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We introduce certain Bécklund transformations for rational solutions of the Painlevé VI equation. These trans-
formations act on a family of Painlevé VI tau functions. They are obtained from reducing the Hirota bilinear
equations that describe the relation between certain points in the 3 component polynomial KP Grassmannian.
In this way we obtain transformations that act on the root lattice of As5. We also show that this A5 root lattice

can be related to the F4(1) root lattice. We thus obtain Bécklund transformations that relate Painlevé VI tau

functions, parametrized by the elements of this F4<1> root lattice.
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2000 Mathematics Subject Classification: 34M55, 14M15, 37K10

1. Introduction

In [1], which was a generalization of [2]( see also [8]), we showed that there is a connection
between certain homogeneous solutions of the 3-component KP hierarchy and certain rational
solutions (cf. [9]) of the Painlevé VI equation:
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In this publication we focus on the Bicklund transformations for the solutions of [1]. See also [7]
for connections of gls KP hierarchy to Painlevé VI. Instead of obtaining Bécklund transforma-
tions for the Painlevé VI equation, we obtain such transformations for the so-called Jimbo-Miwa-
Okamoto o-form of the Painlevé VI equation [4]:

(1.1)
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Aratyn & van de Leur

where

vitva=+-2B, vi—va =2y, vs+vs+1=+v1-268, vi—vs=V2a. (1.3)

This o is related via some choice of variables to the 3-component KP tau-function 7' by

for certain constants a,b. In this paper we show that there exists such a tau-function for certain
elements in the root lattice of slg:

6 6
Q(As) ={a=Y ad;| ) a=0}, (1.4)
i=1 i=1
where (0;); = 6;; and where we choose
o+ o . o — O
Vv, = 12 3+O£3+l' (l:1,2,3), Vg = 12 3. (1.5)

The equations of the 3-component KP and modified 3-component KP produce Bicklund transfor-
mations on the above tau-functions

To+5,-5.9/(Ta) = Ta0j(Tus5,-5,) +1j(%1,k) TaTy 15,5, = €ijk Ta+5,-5,Ta+s,-5,»  (1.6)

for distinct i, j,k with 1 < j <3 and 1 <i k < 6. Here
d
aj:bj([)a, and bi(r)=t(t—1), by(t)=t, b3(t)=—1>

and n;(;i,k) is a certain constant, which is given in (3.4). From this we deduce the following
Bicklund equation for the Jimbo-Miwa-Okamoto o-function for distinct 7, j,k with 1 < j <3 and
1<i,k<L6:

Out6,-6,(1) + Oa+5,-5,(t) = Oar5,-5, (1) — Oalt) =

1.7

d
= G,-jk(g;t) +l(t — l)alog (Gg(l) — GQ*ﬁi*Qk(t) —I—H,-jk(g;t)) .

Here Gjjx(a;t) and H;ji(0;t) are certain first order polynomials that can be determined explicitly,
see (3.13).

2. The polynomial Grassmannian and the (modified) 3-component KP-hierarchy

The geometry behind the rational Painlevé VI solutions of [1] is the infinite polynomial (3-
component) Grassmannian. Let H = {Y,;c;A’|¢; € C3, ¢; =0fori << 0} and H, = {¥,;c;A!|c; €
C3, ¢;=0fori < 0}.On H we have a natural bilinear form given by

(YA Y did) =Y (ci,d-1-4), (2.1)
i j i

where (-, ) is the standard bilinear form on C> given by
(W, v) = wivi +wava +w3vs. 2.2)

The Grassmannian consists of linear subspaces W C H, that satisfy certain conditions. Here we
will consider only very special linear subspaces W of H, viz. the ones that satisfy the following
conditions:
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Bdicklund transformations for certain rational solutions of Painlevé VI

e There exist positive integers m and n such that A"H, C W C A~"H,_,
e W satisfy the condition AW C W,

e W has a basis of elements v(A ) that are homogeneous in 4, i.e. A dﬁl(f) =dv(A) withd € Z.

All this gives that such a W can be described as follows, see [1] for more details. Choose 3 linearly
independent vectors in C3

and let

be the dual basis with respect to the bilinear form (2.2).
Let

o= (U, o, U3) = WE| + &) + U3g; € 77, (2.3)

where g; is a basis vector in 73, so €;=(81,0)2,0;3). Then such a W is equal to W (u), where

W) =Y cawl+ Y caiw® 4+ Y catw,

> J= k>3

Lete,, a =1,2,3, be the standard basis of C3, then

max fy—1 ] max fy—1 ) max fy—1 3
wp= Y ciwlh+ Y caiw@+ Y cAfwP+ Y Y CA”e,.
= J=M2 k=3 a=1m>max [

Note that

W(0) = 23: Z CA™e, =H, .

a=1m>0

With respect to the bilinear form (2.1) on H we can find the maximal orthocomplement W+ (1)-
This space is given by

i>—1 Jj>—Hl k>—p3
Note that
max —y—1 ) max —y—1 ) max —y—1 3
Wl(u) = Z (CAIWU) + Z (C)L]W(z) + Z CAkW(y,) + Z Z CA™e,.
o i=—H =t k=u3 a=1m>max — L

If we define the following ordering on Z>
u<A ify; <A foralli=1,2,3,
then

W(A)CW(p) andWh(u) CWH(A) iffu <A
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Aratyn & van de Leur

Next, we associate to W (u) the following vector in a semi-infinite wedge space:

W (w)) —AH (D A QL () A A gmax =1 (1) A gt (2) A g HatL(2) AL
CoaAmaxte—1 (2) A gt (3) A gL B) AL A g max =T, (3) A

AMXHE g N\ QXML gy A ) MAXHE gy A AMAXHFL g A fmAXHET ) AL
If we define the grading
deg((W(0)) =0 and deg(Aw) =1 —k,
then

deg(|W (1)) = 5 (uf + 13 +43) -

l\)\’—

(2.4)

2.5)

For any v € (C[A,A*I])S we can define creation and annihilation operators, see e.g. [6] for more

details. Let vo Avi Avo A--- be an element in the semi-infinite wedge space, then we define

VW)V AVIAVIA - =VAVGAVI AV A -

and
v (V)VoAVIAVIA - = Z(—)i(vlvi)vo/\ S AV AV A

These elements form a Clifford algebra, they satisfy the anti-commutation relations

YWyt Wyt () =0, Yy (y (w)+y (W) (v) =0,
vy W)y (w)y T (v) = (vlw).

Note that
v W)[W(u)=0 forveWw(u), v (V)W) =0 forveW"(u).

Let Vo =voAviAva A---and Vi =v_ Av_ga1 Av_gap A--- for k > 0, then, since

3
=Y Y (A ) e,
a=1jc7Z
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Bdicklund transformations for certain rational solutions of Painlevé VI

we find that

3
Y Y vtAMe)Vi@y (A e)Vo =
a=1jeZ

I
HMw

Z Ae, ANV, ® (Z()i(l_j_le“|vi)vo Ao AViZ1 AVigg A >
jez i=0

V(AT ! Vi) A eq AVi@vo A+ Avieg Avigg A~

I
u[\’]w

LEEC

uMg

:Z(_)ivi/\vk@?\/o/\---/\vi_] AVigp A

=Y v (Vi@ (v)Vo=0.
i=0

Here v} is the dual vector of v; with respect to the bilinear form (2.1). So in particular for W(v) C
W () one has

iz F(ke) [ W() @y (A e [W(¥)) =0 foru <v. (2.6)
a=1keZ

In a similar way we see that for i # j:

3
géllf*(lkea)\W(Mﬁi —g)) @y (A7 ea) W (w)) = &|W(n—g;)) @ W (1 +e).

2.7)
LetS(z—A)=2""'Yez (%)" and introduce the fields
v (8(z =) vi(Ae)a "
nez

Then (2.6) is equivalent to

3
Res, Yy (8(z—A)e)W(R) @y (3(z—A)e)W(V)) =0 forp<v.  (28)
a=1
Using the boson-fermion correspondence we can express every such semi-infinite wedge
|[W(u)) as a function in F = (C[qa,qgl,xga);a =1,2,3,i =1,2,3,...]. We identify |W(0)) with
1 € F. Let o be the corresponding isomorphism, then

i tlax

oyt (8(z—A)ey)o! qilziqaaqa exp (in z>exp <$Z J Zl ) (2.9)

The fact that g, and g, for a # b anticommute requires that they have to be ordered. We assume
that

c(W(O))=1 ando(W(u)) =Y ta(u:x)q; 45’ q5 . (2.10)

ocZ?
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Aratyn & van de Leur
Such 74 (4;x) is equal, up to a sign, to the coefficient of

A" %o AL e A AATCO) T AL TRy AQTT Ry A AATREA) Ty AL B pg A
. /\)Lmax(foc[)fle3 /\lmax(foc[)el A A’max(ftxg)eZ /\)Lmax(foc[)e3 /\A’max(ftx[)Jrlel A

of

823:1 Zi>0x§a>Eaaki |W(E)> —

1 1 1 2 2
Wi (2) AWl ) A AW () Aw (1) Awle () A
2 3 3 3
AW ) AW () AWS ) A AW ()

Amaxmel /\)LmaXW'EQ /\Amaxme3 /\Amaxuﬁ-lel /\Amaxuﬁ-lez Aeee,

where w,(f’) (x) is the x-dependent vector

3 max uy—k—1 ( )
w,({a) (x) = Z Z wba)Si(x(b))lkJ”eb.
b=1 =0

The S;(x) appearing in the vector are the elementary Schur functions defined by Lot —
YjczSj(x)z/. Note that S;(x) = 0 if j < 0. A tedious but straightforward calculation (see
e.g. [1] for more details) then gives that 74(u;x) = tdetA(co,u;x), where A(a, u;x) is the
Bp+ar+a+o3) x (3p+ oy + 0 + a3)-matrix

3 progmax(ie)—p )
Ale, 3x) = Z Z Wa Sifaafurj(x(a))Eﬁa+i,yb+j+
ab=1 i=1 j=1

3
XX Bt (d-amax(u) o Dpar ot

and p = max(l, —ai; £ =1,2,3), B =1 =0, o =p+ai, b3 =2p+ a1 + 2, o = max (i) — ty
and y3 = 2max (L) — Wy — . It is straightforward to check that

To(;x) =0 for g+ + 3+ + 0 + 03 #0 (2.11)

and using (2.5) that

1
R(u, o) := deg (fg(g;x)) =5 Wi+ +ui—af—0g—a3). (2.12)
Having this in mind, it will be useful to introduce the following subset of Z>:
Ly ={a € Z’ |+ Mo+ i3 + 01 + 0y + 03 = 0} .

Note that since the form of the vectors W (u)) and [W (i — (€, + €, + &;3))) (2.4) are similar, one
finds that

T (%) = (= 1)® Tar (e, e, +e,) (L — (€1 + 85+ £3):%). (2.13)

We can use (2.9) and (2.10) to rewrite (2.8) as a generating series of Hirota bilinear equations.
We forget the tensor symbol and write x’ for its first component and x” for its second component.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
8



Bdicklund transformations for certain rational solutions of Painlevé VI

Define
9*=4q1'9y° 45"
and let
1 for j=1,
e(ej o) =14 (~1)@  forj=2,
(—1)®@t+® for j=3,
then (2.8) is equivalent to
3

Res.(Y Y e(eg.o— Bl Prexp( Y (xh ) )

a=1gely BELy k=1 (2.14)
> 0 d 77k - |
exp(— Y (—p — —ap) ) T ) (g %) g (via") (¢ 5)") =0, p<v
=1 0x; Ix; -

and (2.7) is equivalent to ( &; = €(€;, €;)):

3 e ! n
Res.(Y Y ele,a—B)z% Prexp(Y (i — )2

a:lgeLﬁ+§i,§j£eLﬁ k=1

exp(— - Tg(ﬁ"‘ﬁi—§j§x/)(qg+§“)lfﬁ(N;X”)(qf £a)) (2.15)

=¢&;; Z Ty (U —§j§xl)(QZ)ITQ(H+§i§x//)(q§)//)'

YELu-e;:0€Lyre;

Taking the coefficient of (¢%)'(¢2)" in (2.14) for ot € Ly—¢ and B € Ly,¢, we obtain:

3 had ! "
Res.(Y e(e,,a—B)z* P 2exp(Y (v — "))
a=1 k=1
k

. 5 5 - (2.16)
z
exp(— ) (7 — —a) ) Tae, (1Y) Tpoe, (Vix") =0, p<v
kg‘] o gu ke T e, B
and in a similar way (2.15) gives:
3 2 ol B (@) @\ A
Res,( Z €,0—B)z %P exp(Z(xk —x.)Z")
a=1 k=1
S Jd .t (2.17)

Now making the change of variables x,({] ) = %(u(j y + u,({j )y

(2.16) for u < v:

)Zafiﬁjiz

Res,(

M-
(¢0)
s

(2.18)

X exp(z 2y,Ej)zk) exp(— Z

— ) Tae, (B X +Y)Tpg, (Vix —y)) = 0.
k=1 k=1 8y,(<’) k amET Bte;
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Aratyn & van de Leur

Using elementary Schur functions we rewrite this again as

Ze g;,0a—p) ZSk 2)Sk1toy—p, (=57 ) Tame, (B3 X+ ) Tgae, (Vix—y)) = 0. (2.19)

9y0)

J
dy3?”

in 9 (9 19 1 - )
Here and further we use the notation > (a—yl, 29y 3 ..). Using Taylor’s formula we can

rewrite this once more:

3 J
Y e Zsk 2Y)S) 1 40yp, (— m)
=1

o, ):j‘:ly@ 2
S g )Ty (v 0 =0

(2.20)

This last equation can be written as the following generating series of Hirota bilinear equations:

3 3 ()
Y e(e;a—B) Zsk 25)Sk 1 1g,p, (—DD)eE T D g (). T, (v) =0, (221)
j=1 =0

foralla € Ly ¢, E € Ly¢, and i < v, see [6] for more details.
Now take 4t = v, then for & € L, and 1 <1, j < 3 distinct indices i and j one finds the following
equation:

DY)DY)TQ(E) Ta(1) = 2Tare—¢, (1) Tare,—¢, (1) (2.22)
and for each triple of distinct indices i, j, k:
DY ty(1)  Tare, e, (1) = €ijk Tave;—e, (1) Tate,—e, (M) - (2.23)
If u = v — g, choose first & and f8 such that & — 8 = g, + €, + €3, then we find the following
Hirota-Miwa equation:

TB+e,+¢5 (w) TB+e, (L+g)— TB+e,+¢; (H)T§+§2 (L+eg)+ TB+e,+e, (E)T§+§3 (u+g)=0. (224
Secondly choose a and E such that o — E =2¢€,+¢€ s with i and j distinct, then we find

DYty () Ty (1 +E,) = €Ty, (1 + ) Tyrer—e, (1) (2.25)

or equivalently

DYy (1) - Tyve, (1 — £0) = EiTyre, &, (1) Tyre, (L~ &0). (2:26)

In a similar way (2.17) can be rewritten as the following generating series of Hirota bilinear
equations (i # j):
3 o 3 (@
Ye(ena—B) Y S )Sira-p, (- D)L X0 Dy o (1t~ €)) Ty, ()
a=1
a)
—eﬁ%ﬂﬂrrrw £)) T te),

(2.27)

foralla e Ly > B €Ly and u <v. Now taking & — B = g, + &, with k # £, where k or £ may

be equal to i or j, we find another version of the Hirota-Miwa equation (i # j, k # £):

EtTpre,(H+E—€;)Tpre, (M) +ExTpre, (W8 —E;)Tpre, (1) —&jTpre+e, (L —E;)Tp(H+E)=0.
(2.28)
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Bdicklund transformations for certain rational solutions of Painlevé VI

Next taking a — B = 2¢,, where k may be equal to i or j, we find (i # j):

ng) Ty(1) Ty(U+ & — ;) = €iTyre, (L — &) Tye (LT E). (2.29)

In the above construction the pair

(o, u) = (o, 00,05, 1y, 1o, 43) = (O, 0, 03, 04, O, Ot)

can be seen as an element in the root lattice Q(As) of slg (see(1.4)). Note that the tau function
corresponding to such a pair (o, i) is 0, whenever this pair is not in Q(As), see (2.11). A basis of
this root lattice is given by the roots & i — 0y for 1 <i <5. Using the degree of the tau function
given in (2.12), we define a similar grading on this root lattice by

(g +05+0¢—of —ay —03) . (2.30)

N —

R(a)=R (_i oc,-6,-> = deg(i ;) =

In this light the equations (2.23), (2.25), (2.29) can be rewritten to one equation. Let E be an
element in the root lattice of slg, then for for distinct Z, j,k with 1 < j <3 and 1 <i,k < 6 one has:

ng)rﬁ. TE+§i—§k = sijkTE+§i—§jTE+§j_§k7 =123, ik=1.2,...6. (23D

Finally we note that (2.13) can be rewritten to

Ty = (_1)062 TQ+§1+§2+§3*§4*§5*§6 . (232)

3. From KP to the Jimbo-Miwa-Okamoto c-equation

To obtain the Jimbo-Miwa-Okamoto o-form (1.2) of the Painlevé VI equation from the 3-
component KP, the following choice of new variables was used in [1] and a similar choice was
made in [5]:

h=x —xV 3.1)

and

o _tt-1a I 9

t
o0 h o an g0 har an 30 har (3-2)

Then for o € Q(As) with R(et) >0

‘W =R(a)Tq(t,h),

thus
Ta(t,h) = HR DTy (1) .
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Using this and equation (3.2) equation (2.22) turns into (cf [13]),

dT, \? dT, d’T,
2 <r(r— 1) <dt°‘> + Ty <(1 —2t)d—tg —t(t— l)dtf)) =Tots,-6,Ta+8,-65  (3.3)

2 dTQ 2 dTg dzTg
N\t ) Tle\ 5 Tign )| = Tars-8,Tars,-6, -

This gives 3 series of Toda equations that can be used to calculate neighboring tau-functions.
Equation (2.31) turns into (1.6), with

dTy\* dr, d°T,
R@)TE— (-1 (G2 ) 2T (G + =D ) =g, Tavs s,

m (@i k) = —mo(a;i.k) =R(a+ 8, — 8;) —R(a),  n3(a:ik)=0 (3.4)
and (2.32) into

Ty = (_1)052 TQ+§1+§2+§3—§4—§5—§6 . 3.5

Finally, we have the two Hirota-Miwa equations (2.24) and (2.28), that give:

TE+§2+§3 TE+§1 +o, TE+§1+§3 Té+§2+§é + TE+§1 +68, TE"‘QT"Q/ =0, forf>3, and (3.6)

€ctTp+5,+5,Tp+5,+6, + €tkTp+5,+5,Tp+5,+8, + €-3.i-3Tp+5,+5,Tp+5,+5, =0, for

1<k, ¢<3,4<ij<6withis# jand k # {. All these equations give Bécklund transformations
for the tau functions Ty of the Painlevé VI equation.

All the above type of equations in the case of the affine Lie algebra of type A, were obtained
by Noumi and Yamada, see e.g. [10] and [11].

We want to rewrite (1.6) and express it in the corresponding Jimbo-Miwa-Okamoto ©-
functions. First, we introduce

dlogT,
falt) =1(t—1) dg e 3.7)
t
and take the log of the expression (1.6)
log(constant) + log(Tg+i,,§j) + log(Tg+§j,5J) =
=log (Ty+5,-5,9j(Ta) — Ta0j(Tais,-5,) + (01, k) Ta Ty 15,5, )
0;(T, 0i(Tyis.—5
=log(Ta+si_§k)+log(Ta)+10g< i) _ 2Tavs-8) +nj(oc;i,k)>
o Ty Tot5,-5,
bi(t
=log <t(t]£ )1)> +log(Tyys.—5,) +1log(Ta)+
(3.8)
d d
t(t—1)%(T, T (Tyts.— t(t—1
+10g ( )d[( Q)_t<t_1>dt( 7+§1 ék) +i’lj(a,l,k) ( )
Tf TQ+§, —&; b J (t )

=log (t(l;{t)l)> _|_10g(Tg+§i_§k) +1log(To )+

+1og(r(t—1>‘“°§§T°‘)—t<t_1)dl°g<Taw o t<r—1>)_
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Bdicklund transformations for certain rational solutions of Painlevé VI

Now take 7(f — 1)% of this expression (3.8), we thus obtain:

fors,-5,() + fars,—5,(t) = fars,—5,(t) — falt) =

d 3.9
=gj(1)+1(r—1)—-log (fo(t) = fars,—s,(t) + ;1)) ,
where
0 if i=1, nj(o;i, k) if j=1,
gi(t)=<¢ -t if j=2, hj(t) = { nj(a;ik)(t—1) if j=2, (3.10)
1 if j=3, —nj(a;i, k)=t =0 if  j=3.
Following [1] we introduce
1
Oa = fa(t) +es(@)(r —1) = Ses(a), (3.11)
where
1 2
cs(@) = — (a1 — )7,
(3.12)

1
co(@) = R(a) + 5 (a1 — o) (a1 — 03),
and thus we obtain (1.7), where
Gijr(a:t) = (cs(a+8;,—8;) +es(a+8;—8;) —cs(a+8;—8;) —cs(a)) (1—1)

1
+5 (co(@+8;—8;)+co(a+8;—38;) —co(a+8;— ;) —co()) +g(1),

Hiji(as;t) = (cs(@) —es(@+8; = ;) (1 —1) + % (co(@) —cs(@+8; = 8x)) +hj(t) -
(3.13)

4. Other Bicklund transformations

Besides the Bécklund transformations that come from the 3-component Grassmannian structure,
there are some other relevant transformations. A first observation that can be made is that the ¢
equation (1.2) has a natural D4 symmetry. One can permute all v; together with an even number of
sign changes.

Secondly, one can choose an other identification (1.5) between the ¢’s and v’s see e.g. [1],
section 2.

Thirdly, one can permute the o;’s for i = 1,2,3 and also separately the p;’s. All these transfor-
mations rearrange the tau functions on the slg root lattice.

Finally, starting with the underlying 3-component KP model one can choose a different identi-
fication (3.1) between the xgi) and ¢ and 4. For instance interchanging xgl) and x§3), gives a transfor-
mation ¢ — 1 —¢, such a transformation leaves Painlevé VI equation (1.1) invariant for y — 1 —y
and appropriate transformations of coefficients, see e.g. Boalch [3] or [12]. The permutation that
interchanges x%l) and x§2) (respectively x§2) and x53)), gives a transformation r — L (resp. f — %),

such a transformation induces y ;:—{ (resp. y — %), again see [3] or [12], where it is argued that

addition of these transformations extend Dgl) symmetry to F4(1) symmetry.
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5. Root lattice of F,"

Okamoto showed in his fundamental paper [13] that there is a representation of the affine Weyl
group of type F4(1) that acts on the solutions of the Painlevé VI equation. An element in this Weyl
group is related to a birational canonical transformation. We will now show that the sig root lattice
of the previous section is related to the root lattice of the affine Lie algebra of type F4(1) on which
this affine Weyl group acts.

Let

v =(vo,V1,V2,V3,v4) = Voey +vie| +Vv2e; +v3es +vaey (5.1

be a vector in a 5-dimensional vector space. We assume that

4
(E, m) = ZViWi-
i=1

If we make the following identification (see also (1.5)):

o+ 03 o+ 03 .
Vo= 01, Vi= D) + Wi = 2 + 034 (l:1a273)7 V4 =

o — 03
2 )

(5.2)

then the vy, vy, v3, v4 correspond to the parameters of the Jimbo-Miwa-Okamoto o-equation (1.2).
Moreover, one has the following correspondence, the element Y'9_; o;8; is equal to

o+« o)+ o o+ o —
OCleo+( = 3+a4>e1+( = 3+a5>e2+< = 3+a6)e3+< = 3>e4~

Note that ey = 6, + 8, + 63 — 8, — 05 — ;. In this way one gets all elements of the form (5.1)
with vo € Z and all v; € Z for i > 0 or all v; € % + Z for i > 0. This is the root lattice Q(F4(1)) of
the Lie algebra of type F4(1). In fact the simple roots of this affine Lie algebra are:

eg—e;—e =0, +30,+8;—20,—285— &,
e, —e3 =085~ b,
€3—¢€4 :2§3 —§4 —§57
ey =—0,—205+0,4+ 085+ 0,
1

E(gl —ey—e3—ey) =0, +03— 05— J¢-

The +(4; —Qj) with 1 <i<6,1 < j<3andi# jthat appear in the sigma functions of equation
(1.7) form up to possibly a translation with the vector ¢, all short roots of F4, which are (&, = £1):

1
Exey,s (k: 1,2,3,2), 5(8121 +822§2—|—83§3+84§4).
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Bdicklund transformations for certain rational solutions of Painlevé VI

To be more precise they form the union of the sets 4=S;, which are defined by

1 1
S1 ={€o+€47€0+§(€1 +e,+e; +€4),—€0+§(€1 —ey—e3tey),
1 1
@+jﬁ-@+g+ﬂ%@+ig+g—@+gm
1 1
Sﬁ%@+jﬁ+Q+Q+Q%jﬂ+g+g—ghmmxﬂ, (5.3)

1 1
Sr%%+giFﬁ—g—g+Q%jg—@—@+Q%

—_

(—ejtex—e3tes),-(—e —eptesteq)t.

2 5l

Then the following holds:

Let B be an element in the root lattice of F4(1) and assume Y1, € S; for fixed j=1,2,3, suppose
op and Opty,—y, aT€ known, then using equation (1.7) one can calculate OBy, (resp. Op—y, ) if
one knowgc;ﬁ,;z (resp. Op+y, ). - o

Clearly a similar implication also holds for the corresponding tau functions 7.
Equation (3.3) implies: B
) and assume Y=ey+ %(gl +er+e3+ey),
%(gl +e, +e3—ey) or e+ ey, suppose Tg and Tp..y are known, using equation (3.3) one can

Let B be an element in the root lattice of F4(1
calculate TEﬁr

Equation (3.5) implies:

Let B be an element in the root lattice of F4(1) then up to a sign Tp is equal to Tgte,

Finally the Hirota-Miwa equation (3.6) also gives a connection between six tau functions in the
F4(1) root lattice. However it is not so easy to describe this explicitly in this F4(1) setting.
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