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We derive discrete systems which result from a second, not studied up to now, form of the q-PVI equation. The
derivation is based on two different procedures: “limits” and “degeneracies”. We obtain several new discrete
Painlevé equations along with some linearisable systems. The parallel between the results for the standard form
of q-PVI and those of the new one is also established.
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1. Introduction

With almost 20 years of intense investigations on discrete Painlevé equations [1] the claim of dis-
covery of a new family may sound presumptuous. It is the aim of the analysis that follows to dispell
any doubts and show that, despite the voluminous existing body of results, it is indeed possible to
find new integrable systems of discrete Painlevé type.

It all started with our recent work [2] on linearisable QRT [3] mappings. While deriving them
systematically, based on our prior classification [4] of the QRT A1 matrices, we observed that the
one associated to the q-PVI family had a different form from all the others. (We assume at this point
that the reader is familiar with the theory of QRT mappings. A very brief summary thereof is given
in the Appendix). Indeed while all the other canonical forms of the A1 matrices are of lower-right
triangular form, only the A1 associated to q-PVI has the diagonal form

A1 =

1 0 0
0 −1− z2 0
0 0 z2

 (1)

However, as we have shown there, it is possible to bring A1 to a lower-right triangular form through
a variable transformation. The price is that the resulting q-PVI has a different form. Indeed when A1
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is taken equal to

A1 =

0 0 1
0 z+1/z 0
1 0 0

 (2)

we find that the equations of the q-PVI family assume the form

(zxn+1 + xn)(xn + zxn−1)

(xn+1 + zxn)(zxn + xn−1)
= F(xn) (3)

while the ones related to (1) are of the form

(xn+1xn− z2)(xnxn−1− z2)

(xn+1xn−1)(xnxn−1−1)
= f (xn) (4)

The transformation which allows to bring equations of the form (4) to equations of the form (3)
consists in inverting every other x and introducing the appropriate gauge. Let us illustrate this on
the asymmetric q-PVI [5] equation

(xn+1yn− z2)(ynxn− z2)

(xn+1yn−1)(ynxn−1)
=

ay4
n +bzy3

n + cz2y2
n +dz3yn + ez4

ay4
n + f y3

n +gy2
n +hyn + e

(5)

(xnyn− z2)(yn−1xn− z2)

(xnyn−1)(yn−1xn−1)
=

ex4
n +dzx3

n + cz2x2
n +bz3xn +az4

ex4
n +hx3

n +gx2
n + f xn +a

Usually (5) is presented with a = e = 1, which is possible, without loss of generality, provided
ae 6= 0. Now we invert x and multiply by −z, i.e. x→−z/x while keeping y as is. We find

(zxn+1 + yn)(yn + zxn)

(xn+1 + zyn)(zyn + xn)
=

1
z2

ay4
n +bzy3

n + cz2y2
n +dz3yn + ez4

ay4
n− f y3

n +gy2
n−hyn + e

(6)

(zyn + xn)(zyn−1 + xn)

(yn + zxn)(yn−1 + zxn)
=

1
z2

ax4
n + f zx3

n +gz2x2
n +hz3xn + ez4

ax4
n−bx3

n + cx2
n−dxn + e

where we have changed the signs of f and h between (5) and (6) so as to have only positive signs in
the numerators. A symmetric form can also be obtained for(6): it suffices to take f = b, g = c and
h = d in order to find

(zxn+1 + xn)(xn + zxn−1)

(xn+1 + zxn)(zxn + xn−1)
=

1
z2

ax4
n +bzx3

n + cz2x2
n +dz3xn + ez4

ax4
n−bx3

n + cx2
n−dxn + e

(7)

At this point one may understandably wonder whether the title of the paper is the proper one.
After all, if the new family is obtained from that of PVI already presented in [6] by a straightforward
transformation, the moniker “new” would be hardly justified. However this is not the case. In order
to make our argument more precise let us present an explicit example (more will be given in the
discussion). Suppose we take e = 0 in (6). Going back to (5) we remark that both rhs are now ratios
of cubic polynomials. However in the first equation the ratio of the highest terms is exactly unity
while in the second it is not. This situation is not usually considered in the constructive approach
for discrete Painlevé equations, based on the deautonomisation of QRT mappings. In particular it
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has not been considered in our study [6] of the limits and degeneracies of the q-PVI equation. The
consequence of this is that, while the main equation of the new family is just q-PVI itself written in
a different way, the remaining equations of the family may be new (and it turns out that some are).
In what follows we are going to construct carefully the various limits and degeneracies of q-PVI

in the form (6). We shall obtain their nonautonomous form, using the standard deautonomisation
procedure based on the singularity confinement approach. Along the way we are going also to
present systems not of the discrete Painlevé kind but which are linearisable (no such systems having
been found in the form (6) of q-PVI).

2. The limits

In order to present the limits of (6) we start from its nonautonomous form. As already noticed in [2]
the proper desautonomisation of (6) necessitates the introduction of z2 in lieu of z. We have thus

(ζnzn+1xn+1 + yn)(yn +ζnznxn)

(xn+1 +ζnzn+1yn)(ζnznyn + xn)
=

1
ζ 2

n

ay4
n +bζny3

n + cζ 2
n y2

n +dζ 3
n yn + eζ 4

n

ay4
n− f y3

n +gy2
n−hyn + e

(8)

(ζnznyn + xn)(znζn−1yn−1 + xn)

(yn +ζnznxn)(yn−1 + znζn−1xn)
=

1
z2

n

ax4
n + f znx3

n +gz2
nx2

n +hz3
nxn + ez4

n

ax4
n−bx3

n + cx2
n−dxn + e

where zn = z0λ n and moreover we have znzn+1 = ζ 2
n i.e. ζn = zn+1/2. In order to proceed to the

various limits it is interesting to rewrite the rhs of (8) as a product

(ζnzn+1xn+1 + yn)(yn +ζnznxn)

(xn+1 +ζnzn+1yn)(ζnznyn + xn)
=

(yn +αζn)(yn +βζn)(yn + γζn)(yn +δζn)

(ζnyn− ε)(ζnyn−η)(ζnyn−θ)(ζnyn−κ)
(9)

(ζnznyn + xn)(znζn−1yn−1 + xn)

(yn +ζnznxn)(yn−1 + znζn−1xn)
=

(xn + znε)(xn + znη)(xn + znθ)(xn + znκ)

(znxn−α)(znxn−β )(znxn− γ)(znxn−δ )

where the α,β , . . . ,κ are defined in terms of the a,b, . . . ,h and are satisfy the constraint

αβγδ = εηθκ (10)

Thus the number of effective parameters is just 6, since an overall scaling of x and y is allowed. A
symmetric form of the mapping can also be obtained if we take ε = α , η = β , θ = γ and κ = δ .
We obtain thus

(znzn+1xn+1 + xn)(xn + zn−1znxn−1)

(xn+1 + znzn+1xn)(zn−1znxn + xn−1)
=

(xn +αzn)(xn +β zn)(xn + γzn)(xn +δ zn)

(znxn−α)(znxn−β )(znxn− γ)(znxn−δ )
(11)

Here we have just three parameters (a scaling of x being always possible).
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The limits of (9) and (11) can be obtained by taking the parameters to 0 or to ∞. Let us start
from (9) and take α → 0, ε → 0. We find

(ζnzn+1xn+1 + yn)(yn +ζnznxn)

(xn+1 +ζnzn+1yn)(ζnznyn + xn)
=

1
ζn

(yn +βζn)(yn + γζn)(yn +δζn)

(ζnyn−η)(ζnyn−θ)(ζnyn−κ)
(12)

(ζnznyn + xn)(znζn−1yn−1 + xn)

(yn +ζnznxn)(yn−1 + znζn−1xn)
=

1
zn

(xn + znη)(xn + znθ)(xn + znκ)

(znxn−β )(znxn− γ)(znxn−δ )

where the remaining parameters are not constrained anymore. An analogous expression holds in the
symmetric case. Next we take α → ∞, ε → ∞. We find

(ζnzn+1xn+1 + yn)(yn +ζnznxn)

(xn+1 +ζnzn+1yn)(ζnznyn + xn)
=−ηθκζn

βγδ

(yn +βζn)(yn + γζn)(yn +δζn)

(ζnyn−η)(ζnyn−θ)(ζnyn−κ)
(13)

(ζnznyn + xn)(znζn−1yn−1 + xn)

(yn +ζnznxn)(yn−1 + znζn−1xn)
=−βγδ zn

ηθκ

(xn + znη)(xn + znθ)(xn + znκ)

(znxn−β )(znxn− γ)(znxn−δ )

where, again, the 6 remaining parameters are not constrained anymore. Clearly, in the symmetric
case, the prefactor is simply −zn. When two pairs of parameters, say α,ε and β ,η go to zero we
obtain simply

(ζnzn+1xn+1 + yn)(yn +ζnznxn)

(xn+1 +ζnzn+1yn)(ζnznyn + xn)
=

1
ζ 2

n

(yn + γζn)(yn +δζn)

(ζnyn−θ)(ζnyn−κ)
(14)

(ζnznyn + xn)(znζn−1yn−1 + xn)

(yn +ζnznxn)(yn−1 + znζn−1xn)
=

1
z2

n

(xn + znθ)(xn + znκ)

(znxn− γ)(znxn−δ )

Combining the case α → ∞, ε → ∞ with β → 0, η → 0 we find

(ζnzn+1xn+1 + yn)(yn +ζnznxn)

(xn+1 +ζnzn+1yn)(ζnznyn + xn)
= ρ

(yn + γζn)(yn +δζn)

(ζnyn−θ)(ζnyn−κ)
(15)

(ζnznyn + xn)(znζn−1yn−1 + xn)

(yn +ζnznxn)(yn−1 + znζn−1xn)
=

1
ρ

(xn + znθ)(xn + znκ)

(znxn− γ)(znxn−δ )

where ρ is a free parameter. Finally we consider the case where two pairs of parameters go to ∞ and
find

(ζnzn+1xn+1 + yn)(yn +ζnznxn)

(xn+1 +ζnzn+1yn)(ζnznyn + xn)
=

θκζ 2
n

γδ

(yn + γζn)(yn +δζn)

(ζnyn−θ)(ζnyn−κ)
(16)

(ζnznyn + xn)(znζn−1yn−1 + xn)

(yn +ζnznxn)(yn−1 + znζn−1xn)
=

γδ z2
n

θκ

(xn + znθ)(xn + znκ)

(znxn− γ)(znxn−δ )

In the symmetric limit of (15) the prefactor is just ρ = −1, while for (16) we find simply z2
n. The

last cases to study are the limits when three pairs of parameters take special values. In the case of
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three pairs of zeros we find

(ζnzn+1xn+1 + yn)(yn +ζnznxn)

(xn+1 +ζnzn+1yn)(ζnznyn + xn)
=

1
ζ 3

n

(
yn +δζn

ζnyn−κ

)
(17)

(ζnznyn + xn)(znζn−1yn−1 + xn)

(yn +ζnznxn)(yn−1 + znζn−1xn)
=

1
z3

n

(
xn + znκ

znxn−δ

)
When two pairs of zeros are combined with one pair of infinities we obtain the equation

(ζnzn+1xn+1 + yn)(yn +ζnznxn)

(xn+1 +ζnzn+1yn)(ζnznyn + xn)
=

ρ

ζn

(
yn +δζn

ζnyn−κ

)
(18)

(ζnznyn + xn)(znζn−1yn−1 + xn)

(yn +ζnznxn)(yn−1 + znζn−1xn)
=

1
ρzn

(
xn + znκ

znxn−δ

)
where ρ is a free parameter. Similarly when two pairs of infinities are combined with one pair of
zeros we obtain the equation

(ζnzn+1xn+1 + yn)(yn +ζnznxn)

(xn+1 +ζnzn+1yn)(ζnznyn + xn)
= ρζn

(
yn +δζn

ζnyn−κ

)
(19)

(ζnznyn + xn)(znζn−1yn−1 + xn)

(yn +ζnznxn)(yn−1 + znζn−1xn)
=

zn

ρ

(
xn + znκ

znxn−δ

)
where ρ is again a free parameter. Finally we have the case where three pairs of parameters go to
infinity. In this case we find the equation

(ζnzn+1xn+1 + yn)(yn +ζnznxn)

(xn+1 +ζnzn+1yn)(ζnznyn + xn)
=−κζ 3

n

δ

(
yn +δζn

ζnyn−κ

)
(20)

(ζnznyn + xn)(znζn−1yn−1 + xn)

(yn +ζnznxn)(yn−1 + znζn−1xn)
=−δ z3

n

κ

(
xn + znκ

znxn−δ

)
In the symmetric limit of (18) we find that the prefactor is ρ =−1 while for (19) we obtain ρ = 1.

While there appears to exist a profusion of different limits of (9) some simple relations between
them allow, in a sense, to reduce the number of cases on has to consider. We remark that (11)
is invariant under the transformation x→ 1/x (and, obviously, y→ 1/y in the asymmetric case),
z→ 1/z provided we invert also all the parameters. In that case the limit where a pair of parameters
goes to 0 is dual to the case where a pair goes to ∞. In that sense (12) is dual to (13), (14) dual to (16),
(17) dual to (20), (18) dual to (19) while (15) is a self-dual equation. Equation (12) appears to be
new, at least to the authors’ knowledge, while the case of (15) will be examined in the discussion.
On the other hand (14), (17) and (18) were identified [2], in their autonomous forms, as being
linearisable. While the first and last belong to the variety of what we have dubbed linearisable
systems of the third kind, (17) is a mapping of the Gambier type. In all of the above systems
the variable zn is of the form zn = z0λ n as in the initial equation. However for the Gambier-type
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mapping (17) we have shown in [7] that it can be written in a form involving a free function of the
independent variable. We found thus, in the symmetric case the equation(

znzn+1xn+1 + xn

xn+1 + znzn+1xn

)(
xn + znzn−1xn−1

znzn−1xn + xn−1

)
=

1
zn+1znzn−1

(
xn + zn

znxn−1

)
(21)

where zn is now a free function of n. (An analogous expression holds for the asymmetric case).

3. The degeneracies

The term “degeneracy” was introduced in [8] in order to designate equations obtained from the
initial one under the assumption that some condition holds allowing to introduce a simplification
from numerator and denominator of one or more factors. In this case the integrability conditions
are not the same as for the initial system. They must be obtained afresh and in general lead to
dependence on the independent variable not present in the initial system. In what follows we shall
obtain the integrability constraints for the degeneracies of (9) by appling the singularity confinement
[9] criterion.

The first case is when one factorisation occurs allowing us to write the system under considera-
tion as

(ζnzn+1xn+1 + yn)(yn +ζnznxn)

(xn+1 +ζnzn+1yn)(ζnznyn + xn)
=

(yn−φn)(yn + γζn)(yn +δζn)

(ψnyn−ρn)(ζnyn−θ)(ζnyn−κ)
(22)

(ζnznyn + xn)(znζn−1yn−1 + xn)

(yn +ζnznxn)(yn−1 + znζn−1xn)
=

(xn−χn)(xn + znθ)(xn + znκ)

(ωnxn−σn)(znxn− γ)(znxn−δ )

where φn = χn+1/2, ψn = ωn+1/2 and ρn = σn+1/2. First we remark that using a gauge on zn, ζn

we may put γδ = θκ and using a scaling on xn, yn we may still reduce the number of these four
parameters to just two. However, keeping an asymmetric form, in view of the higher periodicities
usually obtained, does not present any advantage. Thus we introduce a symmetric form of (22) and
work with it in what follows. We rewrite (22) (redefining the various parameters lest we run out of
greek letters) as(

znzn+1xn+1 + xn

xn+1 + znzn+1xn

)(
xn + znzn−1xn−1

znzn−1xn + xn−1

)
=

(xn−φn)(xn +ωnzn)(xn +χnzn)

(ψnxn−ρn)(znxn− τn)(znxn−σn)
(23)

where we have ωnχn = τnσn. The use of the singularity confinement criterion leads to the following
dependence of the various parameters on n. We find logzn = an+ b+ c jn + d j2n where j3 = 1.
We also find that ρn is a parity dependent constant i.e. logρn = h+ k(−1)n, and ψn = zn−1zn+1,
φn = ρnzn−1zn+1. Moreover we have log χn = e+g(−1)n, logσn = e−g(−1)n, logωn = f −g(−1)n,
logτn = f + g(−1)n, corresponding to the alternating constants (γ ,θ ) and (δ ,κ). By a scaling of x
we can set f =−e. Thus the total number of degrees of freedom is 7 and we expect the geometry of
the transformations of(23) to be described [10] by the affine Weyl group E(1)

7 . Once the form of (23)
is established we can consider its various limits. Taking the limit ω → 0 and τ → 0, or ω → ∞ and
τ→∞, leads to the disappearance of a parameter from the equation and thus we expect its geometry
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to be described by the affine Weyl group E(1)
6 . The case ω → 0, τ → 0, for instance, has the form(

znzn+1xn+1 + xn

xn+1 + znzn+1xn

)(
xn + znzn−1xn−1

znzn−1xn + xn−1

)
=

1
zn

(xn−ρnzn−1zn+1)(xn +χnzn)

(zn−1zn+1xn−ρn)(znxn−σn)
(24)

where zn, ρn, χn, σn are given just above. We remark that (24) could also have been obtained
from(12) by a degeneracy procedure involving the first two terms. Taking both pairs (ω ,τ) and
(χ ,σ) to 0 or to ∞ leads to a linearisable mapping. Taking χ → 0, σ → 0 in (24) we obtain(

znzn+1xn+1 + xn

xn+1 + znzn+1xn

)(
xn + znzn−1xn−1

znzn−1xn + xn−1

)
=

1
z2

n

(
xn−ρnzn−1zn+1

zn−1zn+1xn−ρn

)
(25)

However when one pair, say (ω ,τ) is taken to 0 while the other (χ ,σ ) is taken to ∞ we obtain a
discrete Painlevé equation involving 5 degrees of freedom the geometry of which is expected to be
described by the affine Weyl group D(1)

5(
znzn+1xn+1 + xn

xn+1 + znzn+1xn

)(
xn + znzn−1xn−1

znzn−1xn + xn−1

)
=−χn

σn

(
xn−ρnzn−1zn+1

zn−1zn+1xn−ρn

)
(26)

where the prefactor is just −exp(2g(−1)n). This mapping could also have been obtained from (15)
by a degeneracy procedure. Finally taking the limit ρ→ 0, respectively ρ→∞, we find a linearisable
mapping of the form(14), respectively (16), where now zn has a ternary freedom.

The next case we are going to examine is one where two factorisations occur. This can be done
in two different ways. We first assume that the common factor exists between the last two factors of
the rhs of (23). In this case we can as well work with the symmetric form of the mapping. With a
little bit of hindsight we introduce the form(

znzn+1xn+1 + xn

xn+1 + znzn+1xn

)(
xn + znzn−1xn−1

znzn−1xn + xn−1

)
=

1
zn+1z2

nzn−1

(xn−φn)(xn−χn)

(xn−ρn)(xn−σn)
(27)

where φ χ = z2
n+1z4

nz2
n−1ρσ . We remark that, the way the equation is written, only the quantity zn+1zn

(and its downshift) has a meaning. Applying the singularity confinement criterion we find thus that
logzn+1zn = a(2n+1)+2b+ c(−1)n and logφn = 2an+2b+d(−1)n + ein + f (−i)n +g, log χn =

2an+ 2b+ h(−1)n− ein− f (−i)n + k, logρn = −2an− 2b+ d(−1)n− ein− f (−i)n + g, logσn =

−2an−2b+h(−1)n+ein+ f (−i)n+k. Moreover, using the overall scaling of x we can put k =−g.
The total number of degrees of freedom is 7 and thus the geometry of the transformations of this
discrete Painlevé equation should be described by the affine Weyl group E(1)

7 . Having established
the form of (27) we can now proceed to derive its limits. Since the pairs (φ ,ρ) and (χ,σ) play the
same role it suffices to consider the limits of one of those, say (χ,σ). Taking χ → 0 and σ → 0
(respectively χ→∞ and σ →∞) we obtain a linearisable equation, similar to (25) but where zn has
a different n-dependence. We should point out here that, in order to proceed to these limits, we must
take k→−∞ (respectively k→ +∞). Thus the scaling of x can be introduced only after the limit,
allowing, for instance, to put g = 0.

The second case of double degeneracy corresponds to appearance of a common factor in the
first two terms of the rhs of (22). The fully asymmetric equation has the form

(ζnzn+1xn+1 + yn)(yn +ζnznxn)

(xn+1 +ζnzn+1yn)(ζnznyn + xn)
=

(yn−φn)(yn +δζn)

(ψnyn−ρn)(ζnyn−κ)
(28)
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(ζnznyn + xn)(znζn−1yn−1 + xn)

(yn +ζnznxn)(yn−1 + znζn−1xn)
=

(xn−χn)(xn + znκ)

(ωnxn−σn)(znxn−δ )

where, as in the case of(22), φn = χn+1/2, ψn = ωn+1/2 and ρn = σn+1/2. However, as for(24), it is
more convenient to work with the symmetric form, which, again with hindsight, we write as(

znzn+1xn+1 + xn

xn+1 + znzn+1xn

)(
xn + znzn−1xn−1

znzn−1xn + xn−1

)
=

(xn +φnzn+1znzn−1)(xn +χnzn)

(zn+1znzn−1xn−ρn)(znxn−σn)
(29)

Applying the singularity confinement criterion, and using, as an auxiliary for the final verification,
the criterion of algebraic entropy [11] we obtain the following: logzn = an+b+ c jn +d j2n, (with
j3 = 1), log χn = f +g(−1)n, logσn = f −g(−1)n, logφn = h+ k jn + l j2n−g(−1)n and logρn =

h+ k jn + l j2n +g(−1)n. Moreover, using the overall scaling of x we can put h =− f . Just as in the
case of (24) the total number of degrees of freedom is 7. Thus the geometry of the transformations
of this discrete Painlevé equation should be described by the affine Weyl group E(1)

7 . Two limits
are possible here. Taking φ → 0 and ρ→ 0 (respectively φ → ∞ and ρ→ ∞) leads to a linearisable
equation of the Gambier type, (21). On the other hand taking χ→ 0 and σ→ 0 (respectively χ→∞

and σ→∞) leads to a mapping with 6 degrees of freedom the geometry of which, we expect, should
be described by the affine Weyl group E(1)

6 .(
znzn+1xn+1 + xn

xn+1 + znzn+1xn

)(
xn + znzn−1xn−1

znzn−1xn + xn−1

)
=

1
zn

(
xn +φnzn+1znzn−1

zn+1znzn−1xn−ρn

)
(30)

This mapping could also have been obtained from (24) by a degeneracy procedure. Here again the
limit is obtained by putting f →−∞ or f → +∞ and thus the scaling of x can only be performed
after the limit (allowing to put h = 0).

The final degeneracy leads to a rhs which is just homographic in x. In this case we have, again
with a dose of hindsight,(

znzn+1xn+1 + xn

xn+1 + znzn+1xn

)(
xn + znzn−1xn−1

znzn−1xn + xn−1

)
=

xn−ρnzn+1z2
nzn−1

zn+1z2
nzn−1xn−ρn

(31)

We remark again that only the quantity zn+1zn (and its downshift) has a meaning. Applying the
singularity confinement criterion we find that logzn+1zn = an+ b+ c(−1)n + d jn + e j2n, where
j3 = 1, and logρn = f + g(−1)n + hin + k(−i)n. Using the scaling of x we can take f = 0 and
thus (31) has precisely 7 degrees of freedom. As a consequence we expect the geometry of the
transformations of(31) to be described by the affine Weyl group E(1)

7 .

4. Discussion

In this paper we have set out to derive new forms for discrete Painlevé equations (and linearisable
systems) related to the form (6) of q-PVI. The rationale behind our approach is that the PVI family,
as studied in [6] under the form(5), does not encompass all possible forms of q-discrete Painlevé
equations associated to the E(1)

7 affine Weyl group (and their degenerations). In order to make this
argument (already presented in the introduction) more explicit, some examples and a clarification
of terminology are necessary at this point.
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In [8] the discrete Painlevé equation

xn+1xn−1 =
aqnxn +q2

n

xn(xn−1)
(32)

with qn = q0λ n, was identified as a limit of the q-PVI equation. Equation (32) is cast in what,
in the QRT [3] terminology, is a symmetric form. An extension of (32) to an (again in the QRT
terminology) asymmetric form was obtained in [12]. It has the form

xn+1xn =
bznyn + znzn+1

yn(yn−1)

ynyn−1 =
aznxn + z2

n

xn(xn−1)
(33)

with zn = q0λ n/2. An inspection of (33) shows that both the lhs and the rhs of the two halves have a
similar stucture, their difference lying only in the appearance of different coefficients. We shall call
this situation a weakly asymmetric one: equation (33) can be brought to symmetric form by taking
xn→ x2n, yn→ x2n+1 and b = a

√
λ .

The opposite situation is that of equations obtained by deautonomising mappings corresponding
to an asymmetric A1 QRT matrix. They are systems where already the lhs of the two halves of the
system have different forms. An example of such a discrete Painlevé equation is the system derived
in [13]

xn+1xn =
yn− zn

y2
n−a2

yn + yn−1 =
1
xn

+
zn +b
1− xn

(34)

In this case we are in the presence of a by construction strongly asymmetric equation.
However the weak and the “by construction strong” asymmetries do not exhaust all possibilities.

While studying the discrete analogues of the various PIII equations [14] we obtained the following
form for the one-parameter q-PIII

xn+1xn =
1+qnyn

yn(yn−1)

ynyn−1 =
aqnxn +1

x2
n

(35)

Equation (35) can be obtained from (33) with the appropriate scaling of the variable x and a limiting
procedure. (The parameters a, b must also be scaled while q must be inverted). Once the limit is
taken, and(35) is obtained, there is no way to reduce the latter to a symmetric form. While this is
not an asymmetry as strong as that of (34), since the lhs of (35) have similar forms, we are not in
presence of a weak asymmetry. For lack of a better terminology we describe this asymmetry as a
strong one.

How does all this apply to the case at hand? Already in the introduction we have hinted at the
fact that some asymmetric situations were not considered in our study of limits and degeneracies
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of q-PVI. They are typically cases which belong to the strong asymmetric class. Having derived the
limits and degeneracies of the second form of the q-PVI family it is now interesting to compare the
results to those obtained in [6] and establish the possible parallels. Let us start from equation (9)
and take the limit α → 0 and ε → 0 i.e. equation (22). Next we introduce the change of variables
xn =−zn/Xn, yn = Yn/ζn. We obtain thus the system

(Xn+1Yn−ζ 2
n z2

n+1)(XnYn−ζ 2
n z2

n)

(Xn+1Yn−1)(XnYn−1)
=

(Yn +βζ 2
n )(Yn + γζ 2

n )(Yn +δζ 2
n )

(Yn−η)(Yn−θ)(Yn−κ)
(36)

(XnYn−ζ 2
n z2

n)(XnYn−1− z2
nζ 2

n−1)

(XnYn−1)(XnYn−1−1)
=−z2

n
βγδ

ηθκ

(Xn + z2
n/β )(Xn + z2

n/γ)(Xn + z2
nδ )

(Xn−1/η)(Xn−1/θ)(Xn−1/κ)

We remark that the two left-hand sides of (36) have different prefactors. This is a strong asymmetry
and thus (36) is absent from our classification presented in [6]. The same holds true for all the other
cases of section 2 with the exception of equation (15). The latter is indeed present in [6], where it
was identified as equation (2.3). Next we turn to the equations obtained in section 3. Performing
the same transformation as for (36) we can establish the equivalence between the present results
and those of [6]. We find thus that (23), (26), (27) and (31) correspond to the equations (2.10),
(2.20), (2.16) and (2.29) of [6], while for (24) and (30) no analogue appears (since it is of strongly
asymmetric form). The case of equation(29) is special. This equation should have had an analogue
form among the results of [6]. For unfathomable reasons this case does not appear there. We remedy
this omission by presenting its form here. By applying the singularity confinement criterion we
obtain the equation

(xn+1xn− z2
n+1z2

n)(xnxn−1− z2
nz2

n−1)

(xn+1xn−1)(xnxn−1−1)
= zn+1zn−1

(xn− zn+1z2
nzn−1φn)(xn−χnz2

n)

(zn+1zn−1xn−ρn)(xn−σn)
(37)

where logσn = f (−1)n, log χn = g(−1)n, logzn = an + b + c jn + d2n (with j3 = 1), logρn =

h(−1)n + k(− j)n + l(− j2)n and logφn = (h+ g− f )(−1)n + k(− j)n + l(− j2)n. A degree of free-
dom of the form e(−1)n does also exist in zn but it disappears in the lhs of (37) and can be absorbed
into the remaining coefficients in the rhs. Thus we can simply neglect this term. Moreover, since
the lhs of the equation involves only the product of two consecutive xn, an overall parity-dependent
scaling can be introduced allowing, for instance to take h = f .

Reciprocally there exist cases, identified in our study on q-PVI which were not obtained in the
present paper. In particular the limit of q-PVI obtained by putting a = b = d = e = 0 in (5) leads to
a an equation, of the form studied here, which is

(zxn+1 + yn)(yn + zxn)

(xn+1 + zyn)(zyn + xn)
=

cyn

f y2
n +gyn +h

(38)

(zyn + xn)(zyn−1 + xn)

(yn + zxn)(yn−1 + zxn)
=
− f x2

n +gzxn−hz2

czxn

The asymmetry of the latter is clearly a strong one and thus it was not captured in our analysis. In
a similar way all equations obtained by degeneracy of q-PVI in [6], with the exception of the ones
mentioned in the previous paragraph, are not present in the present paper, corresponding to strongly
asymmetric systems (but of the type of (36) where a coefficient has a fixed value of 1, rather than
that of (38) where some coefficients are 0).
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The analysis we just presented raises an important question concerning the derivation of discrete
Painlevé equations. The usual procedure is to start from a QRT mapping and deautonomise it using
an integrability criterion (singularity confinement, algebraic entropy or a combination of the two).
However if one starts from an asymmetric QRT mapping one is tacitly looking only for systems
which are weakly asymmetric, eschewing thus possible strong cases. The results of the present paper
show that systems of the latter type abound. In some cases, like that of (38), one can obtain a strongly
asymmetric result starting from an asymmetric QRT with just the proviso that certain coefficients be
allowed to take a special value every other time. However there exist cases where the initial system
cannot be of asymmetric QRT type but rather a QRT-type mapping with coefficients of periodicity
higher than two, like the ones we introduced in [15]. This open a new field of investigation for the
construction of discrete Painlevé equations (and associated linearisable mappings) which we intend
to explore in some future work of ours.

Appendix A. A refresher on QRT mappings

In order to contruct the QRT mappings one starts by introducing two 3×3 matrices, A0 and A1, of
the form

Ai =

αi βi γi

δi εi ζi

κi λi µi

 (A.1)

Next, one introduces the vector ~X = (x2,x,1) from which one constructs the vectors ~F ≡ ( f1, f2, f3)

and ~G ≡ (g1,g2,g3) through ~F = (~XÃ0)× (~XÃ1) and ~G = (~XA0)× (~XA1), where the tilde denotes
the transpose of the matrix. The QRT mapping is then given by:

xn+1 =
f1(yn)− xn f2(yn)

f2(yn)− xn f3(yn)
(A.2)

yn+1 =
g1(xn+1)− yng2(xn+1)

g2(xn+1)− yng3(xn+1)

This is the form of what is called the asymmetric QRT mapping. It possesses an invariant

K =
α0x2y2 +β0x2y+ γ0x2 +δ0xy2 + ε0xy+ζ0x+κ0y2 +λ0y+µ0

α1x2y2 +β1x2y+ γ1x2 +δ1xy2 + ε1xy+ζ1x+κ1y2 +λ1y+µ1
(A.3)

When both A0 and A1 matrices are symmetric the mapping is called symmetric. In this case we have
gi = fi and (A.2) reduces to a single equation

xm+1 =
f1(xm)− xm−1 f2(xm)

f2(xm)− xm−1 f3(xm)
(A.4)

with the identification xn→ x2n, yn→ x2n+1.
In [4] we have classified the canonical forms of the A1 QRT matrices. Nine such forms were

obtained, eight of which correspond to a symmetric A1 while in the ninth case the A1 is asymmetric
and leads to mappings of the form (34) presented in section 4.
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