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The methods of [vdP-Sa, vdP1, vdP2] are applied to the fourth Painlevé equation. One obtains a Riemann–
Hilbert correspondence between moduli spaces of rank two connections on P1 and moduli spaces for the mon-
odromy data. The moduli spaces for these connections are identified with Okamoto–Painlevé varieties and the
Painlevé property follows. For an explicit computation of the full group of Bäcklund transformations, rank
three connections on P1 are introduced, inspired by the symmetric form for PIV, studied by M. Noumi and
Y. Yamada.
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Introduction

In this paper we apply the methods of [vdP-Sa, vdP1, vdP2] to the fourth Painlevé equation. We
refer only to a few items of the extensive literature on Okamoto–Painlevé varieties. More details on
Stokes matrices and the analytic classification of singularities can be found in [vdP-Si].

The Riemann–Hilbert approach to the Painlevé equation PIV consists of the construction of a
moduli space M of connections on the projective line and a moduli space R for the monodromy
data. The Riemann–Hilbert morphism RH : M →R assigns to a connection its monodromy data.
The fibres of RH, i.e., the isomonodromic families in M , are parametrized by t ∈ T = C. The
explicit form of the fibres produces the solutions of PIV.

RHext : M+(θ0,θ∞)→ R+(θ0,θ∞)×T , the extended Riemann–Hilbert morphism, is an ana-
lytic isomorphism between rather subtle moduli spaces M+(θ0,θ∞) and R+(θ0,θ∞)×T , depend-
ing on parameters θ0,θ∞ and provided with a level structure (or parabolic structure). The Painlevé
Property for PIV with parameters θ0,θ∞ follows from this as well as the identification of
M+(θ0,θ∞) with an Okamoto-Painlevé variety. Formulas for Bäcklund transformations, rational
and Riccati solutions for PIV are derived.

The construction of M involves the choice of a set S of differential modules over C(z). In the
first part of this paper the ‘classical’ choice for S is treated. The second choice for S is inspired
by the symmetric form for PIV [No, No-Y], studied by M. Noumi and Y. Yamada. This leads to a
different construction of M ,R and Okamoto–Painlevé varieties, treated in §3.

1. The classical choice for S and R

Let S be the set of the isomorphy classes of the differential modules (M,δM) over C(z) (with
δM( f m) = (z d

dz f )m+ f δM(m)) having the properties:
dimM = 2; Λ2M is trivial; 0,∞ are the singular points and the Katz invariants are r(0)= 0, r(∞)= 2.
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The variable z is normalized such that the (generalized) eigenvalues at ∞ are ±(z2 + t
2 z). Finally,

we exclude the case that M is a direct sum of two proper submodules since this situation does not
produce solutions for PIV.

The monodromy data at ∞ are given by the matrices(
α 0
0 1

α

)
,

(
1 0
a1 1

)
,

(
1 a2

0 1

)
,

(
1 0
a3 1

)
,

(
1 a4

0 1

)
with respect to a basis of the symbolic solution space V (∞) at z = ∞ corresponding to the direct sum
expression V (∞) =Vz2+ t

2 z⊕V−(z2+ t
2 z) = Ce1⊕Ce2. The first matrix is the formal monodromy and

the others are the four Stokes matrices. The topological monodromy top∞ at z=∞ (which equals the
topological monodromy at z = 0) is the product of these matrices in this order. Further we exclude
the case a1 = a2 = a3 = a4 = 0, since this corresponds to the direct sum situation. The monodromy
data form a variety A := C∗× (C4 \{(0,0,0,0)}).

The base change e1,e2 7→ λe1,λ
−1e2 induces an action of Gm on A . The monodromy space R

is the quotient A /Gm. This quotient can be obtained by gluing the subspaces R j, j = 1, . . . ,4 of A ,
defined by a j = 1.

We observe (see [vdP-Sa], Theorem 1.7) that the map S→R×T , which maps a module in S
to its monodromy data and the value of t ∈ T = C, is bijective.

The parameter space is P = C×C∗ and R→P maps an element of R to (trace(top∞),α).
The fibre above (s,α) is denoted by R[s,α]. This fibre is a smooth, connected surface for s 6=±2.
The fibre R[2,α] has one singular point and this point corresponds to top∞ =

(1 0
0 1

)
. Similarly,

R[−2,α] has one singular point corresponding to top∞ =−
(1 0

0 1

)
.

The singular points are the reason for introducing a level structure (or ‘parabolic structure’ in
the terminology of [Bo,In,IIS1,IIS2,IISA]). For the monodromy data this is a line L⊂V (∞) which
is invariant under top∞. The new monodromy space is denoted by R+. For a module M in S the
level structure is a 1-dimensional submodule N of C((z))⊗M. The submodule N corresponds to an
eigenvector of the topological monodromy top0 at z = 0 (which is equal to top∞). The new set is
denoted by S+. For the parameter space, the level structure is the introduction of an eigenvalue β of
top∞. The new parameter space P+ = C∗×C∗ maps to P by (β ,α) 7→ (β +β−1,α).

The fibres of R+→P+ are denoted by R+(β ,α). The morphism R+(β ,α)→R[β +β−1,α]

is an isomorphism for β 6=±1. A computation shows that

Lemma 1.1. R+(±1,α)→R[±2,α] is the minimal resolution.

The map S+ →P+ is defined by β = e2πiλ where δMn = λn for a basis vector n of N ⊂
C((z))⊗M and α as before. The fibre is written as S+(β ,α).

Lemma 1.2. The map S+(β ,α)→R+(β ,α)×T is bijective.

The reducible locus of R+ (i.e., the monodromy data is reducible) is the disjoint union of the
closed sets defined (in the notation of A ) by a2 = a4 = 0 and a1 = a3 = 0. The space R+(β ,α)

contains no reducible elements for β±1 6= α . If β±1 = α , then the reducible locus of R+(β ,α)

consists of two non intersecting projective lines.
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2. The moduli space M (θ0,θ∞)

Choose θ0 with β = eπiθ0 and θ∞ with α = eπiθ∞ . The aim is to replace the set S+(β ,α) by a
moduli space of connections M (θ0,θ∞) and to study the extended Riemann–Hilbert map RHext :
M (θ0,θ∞)→R+(β ,α)×T .

Let a module (M,N)∈ S+(β ,α) be given. We define a connection (W ,∇) on the projective line
with ∇ : W → Ω([0]+ 3[∞])⊗W , with generic fibre M, by prescribing the connection D := ∇z d

dz

locally at z = 0 as z d
dz +

( θ0
2 ∗

0 − θ0
2

)
and locally at z = ∞ as z d

dz +
(

ω 0
0 −ω

)
with ω = z2 + t

2 z+ θ∞

2 .

This is equivalently to choosing ‘invariant lattices’ at z = 0 and z = ∞. The invariant lattice at
z = 0 is C[[z]]g1 +C[[z]]g2 ⊂ C((z))⊗M with N = C((z))g1 and the matrix of δM with respect to

g1,g2 is
( θ0

2 ∗
0 − θ0

2

)
. The invariant lattice at z = ∞ is C[[z−1]]h1+C[[z−1]]h2 ⊂C((z−1))⊗M such that

δMh1 = ωh1, δMh2 =−ωh2.

The second exterior power of (W ,∇) is d : O→Ω. Thus W has degree 0 and type O(k)⊕O(−k)
with k ≥ 0. If M is irreducible, then k ∈ {0,1}. The reducible modules are studied in Observa-
tions 2.2.
We consider the case k ∈ {0,1}. The connection (V ,∇), defined by replacing the invariant lat-
tice C[[z]]g1 +C[[z]]g2 by C[[z]]g1 +C[[z]]zg2, has type O⊕O(−1). Further we identify V with
Oe1⊕O(−[0])e2.

2.1. The connections on V := Oe1 +O(−[0])e2

The connection D = ∇z d
dz

: V →O(2[∞])⊗V , obtained from (M,N)∈ S+(β ,α) and the prescribed

invariant lattices, has, with respect to the basis e1,e2, the matrix
( a b

c −a

)
with a = a0 + a1z+ a2z2,

b = b−1z−1 + · · ·+b2z2, c = c1z+ c2z2. The local data at z = ∞ yields the equations

a2
2 +b2c2 = 1, 2a1a2 +b2c1 +b1c2 = t, 2a0a2 +a2

1 +b1c1 +b0c2 = θ∞ +
t2

4
.

For z = 0 one obtains a0(a0−1)+b−1c1 =
θ0
2 (

θ0
2 −1).

As a start, we forget the level structure N of the pair (M,N) ∈ S+(β ,α) and we assume that
c1z+ c2z2 6= 0. The above variables a∗,b∗,c∗, t and equations define a space C of dimension 6. We
have to divide by the group G of transformations e1 7→ e1, e2 7→ λe2 +(x0 + x1z−1)e1 of V . The
quotient C /G is by definition the moduli space M (θ0,θ∞).

Proposition 2.1. The moduli space M (θ0,θ∞) is a good geometric quotient of C in the sense that
there exists a G-equivariant isomorphism G×M (θ0,θ∞)→ C .
M (θ0,θ∞) is smooth for θ0 6= 1. For a connection D ∈M (1,θ∞), which is a singular point, there

is a basis of V̂0 for which D has the form z d
dz +

( 1
2 0
0 1

2

)
.

Proof. The ‘first standard form’ ST1 is the closed subset of C defined by:
z d

dz +
( a2z2 b

z+c2z2 −a2z2

)
with b2 = −c2(θ∞ + t2

4 − b0c2)+ t, b1 = θ∞ + t2

4 − b0c2, b−1 =
θ0
2 (

θ0
2 − 1) and

a2
2 +c2t−c2

2(θ∞ + t2

4 −b0c2)−1 = 0. The obvious morphism G×ST1→{(a∗,b∗,c∗) ∈ C | c1 6= 0}
is an isomorphism.
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The coordinate ring of ST1 is C[a2,c2, t,b0]/(a2
2 + c2t− c2

2(θ∞ + t2

4 −b0c2)−1) and ST1 is nonsin-
gular.

The ‘second standard form’ ST2 is the closed subset of C defined by:
z d

dz +
( a0 b

c1z+z2 −a0

)
with b = z2+b1z+b0+b−1z−1, c = c1z+ z2 and c1+b1 = t, b1c1+b0 = θ∞+ t2

4 ,

a0(a0−1)+b−1c1 =
θ0
2 (

θ0
2 −1). The obvious morphism G×ST2→{(a∗,b∗,c∗) ∈ C | c2 6= 0} is an

isomorphism.
The coordinate ring of ST2 is C[a0,c1, t,b−1]/(a0(a0− 1)+ b−1c1− θ0

2 (
θ0
2 − 1)). For fixed t, one

finds one singular point: a0 = 1/2, b−1 = c1 = 0, θ0 = 1.

In the above case, one easily verifies that D has the form z d
dz +

( 1
2 0
0 1

2

)
w.r.t. a basis of V̂0. The quotient

C /G is obtained by gluing the two ‘charts’ ST1 and ST2 in the obvious way.

Observations 2.1 The level structure for M (θ0,θ∞).
For a connection D∈M (θ0,θ∞), the level structure is a 1-dimensional submodule N ⊂C((z))⊗ V̂0

with a generator n such that δn = eπiθ0n. The space M+(θ0,θ∞) denotes the addition of this level
structure to M (θ0,θ∞).

If top0, the topological monodromy at z = 0 of the connection D, is not ±
(1 0

0 1

)
, then the level

structure N is unique.
If top0 =±

(1 0
0 1

)
, then θ0 ∈ Z. Further V̂0 has a basis v1,v2 for which D obtains the matrix form

z d
dz +

( θ0
2 0

0 1− θ0
2

)
. If θ0

2 6= 1− θ0
2 , the basis v1,v2 is unique up to multiplication by constants. Then one

defines the level structure N by N = C((z))v1.
In the final case top0 =−

(1 0
0 1

)
and θ0 = 1, the connection D does not prescribe a level structure.

We replace M (1,θ∞) by M+(1,θ∞) defined as the closed subspace of M (1,θ∞)×P1 consisting of
the equivalence classes of the tuples (D,L) with D ∈M (1,θ∞) and L a line in V̂0 at z = 0, invariant
under D. We will verify that (for fixed t) M+(1,θ∞)→M (1,θ∞) is the minimal resolution.

Verification. The chart ST2 of M (1,θ∞) consists of the differential operators z d
dz +

( a0 zb
c1+z 1−a0

)
with

b = z2 +b1z+b0 +b−1z−1, c1 +b1 = t, b1c1 +b0 = θ∞ +
t2

4
, a0(a0−1)+b−1c1 =−

1
4
.

The line L = C
(x1

x0

)
is generated by a nonzero element

(x1
x0

)
∈ C[[z]]2 satisfying the equation

{z d
dz

+

(
a0 zb

c1 + z 1−a0

)
}
(

x1

x0

)
=

1
2

(
x1

x0

)
.

In the case a0 = 1
2 , b−1 = c1 = 0, the operator z d

dz +
( a0 zb

c1+z 1−a0

)
is equivalent over C[[z]] to

z d
dz +

( 1
2 0
0 1

2

)
. Thus the possible lines L form a projective line. In the opposite case, the operator is

equivalent over C[[z]] to z d
dz +

( 1
2 1
0 1

2

)
and there is only one L.

Observations 2.2 The reducible locus of M (θ0,θ∞).
Put ω = z2 + t

2 z + θ∞

2 and let c ∈ C[z−1,z]. If a reducible connection is present in M (θ0,θ∞),
then θ0

2 ∈ ±
θ∞

2 +Z. There are two types of reducible modules in S+. Type (1) is represented by
z d

dz +
(−ω 0

c ω

)
and Type (2) is represented by z d

dz +
(

ω 0
c −ω

)
.
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For a given reducible module M, say of type (1), one defines (as before) the connection (V ,D) with

generic fibre M by the local operators z d
dz +

( θ0
2 ∗

0 1− θ0
2

)
at z= 0 and z d

dz +
(

ω 0
0 −ω

)
at z=∞. Assume that

type (1) is not present in M (θ0,θ∞). Then V ∼= O(k)⊕O(−k−1) with k ≥ 1 and one identifies V
with O(k[0])e1⊕O(−(k+1)[0])e2. A computation of D in this case leads to two possible relations,
namely θ0

2 = θ∞

2 − k or 1− θ0
2 = θ∞

2 − k. Thus one finds the list for type (1). The list for type (2) is
found in a similar way.

Type (1) is present in precisely the following cases:
θ0 ≥ θ∞ for θ0

2 ∈
θ∞

2 +Z and θ0
2 6∈ −

θ∞

2 +Z
θ0 ≤−θ∞ +2 for θ0

2 6∈
θ∞

2 +Z and θ0
2 ∈ −

θ∞

2 +Z
θ0 ≥ θ∞ or θ0 ≤−θ∞ +2 for θ0

2 ∈
θ∞

2 +Z and θ0
2 ∈ −

θ∞

2 +Z

Type (2) is present in precisely the following cases:
θ0 ≤ θ∞ +2 for θ0

2 ∈
θ∞

2 +Z and θ0
2 6∈ −

θ∞

2 +Z
θ0 ≥−θ∞ for θ0

2 6∈
θ∞

2 +Z and θ0
2 ∈ −

θ∞

2 +Z
θ0 ≤ θ∞ +2 or θ0 ≥−θ∞ for θ0

2 ∈
θ∞

2 +Z and θ0
2 ∈ −

θ∞

2 +Z

Examples: We use the notation z d
dz +

( a b
c −a

)
of the space C . Suppose b = 0.

Then a2
2 = 1, 2a1a2 = t, 2a0a2 + a2

1 = θ∞ + t2

4 , (a0− 1
2)

2 = (θ0
2 −

1
2)

2 and the non zero element
c1z+c2z2 is unique up to multiplication by a non zero constant. One finds in general four reducible
families (with some overlap for θ0 = 1 and/or θ∞ =±1):
b = 0, a2 = 1, a1 =

t
2 , a0 =

θ∞

2 , θ∞

2 = 1
2 ± (θ0

2 −
1
2) and

b = 0, a2 =−1, a1 =− t
2 , a0 =−θ∞

2 , −θ∞

2 = 1
2 ± (θ0

2 −
1
2).

We observe that these examples are precisely the cases of an equality sign in the lists for type (1)
and type (2).

Proposition 2.2. Put β = eπiθ0 , α = eπiθ∞ . Let F : M+(θ0,θ∞)→ S+(β ,α) be the map that sends a
tuple (D,L) to (M,N) where M is the generic fibre of D and N =C((z))⊗L. The map F is injective
and its image contains the ‘irreducible locus’ of S+(β ,α). A component of the ‘reducible locus’
lies in the image of F if and only if θ0,θ∞ satisfy the corresponding inequality of Observations 2.2.

Proof. The injectivity of F follows from the construction of M+(θ0,θ∞). If M is irreducible
then the vector bundle W , introduced in the beginning of this section, has type O(k)⊕O(−k)
for some k ∈ {0,1}. Therefore the subbundle V has type O⊕O(−1) and can be identifies with
Oe1⊕O(−[0])e2. Thus the image of F contains the ‘irreducible locus’ of S+(β ,α). The final state-
ment follows from Observations 2.2.

Define S+(θ0,θ∞) ⊂ S+(β ,α) (for β = eπiθ0 ,α = eπiθ∞) to be the image of F and let
R+(θ0,θ∞)⊂R+(β ,α) be the corresponding open subset.

Corollary 2.1. RHext : M+(θ0,θ∞)→R+(θ0,θ∞)×T , the extended Riemann–Hilbert map, is an
analytic isomorphism.

Proof. RHext is bijective since S+(θ0,θ∞) → R+(θ0,θ∞) × T is bijective. The two spaces
M+(θ0,θ∞) and R+(θ0,θ∞)× T are smooth and so RHext is an analytic isomorphism (see
[vdP1, vdP2]).
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2.2. Isomonodromic families, Okamoto–Painlevé spaces

An isomonodromic family above the chart ST2 of M+(θ0,θ∞) has the form z d
dz + A with A =( a0 b

c −a0

)
with c = z2 − qz, b = z2 + b1z + b0 + b−1z−1, b = z2 + (t + q)z + q(t + q) + θ∞ + t2

4 +

(
(a0− 1

2 )
2−( θ0

2 −
1
2 )

2

q )z−1, where a0 and q are functions of t. Isomonodromy is equivalent to the exis-
tence of an operator d

dt +B, commuting with z d
dz +A. In other terminology z d

dz +A, d
dt +B is a Lax

pair. This is equivalent to the equation d
dt (A) = z d

dz(B)+ [A,B]. One observes that B has trace zero
and that the entries of B have the form d−1(t)z+ d0(t) + d1(t)z. Using MAPLE one obtains the
solution B =

(0 B1
B2 0

)
with B1 =

q(q+b1)+b0
2 z−1 + b1+q

2 + 1
2 z, B2 =

1
2 z,

q′ = a0−
1
2
, a′0 =

b−1 +q(q(b1 +q)+b0)

2
and the fourth Painlevé equation

q′′ =
(q′)2

2q
+

3q3

2
+ tq2 +

q
8
(4θ∞ + t2)− (θ0−1)2

8q
with parameters θ0,θ∞.

Isomonodromy for reducible families. An isomonodromic family of operators z d
dz +

(
ω 0

z2−qz −ω

)
, with

ω = z2+ t
2 z+ d

2 , commutes with an operator of the form d
dt +

(
τ 0
z
2 −τ

)
. One computes that τ = 2z+2q+t

4

and q′ = q2 + t
2 q+ d−1

2 . Then q is a Riccati solution of PIV with d = θ∞ and d = 1± (θ0−1).

An isomonodromic family z d
dz +

( −ω 0
z2−qz ω

)
with ω = z2 + t

2 z+ d
2 produces the differential equation

q′ =−q2− t
2 q− d+1

2 . Then q is a Riccati solution of PIV with d = θ∞ and d =−1± (θ0−1).

Observations 2.3 The solutions qr with r ∈R+(θ0,θ∞).
The fibre of M+(θ0,θ∞)→R+(θ0,θ∞) above r is, by Corollary 2.1, isomorphic to T . Write qr for
the function q appearing in the formula for the chart ST2. Then qr is a meromorphic solution of PIV,
defined on all of T .

Theorem 2.1. The fourth Painlevé equation has the Painlevé property. The moduli space
M+(θ0,θ∞) is analytically isomorphic to the Okamoto–Painlevé space for PIV with parameters
θ0,θ∞.

Proof. Let a local solution Q of PIV with parameters θ0,θ∞ be given. Let U be an open disk, where
Q is holomorphic and has no zeros. Consider the operator z d

dz +
( ã0 b̃

z2−Qz −ã0

)
with ã0 = dQ

dt + 1
2 ,

and b̃ = z2 + (t + Q)z + Q(t + Q) + θ∞ + t2

4 +
(ã0− 1

2 )
2−( θ0

2 −
1
2 )

2

Q z−1. This defines an analytic map
U →M+(θ0,θ∞). Since Q is a local solution of PIV, the map U →M+(θ0,θ∞)→R+(θ0,θ∞) is
constant. Let r be its image. Then Q coincides with qr on U . Thus Q extends to a global solution of
PIV and this equation has the Painlevé property.

The bundle M+(θ0,θ∞) → T , with its foliation defined by the fibres of the morphism
M+(θ0,θ∞) → R+(θ0,θ∞), is the Okamoto–Painlevé variety according to the isomorphism of
Corollary 2.1.

We note that R+(θ0,θ∞) is the space of initial conditions.
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2.3. Aut(S+) and Bäcklund transformations

Natural automorphisms of S+ are:
(1). σ1 : (M,N) 7→ (M,N∗) where N∗ is a submodule of C((z))⊗M such that N⊕N∗ =C((z))⊗M.
This is well defined for β 6=±1. For β =±1, the module N∗ might not exist or might not be unique.
It seems correct to define N∗ := N for β =±1.
(2). σ2 : (M,N) 7→ (M⊗A,N⊗A), where A = C((z))a and δa = 1

2 a.
(3). σ3 : (M,N) 7→ C(z)⊗φ (M,N), where φ is the automorphism of C(z) which is the identity on
C and maps z to iz. Let Aut(S+) denote the group generated by σ j, j = 1,2,3.

β α t z
σ1 β−1 α t z
σ2 −β −α t z
σ3 β α−1 it iz

The above group is commutative and has order 16. The following table is a choice of lifting the
generators to actions on θ0,θ∞, t,z.

θ0 θ∞ t z
σ̃1 2−θ0 θ∞ t z
σ̃2 θ0 +1 θ∞ +1 t z
σ̃3 θ0 −θ∞ it iz

The induced morphisms σ̃1 : M+(θ0,θ∞) → M+(−θ0 + 2,θ∞) and σ̃3 : M+(θ0,θ∞) →
M+(θ0,−θ∞) are evident from the standard operators representing the points of M+(θ0,θ∞). A
MAPLE computation yields the explicit morphisms σ̃2 : M+(θ0,θ∞)→M+(θ0 +1,θ∞ +1). The
formulas are given with respect to the coordinates a = a0,q of an open subset (namely q 6= 0 in the
chart ST2) of the first space and ã = ã0, q̃ of an open subset of the second space. The assumption
that the operator z d

dz +A(a,q,θ0,θ∞,z), belonging to M+(θ0,θ∞), is equivalent, by a transforma-
tion of the type U−2z−2 +U−1z−1 +U0 +U1z+U2z2, to the operator z d

dz +A(ã, q̃,θ0 +1,θ∞ +1,z),
belonging to M+(θ0 +1,θ∞ +1), leads to the following formulas

q̃ =
−4q2θ∞ +4a2−4q3t−q2t2−4q4−4q2θ0 +θ 2

0 −4aθ0

4q(qt−θ0 +2a+2q2)

ã =
long

16q2(qt−θ0 +2a+2q2)2 .

The substitution a= q′+ 1
2 in the first formula produces q̃ in terms of q,q′ and the parameters θ0,θ∞,

this is the Bäcklund transformation in terms of solutions. The second formula is obtained by substi-
tution ã = q̃′+ 1

2 and an expression for q̃′ coming from the first formula and the equation for q′′.

The term qt − θ0 + 2a+ 2q2 in the denominator of the formulas indicates that the morphism
σ̃3 is in general a rational equivalence and is not defined on leaves of the foliation with a = q′+ 1

2
and q′+ q2 + t

2 q+ −θ0+1
2 = 0. This occurs precisely when θ0 = −θ∞ and the reducible locus of

M+(θ0,θ∞) is not present in the corresponding M+(1+ θ0,1+ θ∞) (compare Observations 2.2
and the Riccati equations for reducible families).
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We note that the group < σ̃1, σ̃2, σ̃3 > contains the two shifts θ0 7→ θ0 + 2, θ∞ 7→ θ∞ and
θ0 7→ θ0, θ∞ 7→ θ∞ + 2. One observes that, in comparison with the book of Gromak et al. [Gr]
and Okamoto’s paper [O3], there is still a missing generator for the group of all Bäcklund transfor-
mations of PIV. This generator does not seem to come from a ‘natural’ automorphism of S+ (i.e.,
constructions of linear algebra for differential modules and operations with the differential field
C(z) ). In the final section we will investigate another set of differential modules S, inspired by
Noumi’s symmetric form of PIV ( [No, No-Y]). As is shown by Noumi, this will easily produce all
Bäcklund transformations and moreover all rational and Riccati solutions.

3. The Noumi–Yamada family

M. Noumi and Y. Yamada produced a 3×3-Lax pair, arising from the Lax formalism of the modified
KP hierarchy, for the symmetric form of PIV, namely

z
d
dz

+

 ε1 f1 1
z ε2 f2

f0z z ε3

 ,
d
dt

+

−q1 1 0
0 −q2 1
z 0 −q3

 , leading to equations

ε
′
1 = ε

′
2 = ε

′
3 = 0; f1− f2 =−q1 +q3; f2− f0 = q1−q2; f0− f1 = q2−q3,

f ′0 = f0( f1− f2)+(1− ε1 + ε3); f ′1 = f1( f2− f0)+(ε1− ε2); f ′2 = f2( f0− f1)+(ε2− ε3).

Since the local exponents ε∗ at z = 0 are constants in an isomonodromic family, we can and will
suppose ε1 + ε2 + ε3 = 0. Then we may and will also suppose that q1 + q2 + q3 = 0. Further it is
assumed that t = f0 + f1 + f2.

Then f1 satisfies the fourth Painlevé equation y′′ = (y′)2

2y + 3
2 y3−2ty2 +( t2

2 +θ∞)y− (θ0−1)2

2y with
θ0 = 1+ε1−ε2, and θ∞ = 1+ε1−ε3. After rescaling t 7→ t√

2
, y 7→−

√
2y one obtains ‘our’ equation

y′′ = (y′)2

2y + 3
2 y3 + ty2 +(t2 +4θ∞)

y
8 −

(θ0−1)2

8y .
Using this symmetric form one finds the extended Weyl group of A2 as group of Bäcklund

transformations. For example π : ( f0, f1, f2) 7→ ( f1, f2, f0) translates into the ‘missing’ Bäcklund
transformation of §2.3 , namely
θ0 7→ −1

2 θ0 +
1
2 θ∞ +2, θ∞ 7→ −3

2 θ0− 1
2 θ∞ +2.

This is the inspiration for the new class S of differential modules M over C(z), defined by:
dimM = 3; Λ3M is trivial; the only singular points are 0,∞; 0 is regular singular and the Katz
invariant of ∞ is 2

3 . After scaling the variable z the generalized eigenvalues at ∞ are:
q0 = z2/3 + t

3 z1/3, q1 = ζ 2z2/3 +ζ
t
3 z1/3, q2 = ζ z2/3 +ζ 2 t

3 z1/3 where ζ = e2πi/3.

Invariant lattices at z = ∞. For M ∈ S the operator D = ∇z d
dz

has at z = ∞ has the form

z d
dz + diag(q0,q1,q2) with respect to a basis e0,e1,e2. A lattice Λ at z = ∞ is called invariant

if z−1D(Λ) ⊂ Λ. We respect to the basis h0 = e0 + e1 + e2, h1 = z1/3(e0 + ζ e1 + ζ 2e2), and

h2 = z−1/3(e0 + ζ 2e1 + ζ e2), D has the form z d
dz +

 0 z t
3

t
3

1
3 1

z t
3 z −1

3

. Thus Λ0 :=< h0,h1,h2 > is

an invariant lattice. Λ1 :=< h0,z−1h1,h2 > is the only invariant lattice of codimension 1 in Λ0
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and the operator D has with respect to this basis the form z d
dz +

 0 1 t
3

t
3 z −2

3 z
z t

3 −
1
3

. The invariant

lattice Λ2 :=< z−1h0,z−1h1,h2 > has codimension 2 in Λ0. All invariant lattices at z = ∞ are
{znΛi| n ∈ Z, i = 0,1,2}.

The Noumi–Yamada Lax pair has one additional feature, namely:
there exists U ∈ GL(3,C[[z]]) with U = 1+U1z+U2z2 + . . . such that

U−1{z d
dz

+

 ε1 f1 1
z ε2 f2

f0z z ε3

}U = z
d
dz

+

 ε1 ∗ ∗
0 ε2 ∗
0 0 ε3

 , with all ∗ ∈ C.

Level structure for S. This leads to a ‘level structure’ or ‘parabolic structure’ for the elements M ∈ S
consisting of differential submodules M1 ⊂ M2 ⊂ C((z))⊗M of dimensions 1 and 2 over C((z)).
Let S+ denote the set of the differential modules in S, provided with a level structure.

The moduli space R for the analytic data.
The singular directions d for qk − q` are computed as follows. z d

dz(y) = (qk − q`)y has solution
exp(3

2(ζ
2k − ζ 2`)z2/3 + 3(ζ k − ζ `)z1/3). Write z = eid and ζ 2k − ζ 2` = |ζ 2k − ζ 2`|eiφ(k,`). Then

|y(reid)| has maximal descent for r → ∞ if and only if 2
3 d + φ(k, `) = π + Z2π (equivalently,

d = 3
2 π− 3

2 φ(k, `)+Z3π).

k ` φ d
0 1 1

6 π
5
4 π

1 0 7
6 π

11
4 π

0 2 11
6 π

7
4 π

2 0 5
6 π

1
4 π

1 2 9
6 π

9
4 π

2 1 3
6 π

3
4 π

The analytic data consists of the formal monodromy and the six Stokes matrices at z = ∞. The
product of the formal monodromy and the Stokes matrices for the singular directions d ∈ [0,2π)0 0 1

1 0 0
0 1 0

 1 0 0
0 1 0
x4 0 1

 1 0 0
x3 1 0
0 0 1

1 0 0
0 1 x2

0 0 1

1 0 x1

0 1 0
0 0 1



is equal to the topological monodromy M(x∗) :=

 x4 0 x1x4 +1
1 0 x1

x3 1 x1x3 + x2

. Its characteristic polynomial

is λ 3− (x2 + x4 + x1x3)λ
2 +(−x1− x3 + x2x4)λ −1.

The moduli space R for the analytic data consists of the tuples x∗ = (x1, . . . ,x4) since the
other two Stokes matrices can be expressed in the Stokes matrices for the singular directions
in [0,2π). Thus R ∼= A4. The elements of the parameter space P are the sets of eigenvalues
of the topological monodromy. Thus P = {λ 3− e1λ 2 + e2λ − 1| e1,e2 ∈ C}. Let R(P) be the
fibre above P ∈P . If P has three distinct roots, then R(P) is a smooth surface. If P has roots
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a,a,a−2 with a 6= a−2, then the point x∗ ∈R(P) with x∗ 6= (−a−1,a,−a−1,a) is regular and M(x∗)
has two Jordan blocks. The point (−a−1,a,−a−1,a) ∈ R(P) is singular and has type A1. Further
M(−a−1,a,−a−1,a) has three Jordan blocks. If P has roots a,a,a (and thus a3 = 1), then the point
x∗ ∈ R(P) with x∗ 6= (−a−1,a,−a−1,a) is regular and M(x∗) has one Jordan block. The point
x∗ = (−a−1,a,−a−1,a) is singular and has type A2. The matrix M(−a−1,a,−a−1,a) has two Jor-
dan blocks.

Level structure for R and P . For an element of R we introduce a ‘level structure’ which consists
of subspaces L1 ⊂ L2 ⊂ C3 of dimensions 1 and 2 which are invariant under the topological mon-
odromy (at z = ∞ or, equivalently, at z = 0). The corresponding space is denoted by R+. The level
structure for a P ∈P consists of a tuple (µ1,µ2,µ3) with µ1µ2µ3 = 1 and P = ∏

3
j=1(λ − µ j).

The corresponding space is denoted by P+. The morphism par : R+ → P+ is defined by
((x∗),L1,L2) 7→ (µ1,µ2,µ3), where µ1 is the eigenvalue of M(x∗) on L1 and µ2 is that of M(x∗)
on L2/L1.

One observes that R+ is the closed subspace of C4
x∗ ×P2

y∗ × (P2)∗z∗ ×P+, where P+ equals
{(µ1,µ2,µ3) ∈ C3|µ1µ2µ3 = 1}, given by the equations:

M(x∗)y = µ1y, y :=

 y1

y2

y3

, zM(x∗) = µ3z, z := (z1,z2,z3), ∑y jz j = 0.

Indeed, Cy and the kernel of z ∈ (C3)∗ are the M(x∗)-invariant spaces L1 ⊂ L2 ⊂ C3. Further par :
R+→P+ is the projection onto the last factor. The fibre R+(µ∗) of par above the point (µ∗) ∈
P+ maps to the fibre R(P) of R→P above the point P = (λ −µ1)(λ −µ2)(λ −µ3).

Proposition 3.1. res : R+(µ∗)→R(P) is the minimal resolution of R(P).

A straightforward computation proves this statement. In particular, the fibre of res above a non
singular point is just one point since there is only one level structure possible. If two of the µ∗ are
equal, then the preimage under res of the singular point is a P1, consisting of the lines Cy in the
two-dimensional eigenspace for a and the kernel of z is this two-dimensional eigenspace. If the three
µ∗ are equal, then the preimage under res of the singular point is a pair of intersecting projective
lines. In this case the Jordan form of M(x∗) has two blocks, Cy is a line in the two-dimensional
eigenspace of C3, Cz is a line in the two-dimensional eigenspace of the dual (C3)∗ and ∑y jz j = 0.

Proposition 3.2. The natural maps S→R×T and S+→R+×T (with T = C) are bijections.

Proof. In the first case one applies [vdP-Saito], Theorem 1.7. The second case follows from the
observation that the level structure M1 ⊂ M2 ⊂ C((z))⊗M induces subspaces L1 ⊂ L2 ⊂ C3 of
dimensions 1 and 2, invariant under the topological monodromy, and visa versa.

The Noumi–Yamada moduli space N +(ε∗).
ε∗ denotes a triple (ε1,ε2,ε3) with ∑ε j = 0. The set S+(ε∗) consists of the tuples (M,M1⊂M2)∈ S+

such that M1 = C((z))b1 with δM(b1) = ε1b1 and M2/M1 = C((z))b2 with δM(b2) = ε2b2. Let V
denote the free bundle on P1 of rank 3.

The points of the moduli space N +(ε∗) correspond to the isomorphy classes of connections
D := ∇z d

dz
: V → O([∞])⊗V with a level structure which consists of the D-invariant submodules

V1 ⊂V2 ⊂ V̂0 of rank 1 and 2 such that V̂0/Vj, j = 1,2 have no torsion and such that there is a tuple
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(M,M1 ⊂M2) ∈ S+(ε∗) with M is the generic fibre of V , C((z))⊗Vj = M j, j = 1,2 and V̂∞ is the
lattice Λ0 ⊂ C((z−1))⊗M.

Proposition 3.3. N +(ε∗) is the affine space A3 with coordinates f0, f1, f2, t = f0+ f1+ f2 and the

connection is represented by z d
dz +

 ε1 f1 1
z ε2 f2

f0z z ε3

.

Proof. The level structure provides H0(V ) with a basis e1,e2,e3 such that D = z d
dz + A0 + A1z

with traceless constant matrices A0,A1 and A0 =

 ε1 ∗ ∗
0 ε2 ∗
0 0 ε3

. This is unique up to the action

of B = {

∗ ∗ ∗0 ∗ ∗
0 0 ∗

}. The lattice condition at z = ∞ is equivalent to U{z d
dz + A0 + A1z}U−1 =

z d
dz +

 0 z t
3

t
3

1
3 1

z t
3 z −1

3

 for some U =U0(1+U−1z−1 + . . .) ∈ GL3(C[[z−1]]). This is equivalent to the

equations A1 =U−1
0

0 1 0
0 0 0
1 t

3 0

U0 and A0 =U−1
0

 0 0 t
3

t
3

1
3 1

0 0 −1
3

U0 +[A1,U−1]. A MAPLE computa-

tion produces matrices U0 and U−1 such that A0 =

 ε1 ∗ ∗
0 ε2 ∗
0 0 ε3

 and A1 =

0 0 0
1 0 0
∗ 1 0

 . Moreover U0

is unique up to multiplication by a non zero constant and U−1 is unique up to adding a matrix V with
[A1,V ] = 0. Thus we found a representation of the connection in the ‘Noumi–Yamada form’ and this
form is unique with respect to the action of the Borel group B on V . Therefore the Noumi–Yamada
form represents the moduli space N +(ε∗).

The map N (ε∗)→ S+(ε∗) is injective and not bijective. This is due to the choice of a free
vector bundle V in the construction of N (ε∗). The aim is to avoid this choice and to construct a
smooth partial completion N̂ (ε∗) such that N̂ (ε∗)→ S+(ε∗) is bijective. As in §2, this will imply
that the extended Riemann–Hilbert map N̂ (ε∗)→ R+(µ∗)× T (with µ j = e2πiε j for j = 1,2,3)
is an analytic isomorphism. Moreover N̂ (ε∗) is the Okamoto–Painlevé space and R+(µ∗) is the
space of the initial conditions.

Construction of N̂ (ε∗).
The points of N̂ (ε∗) correspond to (the isomorphism classes of) the tuples (V ,D,L1,L2) with
D = ∇z d

dz
: V → O([∞])⊗V is a connection on a vector bundle V of rank 3.

We require the following: The connection V̂∞ is isomorphic to Λ1. In other terms V̂∞ has a basis

over C[[z−1]] for which D has the form z d
dz +

 0 1 t
3

t
3 z −2

3 z
z t

3 −
1
3

. Further L1 = C[[z]]Y is a subconnec-

tion of V̂0 such that V̂0/L1 has no torsion and DY = ε1Y . Further L2 =C[[z]]Z is a subconnection of
V̂ ∗0 , the dual of V̂0, such that V̂ ∗0 /L2 has no torsion and DZ = ε3Z. Moreover Λ3(V̂0) is trivial and
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L2(L1) = 0.

The map F : N̂ (ε∗)→ S+(ε∗), sends (V ,D,L1,L2) to its generic fibre M together with the level
structure on C((z))⊗M obtained from L1,L2. Conversely, for a given element (M,M1 ⊂ M2) ∈
S+(ε∗) one defines the connection (V ,D) with generic fibre M, by prescribing V̂∞

∼= Λ1. The addi-

tional data L1,L2 imply that V̂0 is represented by z d
dz +

 ε1 ∗ ∗
0 ε2 ∗
0 0 ε3

 with all ∗ ∈ C[[z]]. This implies

that F is bijective in the following cases:
µ1,µ2,µ3 are distinct;
µ1 = µ2 6= µ3 and ε2− ε1 ≥ 0;
µ1 = µ3 6= µ2 and ε3− ε1 ≥ 0;
µ1 6= µ2 = µ3 and ε3− ε2 ≥ 0;
µ1 = µ2 = µ3 and ε2− ε1,ε3− ε2 ≥ 0.

In the sequel we will only consider these cases.

In order to give N̂ (ε∗) the structure of an algebraic variety we observe that V has degree
-1 and type O ⊕ O ⊕ O(−1) since (V ,D) is irreducible. We identify V with Oe1 ⊕ Oe2 ⊕
O(−[∞])e3. The matrix of D with respect to the basis e1,e2,e3 has trace zero and is denoted by a0 +a1z a2 +a3z a4 +a5z+a6z2

a7 +a8z a9 +a10z a11 +a12z+a13z2

a14 a15 a16 +a17z

. The generator Y = ∑n≥0Ynzn of L1 with Yn = Yn(1)e1 +Yn(2)e2 +Yn(3)e3

is unique up to multiplication by a constant. The generator Z = ∑n≥0 Znzn of L2 with Zn =

Zn(1)e∗1 + Zn(2)e∗2 + Zn(3)e∗3 is unique up to multiplication by a constant. The Y∗(∗),Z∗(∗) are
regarded as homogeneous coordinates.

The space A is defined by the indeterminates a∗,Y∗(∗),Z∗(∗) and the relations induced by the
above requirements. We note that for given ε∗, such that the above restrictions are satisfied, the
Yn(∗),Zn(∗) are for n≥ 1 eliminated by the relations. Thus A is an algebraic variety.

The group G of the automorphisms of V act upon A . By construction, the set theoretic quotient
A (C)/G coincides with S+(ε∗). Thus the analytic map R : A →R+(µ∗)×T , where µ j = e2πiε j

for j = 1,2,3, is surjective and R(ξ1) = R(ξ2) if and only if there is a g ∈ G with gξ1 = ξ2.

A long MAPLE session verifies: A has a smooth geometric quotient by G. This quotient is by
definition N̂ (ε∗) and the extended Riemann–Hilbert map N̂ (ε∗)→ R+(µ∗)× T is an analytic
isomorphism.
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Mathématique de France (SMF)14, 2006, 103–167.

[JMU] M. Jimbo, T. Miwa and K. Ueno, Monodromy preserving deformation of linear ordinary differential
equations with rational coefficients. I. General theory and τ-function, Physica D 2 (1981) 306–352.

[JM] M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equa-
tions with rational coefficients. II., Physica D 2 (1981) 407–448.
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Univ. 44 (2004) no. 3 529–568.

[Sakai] H. Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equa-
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