|x1⟩ →


exp[− i

4(k− k−1)2t](c1 exp[ i
2(k+ k−1)x]+ c2 exp[− i

2(k+ k−1)x])

0

exp[− i
4(k− k−1)2t](c1k−1 exp[ i

2(k+ k−1)x]− c2k exp[− i
2(k+ k−1)x])

 .

It follows that we have solution (3.6). As t →−∞, without generality we suppose f > 0, and x →
−∞, then the vector solution (3.2)

|x1⟩ →


c1 exp[ i

2(k+ k−1)x− i
4(k− k−1)2t]

1

c1k−1 exp[ i
2(k+ k−1)x− i

4(k− k−1)2t]

 .

It follows that we have solution (3.4). As t → −∞, f > 0, and x → +∞, then the vector solution
(3.2)

|x1⟩ →


c2 exp[− i

2(k+ k−1)x− i
4(k− k−1)2t]

1

−c2k exp[− i
2(k+ k−1)x− i

4(k− k−1)2t]

 .

It follows that we have solution (3.3).
To give us a clear understanding of the solutions, we exhibit the dynamics of solution A and |B|

by plotting the picture. Choosing parameters c1 = c2 = 1 and e = f = 1, we can obtain the pictures
of A(x, t) and |B(x, t)| and some other pictures for A(x, t) (Fig. 3). Similar phenomena are reported
in reference [3]. Although the spectral problem for this model (1.2) is deep reduction for the WRI
model [3], this model (1.2) is second flow for this spectral problem with deep reduction and WRI
model is the first nontrivial flow without deep reduction. Thus the solutions we obtained can not be
reduced from the solution of previous research papers [3, 4].

3.2. The Case II

In this case, taking parameters a = d = 0, we merely take parameters c = 1 by scalings. As above
subsection, we make a substitution λ1 =

1
2(k−

2
k ) ̸∈ R∪ iR. Then solutions can be represented as

A =− 2
α2 −β 2

[
β (ϕ1ϕ ∗

3 −ϕ3ϕ ∗
1 )+α(|ϕ3|2 −|ϕ1|2)

]
,

B =

(
1− i

(ϕ3 −ϕ1)ϕ ∗
2

α +β

)
e2it ,
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(a) (b)

(c) (d)

Fig. 3. (Color online) (a),(b) Picture of A; (c) Picture of |B|; (d), the picture of A, when t is enough big (t = 104). It is
very interesting that we can obtain a new kind of solution by nonlinear superposition of bright-dark pair, bright-bright
pair and the trivial case.

where

ϕ1 =
2ik

k2 −2
− ik

2
c1 exp(X1)+

i
k

c2 exp(X2),

ϕ2 = 1+ c1 exp(X1)+ c2 exp(X2),

ϕ3 = − 2ik
k2 −2

− i
k

c1 exp(X1)+
ik
2

c2 exp(X2),

α =
|ϕ2|2 +2Re(ϕ ∗

1 ϕ3)

2Re2(λ1)
, β =

|ϕ1|2 + |ϕ2|2 + |ϕ3|2

2iIm2(λ1)
,

and

X1 = i(k/2+ k−1)
[
x+(k/2+ k−1)t

]
,

X2 = i(k/2+ k−1)
[
−x+(k/2+ k−1)t

]
,
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(a)

(b)

(c)

(d)

Fig. 4. (Color online) (a): Picture of A(x, t); (b): Density plot of A(x, t); (c): Picture of |B(x, t)|; (d): Density plot of
|B(x, t)|; We can see the breather solutions possess the similar structure with Fig. 3.

c1 and c2 are complex constants. Similar as above subsection, we can obtain three different kinds of
solution.

Choosing parameters c1 = c2 = 1 and k = 2+ i, we can obtain the picture of A(x, t) and |B(x, t)|
(Fig. 4) by Maple. It is seen that two breathers get together into a stationary soliton from the picture
and density plot of A, and two breathers annihilate from the picture and density plot of |B|.

3.3. Case III

In this subsection, we consider the general case. To solve the periodic coefficient ODE, we use the
gauge transformation. We use the gauge transformation

g0 = diag(exp(−iχ/3),exp(2iχ/3),exp(−iχ/3)) , (3.7)
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where χ = ax+(d2 +2c2 −a2)t. Then the linear system (1.3) becames

Ψx =U0Ψ,

Ψt =

(
iU2

0 −
2a
3

U0 +
2i
9
(3λ 2

1 +3d2 +a2 +6c2)

)
Ψ,

(3.8)

where

U0 =

i(λ1 −a/3) c id
−c 2ia/3 −c
id c −i(λ1 +a/3)

 . (3.9)

The next task is diagonalization of matrix U0. Firstly, we have the characteristic equation

ξ 3 +(λ 2
1 +d2 +2c2 +a2/3)ξ + i(−2aλ 2

1 /3+2a3/27+2c2d +2ac2/3−2ad2/3) = 0. (3.10)

Suppose above cubic equation has three different solution ξ1, ξ2, ξ3 respectively. Then the solution
of equations (3.8) can be represented as

ϕ1 = A1 exp(X1)+A2c1 exp(X2)+A3c2 exp(X3),

ϕ2 = B1 exp(X1)+B2c1 exp(X2)+B3c2 exp(X3),

ϕ3 = exp(X1)+ c1 exp(X2)+ c2 exp(X3),

where

Ai =
−3(−3c2 +2ad +3idξi)

−2a2 +3iaξi −9ξ 2
i +6aλ1 +9iλ1ξi −9c2 ,

Bi =
3c(3id + ia+3ξi −3iλ1)

−2a2 +3iaξi −9ξ 2
i +6aλ1 +9iλ1ξi −9c2 ,

Xi = ξix+
(

iξ 2
i − 2a

3
ξi +

2i
9
(
3λ 2

1 +3d2 +a2 +6c2)) t.

Then solution can be represented as

A = d − 2
α2 −β 2

[
β (ϕ1ϕ ∗

3 −ϕ3ϕ ∗
1 )+α(|ϕ3|2 −|ϕ1|2)

]
,

B =

(
c− i

(ϕ3 −ϕ1)ϕ ∗
2

α +β

)
exp [i(ax+(d2 +2c2 −a2)t)],

(3.11)

where

α =
|ϕ2|2 +2Re(ϕ ∗

1 ϕ3)

2Re2(λ1)
, β =

|ϕ1|2 + |ϕ2|2 + |ϕ3|2

2iIm2(λ1)
,

and λ1 ̸∈ R∪ iR.
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(a)
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(c)
(d)

Fig. 5. (Color online) (a): Picture of A(x, t); (b): Density picture of A(x, t); (c): Picture of |B(x, t)|; (d): Density picture
of |B(x, t)|; This kind of solution is different from Fig. 4. When t is enough big, A is not stationary and |B| is no longer
vanishing.

Choosing parameters

a = 0, d = 1, c = 2−1/2, λ1 = (1+3i)/4, (3.12)

then we can numerically solve the cubic equation (3.10) by Maple

ξ1 ≈−0.3413199783−0.5734343555i,

ξ2 ≈−0.1099240564+1.478137206i,

ξ3 ≈ 0.4512440348−0.9047028502i.

(3.13)

Owning to the functions A(x, t) and B(x, t) (3.11) with respect to the parameters ξi, i = 1,2,3, are
continuous, the errors between the numeric solution and exact solution are enough small. Substitut-
ing the parameters (3.12) and (3.13) into formulas (3.11), and putting them into computer, we can
obtain the picture and density plot of solutions A(x, t) and |B(x, t)| (Fig. 5). It is seen that the soliton
|B| does not annihilate.
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4. Conclusions and discussions

In this work, we analyse the exact solution for long wave-short wave model (1.2) with non-vanishing
background. However, we can not obtain the rational solution for this model (1.2), since the deep
reduction of Darboux transformation.
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