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1. Introduction

Let P be the linear space of polynomials with complex coefficients and let P ′ be its algebraic
dual. A polynomials sequence {Pn}n is called a polynomial set if and only if deg(Pn) = n for all
nonnegative integer n. We denote by < u, f > the effect of the linear functional u ∈ P ′ on the
polynomial f ∈ P .
Let {Pn}n be a polynomials set in P . The corresponding dual sequence (un) is defined by

< un,Pm >= δnm, n,m = 0,1, . . . ,

where δnm being the Kronecker symbol.
A natural extension of the notion of orthogonality was introduced by Van Iseghem [7] and Maroni
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[15] as follows:
Let d be a positive integer and let {Pn}n be a polynomials set in P .
{Pn}n is called a d-orthogonal polynomials set( d-OPS for shorter) with respect to the d-dimensional
functional vector U = t(u0,u1, . . . ,ud−1) if it verifies the following conditions:

〈uk,PmPn〉 = 0, n > md + k +1,

〈uk,PnPnd+k〉 �= 0, n ≥ 0.

For each integer k ∈ {0,1, . . . ,d −1}.
For the particular case d = 1, we meet the well known notion of orthogonality.
Recall that {Pn}n is d-OPS if and only if it satisfies a recurrence relation of order d +1 of the type

xPn(x) = βn+1Pn+1(x)−
d

∑
k=0

αk,n−kPn−k(x),

where βn+1α0,n−d �= 0 and the convention P−n = 0, n ≥ 1. The result for d = 1 is reduced to the
so-called Favard Theorem. During the past two decades, the d-OPS have been the subject of numer-
ous investigations and applications. In particular they are connected with the study of vector padé
approximants, simultaneous padé approximants and other problems such as vectorial continued
fractions and polynomials solutions of the higher order differential equations. We mention also the
appearance of multiple orthogonal polynomials is some problems of modern mathematical physics.
The d-OPS can be obtained from general multiple orthogonal polynomials under some restrictions
upon their parameters [1]. We mention also that numerous explicit examples of such polynomi-
als have ”good properties” that’s to say explicit expression in terms of generalized hypergeometric
functions or possessing some ”classical properties” (see, [15]). A new applications of the d-OPS
was presented recently in [17] by L.vinet and A.Zhedanov is connected with nonlinear automor-
phisms of the Weyl algebra.
In the same context, we would like to present a q-analogue of this work. In fact, we will consider
an operator S which is no longer unitary and the corresponding matrix coefficients of this operator
with respect to the initial basis give arise to a system of polynomials, which essentially coincides
with a q-Charlier polynomials d-OPS. We show that almost all nontrivial properties the d-OPS q-
Charlier polynomials can be derived directly from their definition as matrix elements of the Fock
representation of the q-oscillator algebra.

2. The q-Oscillator algebra

In this section we consider a form of the q-oscillator algebra and we discuss some of its basic
properties. Let us first review a few basic notions of q-calculus; the interested reader may consult [5].
Let q be a real number 0 < q < 1. The q-shifted factorial are defined by

(a;q)n :=
n−1

∏
k=0

(1−aqk), (2.1)

(a1, . . . ,ar;q)n := (a1;q)n . . .(ar;q)n,n = 0,1, . . . . (2.2)
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We denote also [
n
k

]
q

:=
(q;q)n

(q,q)k(q;q)n−k
. (2.3)

The q-exponentials functions are defined by [5]

eq(z) :=
∞

∑
n=0

zn

[n]q!
=

1
((1−q)z;q)∞

, |z| < 1
1−q

,

Eq(z) :=
∞

∑
n=0

qn(n−1)/2 zn

[n]q!
= (−(1−q)z;q)∞, z ∈ C,

where

(a;q)∞ :=
∞

∏
k=0

(1−aqk),

and

[n]q =
1−qn

1−q
, [n]q! =

n

∏
k=1

[k]q.

The q-difference operator

Dq f (x) =
f (x)− f (qx)

(1−q)x
.

We have

Dq( f g)(x) = g(qx)Dq f (x)+ f (x)Dqg(x).

2.1. The Fock representations of the q-Oscillator algebra

In the literature there are several forms of the q-deformed oscillator algebra, see [11, Ch.5]. In this
work, we consider the q-oscillator algebra denoted by AA, which is the associative algebra over C

generated by A−, A+, qA
0 , q−A0 and relations (see [11])

[A−, A+]q = 1, qA0A+ = qA+qA0 , qA0A− = q−1A−qA0 , qA0q−A0 = q−A0qA0 = 1. (2.4)

where

[A,B]q := AB−qBA.

In the case q = 1, this algebra represents the one–dimensional harmonic oscillator algebra generated
by three generators a, a∗ and 1 with relations

aa∗ −a∗a = 1, 1a = a1, 1a∗ = a∗1.

Let H the be the Hilbert space with orthonormal basis {|n >}n∈N and let D be the linear dense
subspace of H spanned by {|n >}n∈N. Here we have used the standard Dirac notation (see [16]).
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In this notation an state |ψ > has the decomposition

|ψ >=
∞

∑
n=0

< n|ψ〉|n >,

where < n|ψ > means the scalar product of the two states |n > and |ϕ >.
The Fock representation of the q-oscillator algebra AA is given by

A+|n >=
√

[n+1]q|n+1 >, (2.5)

A−|n >=
√

[n]q|n−1 >, (2.6)

qA0 |n >= qn|n > . (2.7)

From (2.5) we get

|n >=
An

+√
[n]q!

|0 >, (2.8)

where the vector |0 > is normalized by the condition

A−|0 >= 0.

It’s clear that from (2.5) and (2.6) the operator A+A− is hermitian and has for n = 0,1, . . . , the
q-numbers [n]q as eigenvalues

A+A− | n >= [n]q | n > .

We denote by |z > the q-coherent state defined by

|z >= eq(zA+)|0 >=
+∞

∑
n=0

zn√
[n]!q

|n > . (2.9)

The state |z > can be looked upon as an eigenstate of the operator A− such that

A−|z >= z|z > . (2.10)

For q-coherent states |z1 > and |z2 >, we have

< z1|z2 >= eq(z1z2).

In addition, if

ψ(z) =< z|ψ >,

then

Dqψ(z) =< z|A−|ψ > and zψ(z) =< z|A+|ψ > .

Let S(A−,A+,A0) be an operator constructed from operators A−, A+, A0 . We assume that this
operator is invertible, i.e there exists an operator S−1(A−,A+,A0) such that

SS−1 = S−1S = 1. (2.11)
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Consider two systems of matrix coefficients:

ψnk =< k|S|n > and φnk =< n|S−1|k > . (2.12)

It is assumed that the functions ψnk and φnk do exist. A simple computation shows that

S−1|n >=
∞

∑
k=0

< k|S−1|n > |k >

and

SS−1|n >=
∞

∑
k=0

∞

∑
r=0

< k|S−1|n >< r|S|k > |r > .

Then

< m|SS−1|n >=
∞

∑
k=0

< m|S|k >< k|S−1|n >,

and by (2.11) we obtain the identities

∞

∑
k=0

< m|S|k >< k|S−1|n >=< m|SS−1|n >=< m|n >= δmn.

Similarly,

∞

∑
n=0

< k|S−1|n >< n|S|s >=< k|S−1S|s >=< k|s >= δks.

Hence, the matrix elements ψnk, φnk satisfy the bi-orthogonality relations

∞

∑
k=0

ψknφkm = δmn and
∞

∑
n=0

ψsnφkn = δks. (2.13)

2.2. Identities in q-oscillator algebra

The theory of quantum algebra and in particular q-oscillator algebra has been successful in produc-
ing identities for q-special functions (see [14]) and further references given there. From [14, Propo-
sition 3.1] we have

eq(qA0 +A+) = eq(A+)eq(qA0), Eq(qA0 +A+) = Eq(qA0)Eq(A+),

eq(A− +qA0) = eq(qA0)eq(A−), Eq(A− +qA0) = Eq(A−)Eq(qA0).

Proposition 2.1. For n = 0,1,2, . . . , we have

[A−,An
+] = [n]q An−1

+ qA0 , (2.14)

[An
−,A+] = [n]q qA0An−1

− . (2.15)

Moreover, if f (z) = ∑∞
n=0 anzn is a formal power series, we have

[A−, f (A+)] = Dq f (A+)qA0 , [ f (A−),A+] = qA0Dq f (A−). (2.16)
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Proof. Let n ∈ N, from (2.4) we have

[An
−,A+] =

n−1

∑
i=0

Ai
−[A−,A+]An−1−i

−

=
n−1

∑
i=0

Ai
−qA0An−1−i

− ,

=
n−1

∑
i=0

qiqA0An−1
− ,

= [n]qqA0An−1
− .

The identity (2.16), follows from (2.14) and (2.15) and the fact that

[A+, f (A−)] = ∑
n≥0

an[An
−,A+] and [ f (A−),A+] = ∑

n≥0

an[An
−,A+]. (2.17)

Proposition 2.2. Let P be a polynomial and t a complex number, we have

eq(tA−)P(A+)Eq(−tA−) = P(A+ + tqA0),

Eq(tA+)P(A−)eq(−tA+) = P(A−− tqA0).

Proposition 2.3. Let N ≥ 0. For all complex numbers a0, . . . ,aN , we have

N

∏
i=0

eq(aiA−)A+A−
N

∏
i=0

Eq(−aiA−) = qA0 [1−
N

∏
i=0

(1−aiA−)]+A+A− (2.18)

N

∏
i=0

eq(aiA−)qA0
N

∏
i=0

Eq(−aiA−) = qA0
N

∏
i=0

(1−ai(1−q)A−). (2.19)

Proof. We will prove the formula (2.18) by recurrence.
For N = 0, we have

eq(a0A−)A+Eq(−a0A−) = a0qA0A− +A+A−.

We suppose that this expression is true for N , stay it true for the order N +1 ?
We have

N+1

∏
i=0

eq(aiA−)A+

N+1

∏
i=0

Eq(−aiA−) = eq(aN+1A−)
( N

∑
p=1

∑
i1<···<ip

ai1 . . .aipqA0Ap−1
− +A+

)
Eq(−ad+1A−)

= (
N

∑
p=1

∑
i1<···<ip

ai1 . . . aipeq(ad+1A−)qA0Ap−1
− Eq(−aN+1A−)

+ eq(aN+1A−)A+Eq(−aN+1A−).

On the other hand

eq(aN+1A−)qA0 = qA0

+∞

∑
n=0

(1−q)n(aN+1qA−)n

(q;q)n
= qA0eq(qaN+1A−).
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Then we obtain

eq(aN+1A−)qA0 = qA0eq(qaN+1A−) = qA0(1−aN+1A−)eq(aN+1A−).

Hence

N+1

∏
i=0

eq(aiA−)A+

N+1

∏
i=0

Eq(−aiA−) = σ1qA0 −σ2qA0A− + · · ·+(−1)NσN+1qA0AN
− +A+.

Then, the formula (2.18) follows from the fact that

σ1qA0A−−σ2qA0A2
− + · · ·+(−1)NσN+1qA0AN+1

− = qA0 [1−
N

∏
i=0

(1−aiA−)].

The proof of (2.19) is similar to (2.18).

3. Properties

3.1. Generating functions

In this section we calculate the generating functions of the matrix coefficients ψnk and φnk related
to the operator S given by

S = Eq(βA+)
d

∏
i=1

eq(aiA−). (3.1)

The method is very similar to the one used in [17].
We have according to (2.9)

∞

∑
n=0

ψnk
zn√
[n]q!

=
∞

∑
n=0

< k|S|n >
zn√
[n]q!

=< k|S|
∞

∑
n=0

zn√
[n]q!

|n >=< k|S|z > .

Taking into account of formula (2.10), we have

< k|S|z >=< k|Eq(βA+)Hd(A−)|z >= Hd(z) < k|Eq(βA+)eq(zA+)|0 >,

where

Hd(z) := Hd(z,a1, . . . ,ad) =
d

∏
i=1

eq(aiz).

On the other hand, we have successively by means of the (2.8) and q-binomial formula (see [5])

Eq(βA+)eq(zA+)|0〉 =
∞

∑
n=0

θn(z,β ;q)
[n]q!

An
+|0〉 =

∞

∑
n=0

θn(z,β ;q)√
[n]q!

|n >,

and

< k|Eq(βA+)eq(zA+)|0 >=
θk(z,β ;q)√

[k]q!
,

where

θk(z,β ;q) = zk(−β/z;q)k. (3.2)
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Hence, the matrix coefficients ψnk are generated by

F(z,k) :=
θk(z,β ;q)√

[k]q!
Hd(z) =

∞

∑
n=0

ψnk
zn√
[n]q!

. (3.3)

3.2. Recurrence relations

If we apply the q-difference operator Dq to each member of (3.3) and we use the following formulas

θk(qz,β ;q) = qk(z+β/q)θk−1(z,β ;q), Dqθk(z,β ;q) = [k]θk−1(z,β ;q),

DqH(z) = Q(z)H(z), Q(z) =
1−∏d

i=1(1− (1−q)aiz)
(1−q)z

.

We get

∞

∑
n=1

√
[n]qψkn

zn−1√
[n−1]q!

=
1√
(k]q!

(
[k]qθk−1(z,β ;q)Hd(qz)+θk(z,β ;q)Q(z)Hd(z)

)
=

1√
(k]q!

(
[k]qθk(qz,β ;q)

qk(z+β/q)
Hd(qz)+θk(z,β ;q)Q(z)Hd(z)

)
,

=
q−k[k]q

qk(z+β/q)
F(qz,k)+

( d

∑
i=0

αiz
i)F(z,k),

where

(z+β/q)Q(z) =
d

∑
i=0

αiz
i. (3.4)

Consequently

(z+β/q)
∞

∑
n=1

√
[n]qψnk

zn−1√
[n−1]q!

= q−k[k]q
∞

∑
n=0

qnψnk
zn√
[n]q!

+
∞

∑
n=0

( d

∑
i=0

αi

√
[n]q . . . [n− i+1]qψn−i k

)
zn√
[n]q!

.

Comparing now the coefficients of zn, we get

Proposition 3.1. The matrix coefficients ψnk satisfy the recurrence relation

β
q

√
[n+1]qψn+1k = −[n− k]qψnk +

d

∑
i=0

αi

√
[n]q . . . [n− i+1]qψn−i k. (3.5)

Now, from (3.5) one can express ψn,k recursively, starting from ψ0k. Indeed, putting n = 0 we
obtain

ψ1k =
q
β

(α0 − 1−q−k

1−q
)ψ0k,

and for n = 1, we have

ψ2k =
(

q2

β 2

1−q
1−q2 (α0 − 1−q−k

1−q
)(α0 − 1−q1−k

1−q
)+α1

)
ψ0k.
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Repeating this process we arrive at the following.

Proposition 3.2. The matrix elements ψn,k are expressed as

ψnk = ψ0kV
(a1,...,ad)
n (q−k)

where V (a1,...,ad)
n (q−k) is a polynomial of degree n in q−k and satisfying the recurrence relation of

order (d +1)

β
q

√
[n+1]qV (a1,...,ad)

n+1 (q−k) = −[n− k]qV (a1,...,ad)
n (q−k)+

d

∑
i=0

αi

√
[n]q . . . [n− i+1]qV (a1,...,ad)

n−i (q−k),

with initial conditions

V (a1,...,ad)
0 (q−k) = 1, V (a1,...,ad)

n (q−k) = 0, n < 0.

Consequently {V (a1,...,ad)
n (q−k)}n≥0 is d-orthogonal.

The associated monic polynomial Ṽ (a1,...,ad)
n (q−k) is defined by

Ṽ (a1,...,ad)
n (q−k) = q−(n

2)β n(1−q)n
√

[n]q!V (a1,...,ad)
n (q−k)n.

The polynomial Ṽ (a1,...,ad)
n is generated by

∞

∑
n=0

(−1)n Ṽ (a1,...,ad)
n (q−k)

(q;q)n
zn = θk(z)Hd(z).

3.3. Orthogonality relations

Proposition 3.3. The matrix coefficients φnk satisfy the difference equation

−[n− k]qφnk = βφn−1k −
d

∑
i=0

αiq
−i

√
[n+1]q . . . [n+ i]qφn+i k.

Proof. From the bi-orthogonality relations (2.13) and the generating function (3.3) the matrix coef-
ficients φnk have the following generating function

G(z,k) :=
zn√

[n]q!Hd(z)
=

∞

∑
k=0

φkn
θk(z,β ;q)√

[k]q!
. (3.6)

Applying the operator Dq to each members of (3.6) we obtain

∞

∑
k=1

[k]qφnk
θk−1(z)√

[k]q!
=

[n]qzn−1√
[n]q!Hd(qz)

− zn√
[n]q!Hd(z)

Q(z).

So that
∞

∑
k=1

q−k[k]qφnk
θk(qz)√

[k]q!
= βq−n

√
[n]q

(qz)n−1√
[n−1]q!Hd(qz)

+
[n]qzn√

[n]q!Hd(qz)
(3.7)

− 1√
[n]q!

d

∑
i=0

αi
zn+i

Hd(qz)
.

The result is finished by comparing the coefficients of θk(qz) in each members of (3.7).
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If d > 1 it is possible to express φnk in terms of polynomials of argument q−k. According to the
above proposition, the coefficient φnk can be expressed as

φnk =
d−1

∑
i=0

φikR(i)
n (q−k),

where R(i)
n (q(−k) are polynomials of argument q−k. The degrees of these polynomials depend on n

in the following manner. Assume that n = d j + r where r = 0, . . . ,d −1. Then

degR(i)
n = j if i ≤ r, degR(i)

n = j−1 if i > r.

In connection with the above result we introduce the functionals vector (L1,L2, . . . ,Ld−1) defined
by

Li( f (x)) =
∞

∑
k=0

f (q−k)q(k
2) β k√

[k]q!
φik.

Then we have the following.

Proposition 3.4. The system of polynomials {Pn(x)}n∈N satisfies the following vector orthogonality
relation

Li(xmP̂n(x)) = 0, n ≥ md + i+1, i = 0, . . . ,d −1, (3.8)

Li(xmP̂n(x)) �= 0, n = md + i, i = 0, . . . ,d −1. (3.9)

Proof. Relations (3.8) and (3.9) are direct consequence of (2.13).

4. Explicit expression of the d-OPS of q-Charlier type.

The Al-Salam Carlitz II polynomials V (a)
n (x;q) are defined by [12]

V (a)
n (x;q) = (−a)nq−(n

2) 2φ0

(
q−n,x
−

∣∣∣∣q,
qn

a

)
. (4.1)

The polynomial y(x) = V (a)
n (x;q) is an eigenfunction of the following second order q-difference

operator

(1− x)(a− x)y(qx)− [(1− x)(a− x)+aq]y(x)+aqy(q−1x) = −(1−qn)x2y(x).

The Al-Salam Carlitz II polynomials are closely related to the q-Charlier polynomials [12]

Cn(q−k| q) = Vn(q−k| q).

The three-term recurrence relation for the polynomials (4.1) is as follows (see [12])

xV (a)
n (x;q) = V (a)

n+1(x;q)+(a+1)q−nV (a)
n (x;q)+aq−2n+1(1−qn)V (a)

n−1(x;q).

In this section we calculate the matrix coefficients ψnk and φnk associated to the operator S given by

S = Eq(βA+)
d

∏
i=1

eq(aiA−), (4.2)

in terms of the By means of technic based on the notion of a generating function, we express in this
section the matrix elements ψnk in terms of a d-OPS where Vn(q−k| q) are the Al-Salam Carlitz II
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polynomials.
Let ω = e2iπ/d , a ∈ C and we suppose for i = 0,1, ..., d −1, ai = aω i. From [5, I.30], we have

(ad ;qd)n = (a,aω, ...,aωd−1;q)n. (4.3)

If we let n → ∞ in (4.3), we get

d−1

∏
k=0

eq(azωk) = eqd (adzd). (4.4)

Hence the operator S becomes

S = Eq(βA+)eqd (adAd
−).

We denote by

V (a,d)
n (x) = V (a,aω,... ,aωd−1)

n (x).

Now, by means of technic based on the notion of a generating function, we express the matrix ele-
ments ψnk in terms of a d-OPS of Al-Salam Carlitz II polynomials evaluate the matrix coefficients
φnk in terms of basic hypergeometric series. Expanding eq(q−kz))−1 and eqd (azd) in terms of zn, we
find

∞

∑
n=0

(−1)nV (a,d)
n (q−k)
(q;q)n

zn =
∞

∑
n=0

( [n/d]

∑
i=0

ai(1−q)n−id(1−qd)i(q−k;q)n−id

(qd ;qd)i(q;q)n−id

)
zn.

Consequently

V (a,d)
n (q−k) = (−1)n(q;q)n =

[n/d]

∑
i=0

ai(1−q)n−id(1−qd)i(q−k;q)n−id

(qd;qd)i(q;q)n−id
.

According to the following identity

(q−k;q)n−id

(q;q)n−id
= q−ikd (q−k;q)n

(q;q)n

∏d
j=1(q

−1−n+ j;qd)i

∏d
j=1(qk−n+ j;qd)i

,

we obtain

V (a,d)
n (q−k) = (−1)n(q−k;q)n(1−q)n

∞

∑
i=0

∏d
j=1(q

−1−n+ j;qd)i

∏d
j=1(qk−n+ j;qd)i

ai(1−qd)iq−ikd

(qd ;qd)i(1−q)id .

Finally

V (a,d)
n (q−k) = (−1)n(q−k;q)n(1−q)n

d+1ϕd

(
Δ(−n,d;qd),0
Δ(−n,d;qd)

∣∣∣∣qd ;
a(1−qd)iq−kd

(1−q)d

)
,

where

Δ(λ ,m;q) = qλ/m,q(λ+1)/m, . . . ,q(λ+m−1)/m.
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4.1. Lowering and raising operators

According to Proposition 2.1 and Proposition 2.2, we get

SA− = (A−−βqA0)S.

Then √
[n]qψn−1,k = 〈k|SA−|n〉 = 〈k|(A−−βqA0)S|n〉 = 〈k|A−S|n〉−β 〈k|qA0S|n〉

and √
[n]qψn−1,k =

√
[k +1]qψn,k+1 −βqkψnk. (4.5)

Recall that

ψ0k =< k|S|0 >=< k|Eq(βA+)|0 >=< k|β >=
β kqk(k−1)/2√

[k]q!
.

Dividing the two members of (4.5) by ψ0k we get

β kqk(V (a1,... ,ad)
n (q−k−1)(q−(k+1))−V (a1,... ,ad)

n (q−k)
)

=
√

[n]qV (a1,... ,ad)
n−1 (q−k).

Since

Ṽ (a1,... ,ad)
n (q−k) = q−(n

2)β n(1−q)n
√

[n]q!V (a1,... ,ad)
n (q−k)n.

So that

qk(Ṽ (a1,... ,ad)
n (q−k−1)−Ṽ (a1,... ,ad)

n (q−k)
)

= (qn −1)Ṽ (a1,... ,ad)
n−1 (q−k).

On other words

(Dq−1Ṽ (a1,... ,ad)
n )(q−k) = [n]qṼ (a1,... ,ad)

n (q−k).

From Proposition 2.2 and Proposition 2.3, we can write

SA+S−1 = Eq(βA+)(A+qA0Q(A−))eq(−βA+)

= A+ +(1+(1−q)βA+)qA0Q(A−− (1−q)βqA0).

Hence

SA+ = (A+ +(1+(1−q)βA+)qA0)(A−− (1−q)βqA0)d−1S. (4.6)

The operator A− and qA0 satisfy the q-commutation relation

A−qA0 = qqA0A−.

Then from the well know q-binomial Newton formula for q-commuting variables (see [14]) we get

(A−− (1−q)βqA0)d−1 =
d−1

∑
s=0

[
d −1

s

]
q
(−(1−q)β )d−s−1q(d−s−1)A0As

−. (4.7)
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From (4.6), we have√
[n+1]qψn+1k =< k|SA+|n >

=< k|A+ +(1+(1−q)βA+)qA0Q(A−− (1−q)βqA0)|n >

=
√

[n+1]q(1− (−(1−q)β )d−1qkd)ψnk+1 +
d−1

∑
s=0

[
d −1

s

]
q
(−(1−q)β )d−s−1

×q(d−s−1)k

√
[k]q!

[k− s]q!
ψnk−s +

d−2

∑
s=0

[
d −1
s+1

]
q
(−(1−q)β )d−s−1q(d−s−1)k

× [k +1]q

√
[k]q!

[k− s]q!
ψnk−s.

Hence

√
[n+1]qψn+1k =

√
[n+1]q(1− (−(1−q)β )d−1)qkdψnk+1 +

√
[k]q!

[k−d −1]q!

×ψnk−d+1 +
d−1

∑
s=0

[
d −1

s

]
q
(−(1−q)β )d−s−1q(d−s−1)k

√
[k]q!

[k− s]q!

× (1+
[d − s−2]q[k +1]q

[s+1]q
)ψnk−s.

Henceforth √
[n+1]qV (ad)

n+1 (q−k) =
√

[n+1]q(1− (−(1−q)β )d−1)qkd

×V (ad)
n (q−k−1)+

√
[k]q!

[k−d −1]q!
V (ad)

n (q−k+d−1)

+
d−1

∑
s=0

[
d −1

s

]
q
(−(1−q)β )d−s−1q(d−s−1)k

√
[k]q!

[k− s]q!

× (1+
[d − s−2]q[k +1]q

[s+1]q
)V (ad)

n (q−k+s).

Let introduce the operator Rq

Rq =
√

[n+1]q(1− (−(1−q)β )d−1)qkd

×T k+1
q−1 +

√
[k]q!

[k−d −1]q!
T k−d+1

q−1

+
d−1

∑
s=0

[
d −1

s

]
q
(−(1−q)β )d−s−1q(d−s−1)k

√
[k]q!

[k− s]q!

× (1+
[d − s−2]q[k +1]q

[s+1]q
)T k−s

q−1 .
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Here Tq−1 is the q-shift operator defined by (Tq−1P)(x) = P(q−1x). Then

(RqV (ad)
n )(q−k) =

√
[n+1]qV (ad)

n+1 (q−k).

Note that the operators Dq−1 and Rq satisfy the relation

RqDq−1 −qDq−1Rq = 1.

In order to find the dual function φnk, we need the following Lemma.

Lemma 4.1. If f (z) = ∑∞
n=0 akθk(z), then

ak =
1

[k]q!

[
Dk

q f (z)
]

z=−β .

If d = 1, by Lemma 4.1, we can write

φ0k =
1√
[k]q!

[
Dk

q(Eq(−az))
]

z=−β
=

1√
[k]q!

(−a)kq(k
2)

[
Eq(−azqk)

]
z=−β

=
1√
[k]q!

(−a)kq(k
2)Eq

(−aqk+1

1−q

)
=

1√
[k]q!

(−a)kq(k
2) (a,q)∞

(aq;q)k
.

On the other hand,

φ0kψ0k =
akqk2

(aq;q)k(q;q)k
.

Consequently

L0(V
(a)
n (x)V (a)

m (x)) =
∞

∑
k=0

akqk2

(aq;q)k(q;q)k
V (a)

n (q−k)V (a)
m (q−k) = 0, n �= m.

If d ≥ 2, then according to Lemma 4.1, we get

φnk =
1√
[k]q!

[
Dk

q(
zn√
[n]q!

Eqd (−adzd))
]

z=−β

=
qn−k(ad ;qd)∞

(1−q)n
√

[k]q![n]q!

∞

∑
i=0

qi(n+1)(q−k;q)i

(q;q)i(ad;qd)i

=
qn−k(ad ;qd)∞

(1−q)n
√

[k]q![n]q!
d+1ϕd

(
q−k,0,0, . . . ,0

a,aω, . . . ,aωd−1

∣∣∣∣q;qn+1
)

.

Acknowledgments. This research project is supported by King Saud University, Riyadh, DSFP,
through the grant MATH 01.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

493



q-Oscillator Algebra And d-Orthogonal Polynomials

References

[1] Y. Ben Cheikh and A. Ouni, Some generalized hypergeometric d-orthogonal polynomial sets, Journal
of Mathematical Analysis and Applications, 343(1):464–478, 2008.

[2] Y. Ben Cheikh and A. Zaghouani, Some discrete d-orthogonal polynomial sets, Journal of Computa-
tional and Applied Mathematics, 156(2):253–263, 2003.
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matics, 3(6):529–538, November 1987.
[8] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in one Variable, Cambridge University

Press, paperback edition, Cambridge, 2009.
[9] C. Kassel, Quantum Groups, Springer-Verlag, Berlin, 1995.

[10] A. Kempf and S. Majid, Algebraic q-Integration and Fourier Theory on Quantum and Braided Spaces,
J.Math.Phys. 35 (1994) 6802–6837.

[11] A. U. Klimyk, and W. Schempp, Classical and quantum Heisenberg groups, their representations and
applications, Acta Appl. Math. 45, 143 (1996).

[12] R. Koekoek, and R. F. Swarttouw, The Askey scheme of hypergeometric orthogonal polynomials and its
q-analogue, Faculty of Technical Mathematics and Informatics, Delft University of Technology Report
No. 94–05, 1994.

[13] T. H. Koornwinder, Basic Hypergeometric Functions, Compact Quantum Groups and q-Special Func-
tions, Representations of Lie Groups and Quantum Groups (Pitman Research Notes 311), V. Baldoni
and M. A. Picardello, eds.), Longman Scientific & Technical, Essex, UK, 1994, pp. 46–128.

[14] T. H. Koornwinder, Special functions and q-commuting variables, Fields Institute Communications 14
(1997) 131–166.
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