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Recently a solvable N-body problem featuring several free parameters has been investigated, and conditions
on these parameters have been identified which guarantee that this system is isochronous (all its solutions
are periodic with a fixed period) and that it possesses equilibria. The N coordinates z̄n characterizing the
equilibrium configurations are in some cases explicitly known, in others coincide with the N zeros of certain
para-Jacobi polynomials or are arbitrary numbers. In the present paper the behavior of this N-body system in
the immediate vicinity of its equilibria is studied, and Diophantine relations satisfied by the N coordinates z̄n
are thereby identified.

1. Introduction

Recently a solvable N-body problem featuring several free parameters has been investigated, and
conditions on these parameters have been identified which guarantee that this system is isochronous
(all its solutions are periodic with the same fixed period, independent of the initial data) and that it
possesses equilibria [1]. In the present paper Diophantine findings are derived from these results.

The idea to obtain Diophantine relations for the coordinates z̄n of the equilibria of an
(autonomous) isochronous N-body model is rather simple. One focusses on the behavior of that
system in the immediate vicinity of its equilibria. The standard solution of the linearized equations
of motion characterizing this behavior entails that these motions are a linear superposition of peri-
odic motions, the frequencies of which coincide with the N eigenvalues of certain specific N ×N
matrices constructed with the coordinates z̄n of the equilibria. But if the system is isochronous, all
its motions—including of course those in the immediate vicinity of its equilibria—are completely
periodic with a fixed period. Hence the eigenvalues associated with the motions in the immediate
vicinity of the equilibria must all be integer multiples of a common frequency. Thus, the outcome
of this approach is to identify specific N×N matrices all eigenvalues of which must be integer mul-
tiples of a common factor: a Diophantine finding. This approach has been extensively used to arrive
at Diophantine findings: see for instance Appendix C, entitled “Diophantine findings and conjec-
tures”, of monograph [2]. Let us also note that, while the fact that the N-body model providing the
starting point for this approach is isochronous guarantees that Diophantine findings emerge via this
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approach (of course, provided equilibria exist and can be found), such findings can also emerge
from models which are not altogether isochronous: see below.

The present paper presents some new results of this kind. It is organized as follows. In the next
Section 2 the findings of [1] are reviewed—largely verbatim, but merely to the extent needed to
make the present paper understandable to readers who prefer not to go preliminarily through [1]
(although such neglect is not recommended); and the strategy to arrive at the results of the present
paper is detailed. This section can be omitted in a first reading by whoever is primarily interested
in the new findings reported in the present paper, who might therefore immediately jump (albeit
at the risk of missing some notational indications) to Section 3 where these results are reported.
These findings reveal Diophantine properties associated with the N coordinates z̄n characterizing the
equilibrium configurations of the solvable N-body problem treated in [1], which in some cases (i.e.
for certain assignments of the parameters of this model) are explicitly known, in other cases coincide
with the N zeros of certain para-Jacobi polynomials [8] or are just a set of arbitrary numbers. These
results are then proven in the subsequent Section 4 by investigating the behavior in the immediate
vicinity of its equilibria of the N-body problem treated in [1]. A very terse Section 5, entitled
“Outlook”, concludes the paper by mentioning possible future developments. A number of useful
identities are collected in Appendix A.

2. Preliminaries

The solvable N-body problem discussed in [1] is characterized by the Newtonian equations of
motion

z̈n =−E żn − (N −1) A1 +B zn −2 (N −1) A3 z2
n

+
N

∑
�=1, � �=n

{
(zn − z�)

−1 [2 żn ż�− (D0 +D1 zn) (żn + ż�)

−D2 zn (żn z�+ ż� zn)+2
(
A1 +A2 zn +A3 z2

n
)

zn
]}

. (2.1)

Notation 2.1. Here and hereafter N is an arbitrary positive integer (generally N ≥ 2); the N
coordinates zn (t) are, generally complex, variables depending on the real (independent) variable t
(“time”); superimposed dots denote time-differentiations; the indices n, m, k, � take all integer val-
ues from 1 to N, unless otherwise indicated; the 8 (generally complex) constants A1, A2, A3, B, D0,
D1, D2, E are a priori arbitrary (but see below). The N coordinates zn(t) are of course moving in the
complex z-plane as the time t evolves. But they can be identified with the coordinates�rn(t) of N (unit
mass, pointlike) particles moving in the “physical”, horizontal plane spanned by the real 2-vector
�r ≡ (x,y) via the relation �rn ≡ (xn,yn) with the 2N Cartesian coordinates xn and yn corresponding
to the real and imaginary parts of the complex number zn = xn + i yn (see for instance Chapter 4,
entitled “Solvable and/or integrable many-body problems in the plane, obtained by complexifica-
tion”, of Ref. [4]). Here and hereafter i is the imaginary unit, i2 =−1. In the following we generally
work with complex variables, but we feel free to refer to the evolution of the N coordinates zn(t) as
describing an N-body problem. �
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The N coordinates zn(t) coincide with the N zeros of a time-dependent polynomial of degree N
in z which evolves in time according to the linear, autonomous, partial differential equation (PDE)

ψtt +
(
D0 +D1 z+D2 z2) ψzt +[E − (N −1) D2 z] ψt

+
(
A1 +A2 z+A3 z2) z ψzz −

[
(N −1) A1 −B z+2 (N −1) A3 z2] ψz

−N [(N −1) (A2 −A3 z)+B] ψ = 0 ; (2.2a)

ψ (z, t) =
N

∏
n=1

[z− zn(t)] = zN +
N

∑
m=1

[
cm(t) zN−m] . (2.2b)

Notation 2.2. In (2.2a) appended variables denote partial differentiations; while (2.2b), besides
displaying the identification of the N coordinates zn(t) evolving according to the Newtonian equa-
tions of motion (2.1) with the N zeros of the time-dependent (monic) polynomial ψ (z, t) evolving
according to the PDE (2.2a), introduces the N coefficients cm(t) of the (monic) polynomial ψ (z, t).
�

The N coefficients cm(t) evolve according to the system of N linear autonomous ordinary dif-
ferential equations (ODEs)

c̈m +(N +1−m) D0 ċm−1 +[(N −m) D1 +E] ċm −m D2 ċm+1

−(N +1−m) (m−1) A1 cm−1 −m [(2 N −m−1) A2 +B] cm

+m (m+1) A3 cm+1 = 0 . (2.3)

Hence the solution of this system is detailed by the following
Proposition 2.1:

cm(t) =
2 N

∑
j=1

γ j c̃( j)
m exp(λ j t) , (2.4)

where the 2N numbers γ j are a priori arbitrary (or can be a posteriori fixed, in the context of the
initial-value problem, by imposing consistency with the 2N initial data cm (0) , ċm (0)); while the 2N

quantities λ j, respectively the 2N2 components c̃( j)
m of the 2N N-vectors c̃( j) ≡

(
c̃( j)

1 , c̃( j)
2 , ..., c̃( j)

n

)
,

are the 2N eigenvalues, respectively the 2N eigenvectors, of the generalized eigenvalue problem
(
λ 2 I +λ D+A

)
c̃( j) = 0 , (2.5a)

with the two (N ×N)-matrices A and D defined componentwise as follows:

Am,n =−(N +1−m) (m−1) A1 δm,n+1

−m [(2 N −m−1) A2 +B] δm,n +m (m+1) A3 δm,n−1 , (2.5b)

Dm,n = (N +1−m) D0 δm,n+1 +[(N −m) D1 +E] δm,n −m D2 δm,n−1 . � (2.5c)

Notation 2.3. N-vectors respectively (N ×N)-matrices are denoted by underlined lower-case
respectively upper-case Latin letters; their components respectively their elements are denoted by
the corresponding (not underlined) letters. I is the unit (N ×N)-matrix, Imn = δmn; in the following
we will generally omit to write out this matrix. Of course above and hereafter δmn ≡ δm,n is the
standard Kronecker symbol, δmn = 1 if m = n, δmn = 0 if m �= n. �
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Remark 2.1. Clearly formula (2.4) holds as written only if all the 2N eigenvalues λ j are different
among themselves. It continues to hold in a limiting sense if two or more eigenvalues coincide, in
which case clearly the time evolution in the right-hand side of (2.4) also features terms depending
on integer powers of the time variable t. �

Remark 2.2. If the real parts of the 2N eigenvalues λ j vanish and they are all different among
themselves, it is plain from (2.2b) with (2.4) that, for all time, the coordinates zn(t) remain confined
to a finite region of the complex z-plane. �

Remark 2.3. If

A1 = D0 = 0 or A3 = D2 = 0 (2.6)

the two matrices A and D are triangular; the 2N eigenvalues λ j are then given by the explicit
formulas

λ (±)
m =−1

2
[(N −m) D1 +E ±Δm] , (2.7a)

Δm =
{
[(N −m) D1 +E]2 +4 m [(2 N −m−1) A2 +B]

}1/2
(2.7b)

where, say, λ2m−1 = λ (+)
m , λ2m = λ (−)

m , m = 1, ...,N. Clearly in this case all these eigenvalues λ j

are imaginary if there hold the following two conditions on the parameters: (i) D1 and E are imag-
inary (or vanishing); (ii) A2 and B are real and have values which entail that Δm is imaginary (for
m = 1,2, ...,N). But no assignment of the parameters—other than the special one described in the
following Proposition 2.2—yields 2N eigenvalues λ j which are all different among themselves and
are all integer multiples of the same nonvanishing imaginary number i ω . �

In the following we shall focus on models satisfying one of the two conditions (2.6), in order to
take advantage of the explicit expressions (2.7) of the eigenvalues characterizing the time evolution
of the dynamical system (2.3). Additional conditions which guarantee that this time evolution is
actually isochronous are detailed by the following

Proposition 2.2. If one of the two conditions (2.6) holds (see Remark 2.3), and there moreover
hold the following 4 additional conditions on the parameters: (i) the real parts of D1 and E vanish,

D1 = iδ , E = iη (2.8a)

with δ and η two real parameters; (ii) the remaining parameters are all real; (iii) A2 > −δ 2/4 so
that the quantity

ω =
√

A2 +δ 2/4 (2.8b)

is as well real (and, by convention, positive, ω > 0); (iv) there holds the following relation among
the 5 parameters N, δ , η , A2, B:

(N δ +η) (δ +2 ω)+2 [(2 N −1) A2 +B] = 0 ; (2.8c)

then the expression (2.7) of the 2N eigenvalues becomes

λ (±)
m = i

[
(N δ +η)

(±1−1
2

)
+m

(
δ
2
±ω

)]
. (2.9)

Co-published by Atlantis Press and Taylor & Francis 
                        Copyright: the authors 
                                       161



Diophantine Properties Associated to the Equilibrium Configurations of an Isochronous N-Body Problem

If, moreover,

δ =
p1

q1
ω , η =

p2

q2
ω , (2.10)

with q1, q2 two arbitrary positive integers, p1, p2 two arbitrary integers, and p1 �= ±2q1 (so that
δ ±2ω �= 0), and the eigenvalues (which then read)

λ (±)
m = i [(N p1 q2 + p2 q1) (±1−1)+m (p1 ±2q1) q2] Ω , (2.11a)

Ω =
ω

2 q1 q2
(2.11b)

are all different among themselves, then clearly all the coefficients cm(t), hence as well the polyno-
mial (2.2b), evolve in time periodically with the same period,

cm (t ±T) = cm(t) , ψ (z, t ±T ) = ψ (z, t) , T =
2 π
Ω

. (2.12)

Hence (see (2.2b)) in this special case all the coordinates zn(t) also evolve in time periodically with
the same period T (or possibly, some of them, with a period which is a, generally small, integer
multiple of T , due to the possibility that over the time evolution some of the zeros of the polynomial
ψ (z, t) exchange their roles; for a discussion of this possibility, including a justification of the
assertion that the integer multiple in question is “generally small”, see [5]). Anyway, in this special
case the N-body problem (2.1) is isochronous. �

Remark 2.4. Note, however, that the phenomenon described at the end of Proposition 2.2 cannot
happen for motions sufficiently close (in particular, infinitesimally close) to equilibrium configura-
tions, such as those considered below. �

The next development is to consider the N-body problem (2.1) in the immediate vicinity of its
equilibrium configurations, which are clearly characterized by N coordinates z̄n satisfying the N
nonlinear algebraic equations

(N −1) A1 −B z̄n +2 (N −1) A3 z̄2
n

= 2
(
A1 +A2 z̄n +A3 z̄2

n
)

z̄n

N

∑
�=1, � �=n

(z̄n − z̄�)
−1 . (2.13)

Clearly the N equilibrium coordinates z̄n can be equivalently characterized—see (2.2)—as the N
zeros of the polynomial

ψ̄ (z) =
N

∏
n=1

(z− z̄n) = zN +
N

∑
m=1

[
c̄m zN−m] , (2.14a)

satisfying the time-independent version of the PDE (2.2a), i. e. the ODE
(
A1 +A2 z+A3 z2) z ψ̄ ′′ − [

(N −1) A1 −B z+2 (N −1) A3 z2] ψ̄ ′

−N [(N −1) (A2 −A3 z)+B] ψ̄ = 0 . (2.14b)

Notation 2.4. Here and hereafter appended primes denote derivatives with respect to the argu-
ment of the function they are appended to. �
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To investigate the behavior of the N-body problem (2.1) in the immediate vicinity of its equilib-
ria one of course sets

zn(t) = z̄n + ε ζn(t) , (2.15)

with the N time-independent coordinates z̄n characterizing the equilibria and ε infinitesimal. The
equations of motion (2.1) get thereby linearized:

ζ̈ + D̄ ζ̇ + Ā ζ = 0 , (2.16)

with the two N ×N matrices D̄ and Ā obtained—in terms of the equilibrium coordinates z̄n—in a
standard manner (see below) from the N-body problem (2.1).

The general solution of this system of N linear equations of motion—characterizing the behavior
of the N-body problem (2.1) in the immediate neighborhood of its equilibria, see (2.15)—reads

ζn(t) =
2 N

∑
j=1

η j ζ̄ ( j)
n exp

(
λ̄ j t

)
(2.17a)

where the 2N numbers η j are a priori arbitrary (or can be a posteriori fixed, in the context of the
initial-value problem, by imposing consistency with the 2N initial data ζn (0) , ζ̇n (0)), while the 2N

quantities λ̄ j, respectively the 2N2 components ζ̄ ( j)
n of the 2N N-vectors ζ̄ ( j) ≡

(
ζ̄ ( j)

1 , ζ̄ ( j)
2 , ..., ζ̄ ( j)

n

)
,

are the 2N eigenvalues, respectively the 2N eigenvectors, of the generalized eigenvalue problem

(
λ̄ 2 + λ̄ D̄+ Ā

)
ζ̄ ( j)

= 0 (2.17b)

(with analogous remarks to those made above after (2.5), see in particular Remark 2.1).
It is then plain that these 2N eigenvalues λ̄ j—which characterize the behavior of the N-body

problem (2.1) in the immediate neighborhood of its equilibria—coincide with the 2N eigenvalues
λ j of the generalized eigenvalue problem (2.5a), which, via (2.2b) and (2.4), characterize the general
behavior of the solutions zn (t) of the N-body problem (2.1):

λ̄ j = λ j , j = 1,2, ...,2N . (2.18)

Hence—in all cases when the 2N eigenvalues λ j can be explicitly computed, see above—one
can similarly assert that the eigenvalues λ̄ j are known; and in the special cases when the N-body
problem (2.1) is isochronous—hence the 2N eigenvalues λ j are, up to a common integer factor,
integer numbers, see (2.11)—the same Diophantine assertion can be made for the 2N eigenvalues
λ̄ j of the generalized eigenvalue problem (2.17b).

These shall be the main findings of the present paper. To obtain them we must still find the two
N×N matrices D̄ and Ā. To this end we now take again advantage of the results of [1], in particular
those concerning the equilibria of the N-body problem (2.1).

We already saw that the numbers z̄n providing the N coordinates characterizing the equilibria of
the N-body problem (2.1) coincide with the N zeros of the (monic) polynomial ψ̄ (z), see (2.14a),
satisfying the ODE (2.14b). This ODE—featuring, in addition to the arbitrary positive integer N,
the 4 a priori arbitrary parameters A1, A2, A3, B (any single one of which can of course be divided
away, unless it vanishes)—is generally not of hypergeometric type hence not reducible to the ODEs
characterizing the classical polynomials (except in special cases, see below). Yet it can be rather
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explicitly solved in terms of quadratures over elementary functions (see [1]), as detailed by the
following

Proposition 2.3. The general solution of the ODE (2.14b) is given by the formula

ψ̄ (z) = zN ϕ (z) , (2.19)

with

ϕ (z) = ρ + γ
∫ z

dx xν (x− z+)
ν+ (x− z−)ν− , (2.20a)

or equivalently

ϕ (z) = ρ + γ
∫ 1/z

dy (1− z+ y)ν+ (1− z− y)ν− . (2.20b)

The parameters ν , ν± and z± are related to the 5 parameters N, A1, A2, A3, B by the following
formulas:

ν =−(N +1) , ν++ν− = N −1 , (2.21a)

b =−1
2
[3 (N −1) a2 +(ν+−ν−) Δ] , (2.21b)

Δ2 = a2
2 −4 a1 , (2.21c)

z± =
−a2 ±Δ

2
, (2.21d)

where

a1 =
A1

A3
, a2 =

A2

A3
, b =

B
A3

. (2.21e)

Of course this solution holds as written for generic values of the 5 parameters N, A1, A2, A3, B;
special cases are treated separately below. �

Notation 2.5. In (2.20) and throughout ρ and γ denote two arbitrary (integration) constants,
without implying that they have the same values in the different equations where they appear. �

These findings imply that there holds (see [1]) the following
Proposition 2.4. In the generic case (implying in particular that A3 �= 0, A1 �= 0 and A2

2−4A1A3 �=
0) the single (Diophantine) restriction on the 5 parameters N, A1, A2, A3, B reading

B =−1
2

[
3 (N −1) A2 +(N +1−2 k)

(
A2

2 −4 A1 A3
)1/2

]
(2.22)

with k an arbitrary integer in the range 1 ≤ k ≤ N, is necessary and sufficient to guarantee that the
general solution of the ODE (2.14b) be polynomial, indeed (up to an arbitrary overall multiplicative
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constant, assigned here so as to make the polynomial ψ̄ (z) monic) this general solution reads

ψ̄ (z) = zN + γ
N

∑
m=1

(
c̄m zN−m) , (2.23a)

c̄m =
(−1)m

m

min(N−k, m−1)

∑
j=max(0, m−k)

(
N − k

j

) (
k−1

m−1− j

)
z j
+ zm−1− j

− , (2.23b)

where γ is an arbitrary (integration) constant. Here notation (2.21) is employed, and the standard
notation for the binomial coefficient,

(
p
q

)
≡ p!

q! (p−q)!
, (2.23c)

where p is an arbitrary nonnegative integer and q is an integer in the range 0 ≤ q ≤ p. �
Remark 2.5. Note that the generic case considered in this Proposition 2.4 violates the conditions

(2.6) allowing an explicit evaluation of the eigenvalues λ j, see above Remark 2.3. �
We therefore hereafter focus on other, less generic, cases in which the general solution of the

ODE (2.14b) is polynomial: see the following Proposition 2.5, reporting the findings of [1] concern-
ing all the equilibria of the N-body problem (2.1), hence the solutions z̄n of the set of N algebraic
equations (2.13) which coincide with the N zeros z̄n of the polynomial solutions, see (2.14a), of the
ODE (2.14b).

Proposition 2.5. The following conditions on the 5 parameters N, A1, A2, A3, B are necessary
and sufficient to imply that the general solution of the ODE (2.14b) be a polynomial of degree N,
hence they are as well necessary and sufficient to imply that the N-body problem (2.1) feature a
(time-independent) equilibrium solution, the configuration of which is indeed provided by the N
zeros z̄n of this polynomial (and it is a genuine equilibrium configuration, featuring N coordinates
z̄n all different among themselves).

Case (i) (the most generic):

A3 �= 0, A1 �= 0, and A2
2 −4 A1 A3 �= 0 , (2.24a)

B =−1
2

[
3 (N −1) A2 +(N −1−2 k)

(
A2

2 −4 A1 A3
)1/2

]
, (2.24b)

with k an arbitrary integer in the range 1 ≤ k ≤ N (see (2.22)). Then the equilibrium configura-
tion is identified by the N zeros z̄n of the polynomial (2.23), see Proposition 2.4 (of course, for
generic values of the arbitrary parameter γ ; excluding exceptional values—such as γ = 0—which
are incompatible with the assumption that the N zeros z̄n of the polynomial (2.23) be all different
among themselves). Note that this case violates the conditions (2.6) allowing to evaluate explicitly
the eigenvalues λ j (see Remark 2.3).

Case (ii):

A3 �= 0, A2 �= 0 , A1 = 0 . (2.25)

There are then two subcases.
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Case (ii.a):

B =−(N −1) A2 , (2.26a)

with the explicit expression of the N equilibrium coordinates z̄n reading

z̄n =−A2

A3

[
1+ γ exp

(
2 π i n

N

)]−1

. (2.26b)

Case (ii.b):

B =−N A2 , (2.27a)

with the explicit expression of the N equilibrium coordinates z̄n reading

z̄n =−A2

A3

[
1+ γ exp

(
2 π i n
N −1

)]−1

, n = 1,2, ...,N −1 ; z̄n = 0 . (2.27b)

Let us repeat that, here and throughout, i is of course the imaginary unit, i2 =−1; while here γ is
a constant parameter, arbitrary except for the following restrictions: γ �= 0, γ �= −1, and moreover
in Case (ii.a) γ �= 1 if N is even, in Case (ii.b) γ �= 1 if N is odd.

Case (iii):

A3 �= 0, A2 �= 0 , A1 =
A2

2
4 A3

�= 0 , (2.28a)

B =−3 (N −1) A2

2
, (2.28b)

with the explicit expression of the N equilibrium coordinates z̄n reading

z̄n =− A2

2 A3

[
1+ γ exp

(
2 π i n

N

)]−1

, n = 1,2, ...,N , (2.28c)

where i is again the imaginary unit and γ a constant parameter, arbitrary except for the following
restrictions: γ �= 0, γ �=−1, and γ �= 1 if N is even. Note that this case violates the conditions (2.6)
allowing to evaluate explicitly the eigenvalues λ j (see Remark 2.3).

Case (iv):

A3 = 0, A2 �= 0 , A1 �= 0 . (2.29a)

In this case the parameter B must satisfy the Diophantine condition

B = (−2 N +1+ k) A2 . (2.29b)

Here k is an integer in the range 1 ≤ k ≤ N, and the N equilibrium coordinates z̄n are the N zeros of
the monic polynomial

ψ̄ (z) = zN + γ
N

∑
m=k

(
c̄m zN−m) , (2.30a)
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with γ an arbitrary (nonvanishing) constant parameter and

c̄m =

(
N − k
m− k

)
am−k

m
, a =

A1

A2
, m = k,k+1, ...,N . (2.30b)

Equivalently, these N zeros are those of the following function:

ϕ (z) = 1+ γ P(−k, −N−1+k)
n

(
z+2 a

z

)
, a =

A1

A2
, (2.31)

with γ an arbitrary (nonvanishing) constant, P(α , β)
n (x) the standard (conveniently renormalized,

to make it monic) Jacobi polynomial (see for instance [6]) and k again an arbitrary integer in the
range 1 ≤ k ≤ N. Note that this is in fact a para-Jacobi polynomial [8]; and it also easily seen that
the polynomial ψ̄ (z) coincides itself with the following para-Jacobi polynomial [8]:

ψ̄ (z) =
(a

2

)N
pn

(
0,k−1;γ ;1+

2 z
a

)
. (2.32)

Case (v):

A3 = A2 = 0 , A1 �= 0 . (2.33)

Then if B does not vanish, B �= 0, the basic assumption that ψ̄ (z) , see (2.14a), be a polynomial
of degree N in z is not compatible with the ODE (2.14b), hence in this case there is no equilibrium
configuration of the N-body problem (2.1); while if B does vanish, B = 0, then (up to an arbitrary
overall multiplicative constant, which has been fixed here to make the polynomial ψ̄ (z) monic)

ψ̄ (z) = zN + γ (2.34a)

with γ an arbitrary (nonvanishing) constant, entailing for its N zeros the simple formula

z̄n = γ exp
(

2 π i n
N

)
. (2.34b)

The arbitrary constants γ in (2.34a) and (2.34b) are of course different, being related to each other
in an obvious manner.

Case (vi):

A3 = A2 = A1 = 0 . (2.35)

In this case if B does not vanish, B �= 0, the N-body problem (2.1) has no genuine equilibrium con-
figuration; while, if instead also B vanishes, B = 0, then any configuration z̄n with the N coordinates
z̄n all different among themselves is a genuine equilibrium configuration of the N-body problem
(2.1) (but it is easily seen that in this case the N-body problem (2.1) is not altogether isochronous,
because N of the 2N eigenvalues λ j vanish). �

Remark 2.6. Let us re-emphasize that we characterize an equilibrium configuration as genuine
if the N coordinates z̄n are all different among themselves, z̄n �= z̄m if n �= m; and that in Proposition
2.5—indeed, throughout this paper—we focus on such equilibria, to avoid the ambiguities otherwise
caused by the denominators present in the right-hand sides of the equations (2.1) and (2.13). Readers
interested in cases when this restriction does not hold are referred to Appendix A of [1]. �
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Let us conclude this Section 2 by listing the cases of interest in the present paper. They are those
such that the N-body problem (2.1) possesses a genuine equilibrium configuration (see Proposi-
tion 2.5) and moreover allows to compute explicitly the eigenvalues λ j (see Remark 2.3). We also
highlight the conditions which are sufficient to guarantee the isochrony of the N-body problem (see
Proposition 2.2, with q = q1, p = p1, p �= 2q, ω̃ = ω/(2q)).

Case 1.

A1 = D0 = 0 , A2 =
(
4 q2 − p2) ω̃2 , A3 �= 0 ,

B = −(N −1) A2 , D1 = 2 i p ω̃ , E =−N (2 q+ p) i ω̃ . (2.36a)

Note that D2 remains unrestricted. Here p, q and ω̃ are 3 a priori arbitrary parameters. The corre-
sponding eigenvalues λ (±)

m are

λ (±)
m = i

[
N (p−2 q)

(±1−1
2

)
+m (p±2 q)

]
ω̃ . (2.36b)

And the corresponding equilibrium coordinates read (see (6.57))

z̄n =− A2

A3 (1+ γ un)
=−A2 wn

A3
. (2.36c)

These results follow via elementary algebra from the relevant results of Proposition 2.2 and of Case
(ii.a) of Proposition 2.5. The corresponding N-body model (2.1) is isochronous iff p and q are
integers and p±2 q �= 0.

Case 2.

A1 = D0 = 0 , A2 =
(
4 q2 − p2) ω̃2 , A3 �= 0 ,

B =−N A2 , D1 = 2 i p ω̃ , E =− [(N −1) 2 q+(N +1) p] i ω̃ . (2.37a)

Again, D2 remains unrestricted and p, q, ω̃ are 3 a priori arbitrary parameters. The corresponding
eigenvalues λ (±)

m now read

λ (±)
m = i

[
N (p−2 q+2)

(±1−1
2

)
+m (p±2 q)

]
ω̃ . (2.37b)

And the corresponding equilibrium coordinates read (see (6.57) with un = exp
( 2 π i n

N−1

)
)

z̄n =− A2

A3 (1+ γ un)
=−A2 wn

A3
, n = 1, ...,N −1; z̄n = 0 . (2.37c)

These results follow via elementary algebra from the relevant results of Proposition 2.2 and of Case
(ii.b) of Proposition 2.5. Again, the corresponding N-body model (2.1) is isochronous iff p and q
are integers and p±2 q �= 0.

Co-published by Atlantis Press and Taylor & Francis 
                        Copyright: the authors 
                                       168



O. Bihun, F. Calogero, and G. Yi

Case 3.

A1 �= 0 , A2 =
(
4 q2 − p2

)
ω̃2 , A3 = D2 = 0 , D1 = 2 i p ω̃ ,

B = (−2N + k+1) A2 , E =− [k (2 q− p)+2 N p] i ω̃ . (2.38a)

Here k is any integer in the range from 1 to N, k = 1,2, ...,N, while D0 is unrestricted and p, q, ω̃
are 3 a priori arbitrary parameters. The corresponding eigenvalues λ (±)

m now read

λ (±)
m = i

[
k (p−2 q)

(±1−1
2

)
+m (p±2 q)

]
ω̃ . (2.38b)

And the corresponding equilibrium coordinates z̄n are the N zeros of the para-Jacobi polynomial
pn

(
0,k−1;γ ;1+ 2 z

a

)
, see (2.32) and, more explicitly, (2.30). These results follow via elementary

algebra from the relevant results of Proposition 2.2 and of Case (iv) of Proposition 2.5. Again, the
corresponding N-body model (2.1) is isochronous iff p and q are integers and p±2 q �= 0.

Case 4.1.

A1 �= 0 , A2 = A3 = B = D2 = 0 ,

D1 = 2 i ω , E =−2 N i ω , (2.39a)

and D0 unrestricted. The corresponding eigenvalues λ (±)
m now read

λ (+)
m = 2 i m ω , λ (−)

m = 0 . (2.39b)

Case 4.2

A1 �= 0 , A2 = A3 = B = D2 = 0 ,

D1 = −2 i ω ,E = i p ω . (2.40a)

Here D0 is unrestricted and p is an arbitrary rational number. The corresponding eigenvalues λ (±)
m

now read

λ (+)
m = 0, λ (−)

m = i (2 N − p−2 m) ω . (2.40b)

As for the corresponding equilibrium coordinates, they read, in both these two Cases 4.1 and
4.2, as follows (see (6.57)):

z̄n = γ un . (2.41)

Clearly in these two cases the corresponding N-body model is not isochronous. These results
follow via elementary algebra from the relevant results of Proposition 2.2 and of Case (v) of Propo-
sition 2.5.
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Case 5.1.

A1 = A2 = A3 = B = 0 ,

D1 = 2 i ω , E =−2 N i ω , (2.42a)

here D0 = 0 or D2 = 0. The corresponding eigenvalues λ (±)
m now read

λ (+)
m = 2 i m ω , λ (−)

m = 0 . (2.42b)

Case 5.2.

A1 = A2 = A3 = B = 0 ,

D1 =−2 i ω , E = i p ω , (2.43a)

here D0 = 0 or D2 = 0 and p is an arbitrary rational number. The corresponding eigenvalues λ (±)
m

now read

λ (+)
m = 0, λ (−)

m = i (2 N − p−2 m) ω . (2.43b)

And the corresponding equilibrium coordinates z̄n are in both cases N, quite arbitrary, numbers
(all different among themselves, for a genuine equilibrium).

These results follow via elementary algebra from the relevant results of Proposition 2.2 and of
Case (vi) of Proposition 2.5. Again, the corresponding N-body model (2.1) is not isochronous.

Finally let us recall that we excluded here the Cases (i) and (iii) of Proposition 2.5 because they
violate the conditions allowing to compute explicitly the eigenvalues λ j (see Remark 2.3).

3. Main findings

In this section the main findings of the present paper are reported; and tersely commented upon at
the end.

Proposition 3.1. Let the N ×N matrices Ā and D̄ be defined, componentwise, as follows:

Ānn =−(4 q2 − p2) ω̃2

6
(
N2 −1

) (
1+

1
ũn

)
, (3.44a)

Ānm =−2 (4 q2 − p2) ω̃2 ũn

1+ ũn

(
1+ ũm

ũn − ũm

)2

, n �= m ; (3.44b)

D̄nn =
(N −1) (−2 i p ω̃ +α)

2 ũn
− (2 N q+ p) i ω̃ , (3.44c)

D̄nm =

(
−2 i p ω̃ +

α
1+ ũn

)
1+ ũm

ũn − ũm
, n �= m . (3.44d)

Here ũn = γ un = γ exp(2πin/N) (see (6.57a)), with γ , ω̃ (see (2.36b)) and α = D2a2 three arbitrary
parameters and p and q two arbitrary integers (see (2.10)). Then the 2N roots of the determinantal
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polynomial P2N(λ )≡ det
(
λ 2 +λ D̄+ Ā

)
are λ j = iω̃s j with the 2N numbers s j all integers, indeed

P2N(λ )≡ det(λ 2 +λ D̄+ Ā) =
N

∏
m=1

(λ −λ (+)
m ) (λ −λ (−)

m ) (3.45a)

with

λ (±)
m = i

[
N (p−2 q)

(±1−1
2

)
+m (p±2 q)

]
ω̃ . (3.45b)

Of course these formulas, (3.44) and (3.45), also hold for arbitrary (not integer) values of the two
parameters p and q. �

These results follow from Case 1 (as detailed in the last part of the preceding Section 2), as
shown in the following Section 4.

The results which follow from Case 2 coincide with those of Proposition 3.1, up to a shift of the
parameter N; hence they are not reported.

Proposition 3.2. Let the N ×N matrices Ā and D̄ be defined, componentwise, as follows:

Ānn =−N2 −1
6

A1

ũn
; Ānm =−2 A1

ũn

(ũn − ũm)
2 , n �= m ; (3.46a)

D̄nn = E +
N −1

2

(
D1 +

D0

ũn

)
(3.46b)

D̄nm =
D0 +D1 ũn

ũn − ũm
, n �= m . (3.46c)

Here again ũn = γun = γ exp(2πin/N) (see (6.57a)), with γ , D0 and A1 three arbitrary parameters.
As for D1 and E , either D1 = 2 i ω , E = −2 N i ω (corresponding to Case 4.1 of Section 2), or
D1 =−2 i ω , E = i p ω , with ω an arbitrary parameter and p an arbitrary integer (corresponding to
Case 4.2 of Section 2). Then (in both cases) the 2N roots of the determinantal polynomial P2N(λ )≡
det

(
λ 2 +λ D̄+ Ā

)
are λ j = iωs j with the 2N numbers s j all integers (actually, N of them vanishing),

indeed

P2N(λ )≡ det(λ 2 +λ D̄+ Ā) = λ N
N

∏
m=1

(λ −λm) (3.47)

with

λm = λ (+)
m = 2 i m ω , (3.48a)

when

D1 = 2 i ω , E =−2 N i ω , (3.48b)

and

λm = λ (−)
m = i (2 N − p−2m) ω (3.48c)

when

D1 =−2 i ω , E = i p ω . (3.48d)
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Of course the last two formulas, (3.48c) and (3.48d), also hold for arbitrary (not integer) values of
the parameter p. �

These results follow from Case 4 (as detailed in the last part of the preceding Section 2), as
shown in the following Section 4.

Proposition 3.3. Let the N ×N matrices Ā and D̄ be defined, componentwise, as follows:

Ānn =

(
4 q2 − p2

)
ω̃2

6
[
(
k2 −1

)
x2

n +2 (k−1) (2 N − k+1) xn

+6 (2 N − k−1)+4 (N −1) (N − k−1)+ (k−1)2]
(
1− x2

n
)−1

, (3.49a)

Ānm = 2
(
4 q2 − p2) ω̃2 1− x2

n

(xn − xm)
2 , n �= m ; (3.49b)

D̄nn =− [k (2 q− p)+2 N p] i ω̃

− [α +2 i p ω̃ (xn −1)]
k−1+(2 N − k−1) xn

2 (1− x2
n)

, (3.49c)

D̄nm = [α +2 i p ω̃ (xn −1)] (xn − xm)
−1 , n �= m . (3.49d)

Here xn are the N zeros of the para-Jacobi polynomial pn (0,k−1;γ ;x) [8], with k an arbitrary
integer in the range 1 ≤ k ≤ N, and the parameter γ an arbitrary number; and as well arbitrary are
the two parameters ω̃ (see (2.36b)) and α = 2D0/a, and the two integers p and q. Then the 2N roots
of the determinantal polynomial P2N(λ ) ≡ det

(
λ 2 +λ D̄+ Ā

)
are λ j = iω̃s j with the 2N numbers

s j all integers, indeed

P2N(λ )≡ det(λ 2 +λ D̄+ Ā) =
N

∏
m=1

(λ −λ (+)
m ) (λ −λ (−)

m ) (3.50a)

with

λ (±)
m = i

[
k (p−2 q)

(±1−1
2

)
+m (p±2 q)

]
ω̃ . (3.50b)

Of course these formulas, (3.49) and (3.50), also hold for arbitrary (not integer) values of the two
parameters p and q. �

These results follow from Case 3 (as detailed in the last part of the preceding Section 2), as
shown in the following Section 4.

Proposition 3.4. Let the N ×N matrix D̄ be defined, componentwise, as follows:

D̄nn = E +
N

∑
�=1, � �=n

[
(z̄n − z̄�)

−1 (D0 +D1 z̄n +D2 z̄n z̄�)
]
, (3.51a)

D̄nm = [(z̄n − z̄m)]
−1 (D0 +D1 z̄n +D2 z̄2

n
)
, n �= m , (3.52a)

Here D0 = 0 or D2 = 0 and the N coordinates z̄n are now as well arbitrary (but different among
themselves). As for D1 and E , either D1 = 2 i ω , E = −2 N i ω (corresponding to Case 5.1 of
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Section 2), or D1 = −2 i ω , E = i p ω , with ω an arbitrary parameter and p an arbitrary integer
(corresponding to Case 5.2 of Section 2). Then the determinantal polynomial Pn(λ ) ≡ det (λ + D̄)

reads

Pn(λ )≡ det (λ + D̄) =
N

∏
m=1

(λ −λm) , (3.53)

with

λm = λ (+)
m = 2 i m ω , (3.54a)

when

D1 = 2 i ω , E =−2 N i ω , (3.54b)

and

λm = λ (−)
m = i (2 N − p−2m) ω (3.54c)

when

D1 =−2 i ω , E = i p ω . (3.54d)

Of course the last two formulas, (3.54c) and (3.54d), also hold for arbitrary (not integer) values of
the parameter p. �

These results follow from Case 5 (as detailed in the last part of the preceding Section 2), as
shown in the following Section 4.

Let us complete this section with the following comments on the results reported herein.
These findings are somewhat analogous to previous results: see in particular those reviewed

in [7], in Appendix D (entitled “Remarkable matrices and related identities”) of [4] and in Appendix
C (entitled “Diophantine findings and conjectures”) of [2], as well as those reported in the relevant
papers quoted in the Preface of the updated paperback version of [2] and in the very recent papers [8]
and [9]. The novelty is that the N ×N matrices identified herein—whose eigenvalues are exhibited
above and have a Diophantine character—depend on quite a few arbitrary parameters; more than
the somewhat analogous N×N matrices previously identified as featuring analogous properties. On
the other hand we expect that these results could also be proven by techniques analogous to those
previously employed (see in particular [7] and [4]): indeed, it is generally the case—in the field of
special functions and related topics—that alternative demonstrations are easily produced after some
findings have been identified and proven to begin with...

4. Behavior near equilibria and consequential Diophantine findings

In this section we pursue the investigation of the behavior of the N-body problem (2.1) in the
immediate vicinity of its equilibria (when they exist), see (2.15) and (2.16) yielding (2.17). Our task
here is to compute explicitly the two N ×N matrices Ā and D̄, see (2.17b). This is a standard task.
We report here the result, which the diligent reader will easily verify by inserting the ansatz (2.15)
in the equations of motion (2.1). Componentwise, these two N ×N matrices read as follows:
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Ānn = −{B−4 (N −1) A3 z̄n

+2
(
A1 +2 A2 z̄n +3 A3 z̄2

n
) N

∑
�=1, � �=n

(z̄n − z̄�)
−1

−2
(
A1 +A2 z̄n +A3 z̄2

n
)

z̄n

N

∑
�=1, � �=n

(z̄n − z̄�)
−2 } , (4.55a)

Ānm =−2
(
A1 +A2 z̄n +A3 z̄2

n
)

z̄n (z̄n − z̄m)
−2 , n �= m ; (4.55b)

D̄nn = E +
N

∑
�=1, � �=n

[
(z̄n − z̄�)

−1 (D0 +D1 z̄n +D2 z̄n z̄�)
]
, (4.56a)

D̄nm =
(
D0 +D1 z̄n +D2 z̄2

n
)
(z̄n − z̄m)

−1 . (4.56b)

The next task is to evaluate these two N ×N matrices Ā and D̄ by inserting in their definitions
(4.55) and (4.56) the explicit expressions of the N coordinates z̄n which correspond to the various
equilibria of the dynamical system (2.1). The relevant Cases 1-5 are reviewed at the end of Section
2.

We consider firstly the assignments corresponding to Case 1. Then one gets (via the notation and
the identities reported in the Appendix) the explicit expressions (3.44) of the two N ×N matrices Ā
and D̄. Proposition 3.1 is thereby proven

Secondly, we consider the assignments corresponding to Case 2, proceeding as in the preceding
case. But at the end of the relevant computations we conclude that this case yields the same findings
as the previous one (up to appropriate redefinitions of the parameter N).

Thirdly, we consider the assignments corresponding to the two Cases 4. Then one gets (again,
via the notation and the identities reported in the Appendix) the explicit expressions (3.46) of the
two N ×N matrices Ā and D̄. Proposition 3.2 is thereby proven.

Fourthly, we consider the assignments corresponding to Case 3. Then one gets the explicit
expressions (3.49) of the two N ×N matrices Ā and D̄. Proposition 3.3 is thereby proven.

Finally, we consider the assignments corresponding to Case 5. Then one finds that the matrix Ā
vanishes identically, Ā = 0, while the matrix D̄ has the explicit expression (3.51). Proposition 3.4 is
thereby proven.

5. Outlook

We believe that the search for new Diophantine findings of the kind reported in this paper is far
from over; as well as the search for new N-body problems amenable to exact treatments. Hence this
search constitutes an open—and, we opine, an interesting—research task, that we plan ourselves,
and hope others, will be able and willing to pursue.
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6. Appendix A: Identities

In this Appendix we display a number of identities which are presumably known and can in any
case be easily proven by going through them sequentially. The protagonists of these identities are
the N-th roots of unity,

un = exp
(

2 π i n
N

)
, (6.57a)

and the related quantities

wn = (1+ γ un)
−1 (6.57b)

with γ an arbitrary number (itself, however, not an N-th root of unity, so that the N quantities wn are
all finite).

(1−un)+
(
1−u−1

n
)
= (1−un)

(
1−u−1

n
)
= 2

[
1− cos

(
2 π n

N

)]
, (6.58a)

(1−un)
−1 +

(
1−u−1

n
)−1

=
(1−un)+

(
1−u−1

n
)

(1−un)
(
1−u−1

n
) = 1 . (6.58b)

N

∑
�=1, � �=n

[
f
(

un

u�

)]
=

N−1

∑
�=1

[ f (u�)] =
N−1

∑
�=1

[
f
(
u−1
�

)]

= − f (1)+
N

∑
�=1

[ f (u�)] =− f (1)+
N

∑
�=1

[
f
(
u−1
�

)]
. (6.59)

In these formulas, (6.59), f (u) is an arbitrary function.

N

∑
�=1

(
un

u�

)p

=
N

∑
�=1

up
� =

N

∑
�=1

u−p
� = 0 , p = 1,2, ...,N −1 , (6.60a)

N

∑
�=1, � �=n

(
un

u�

)p

=
N−1

∑
�=1

up
� =

N−1

∑
�=1

u−p
� =−up

n =−1 , p = 1,2, ...,N −1 . (6.60b)

N

∑
�=1, � �=n

(
1− un

u�

)−1

=
N−1

∑
�=1

(1−u�)
−1 =

N−1

∑
�=1

(
1−u−1

�

)−1

=
1
2

N−1

∑
�=1

[
(1−u�)

−1 +
(
1−u−1

�

)−1
]
=

1
2

N−1

∑
�=1

(1) =
N −1

2
, (6.61a)

N

∑
�=1, � �=n

[(
1− un

u�

)−1 un

u�

]
=

N−1

∑
�=1

[
(1−u�)

−1 u�
]
=

N−1

∑
�=1

(
u−1
� −1

)−1

=
N−1

∑
�=1

(u�−1)−1 =−
N−1

∑
�=1

(1−u�)
−1 =−N −1

2
, (6.61b)
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N

∑
�=1, � �=n

(
1− un

u�

)−1

u−1
� = u−1

n

N

∑
�=1, � �=n

(
1− un

u�

)−1 un

u�
=−N −1

2 un
; (6.61c)

N

∑
�=1, � �=n

[(
1− un

u�

)−1 u�
un

]
=

N−1

∑
�=1

[
(1−u�)

−1 u−1
�

]

=
N−1

∑
�=1

[
(u�−1)−1 +u−1

�

]
=

N −3
2

, (6.62a)

N

∑
�=1, � �=n

[(
1− un

u�

)−1

u�

]
= un

N

∑
�=1, � �=n

[(
1− un

u�

)−1 u�
un

]
=

N −3
2

un ; (6.62b)

N

∑
�=1, � �=n

[(
1− un

u�

)−1

u2
�

]
= u2

n

N

∑
�=1, � �=n

[(
un

u�

)−2 (
1− un

u�

)−1
]

= u2
n

N−1

∑
�=1

[
u−2
� (1−u�)

−1
]
= u2

n

N−1

∑
�=1

{
u−1
�

[
u−1
� +(1−u�)

−1
]}

= u2
n

(
−1+

N −3
2

)
=

(
N −5

2

)
u2

n . (6.63)

N

∑
�=1,� �=n

(1− u�
un

)−1 =−un

N

∑
�=1,� �=n

u−1
� (1− un

u�
)−1 =

N −1
2

; (6.64a)

N

∑
�=1,� �=n

u−2
� (1− un

u�
)−1 =

1
u2

n

N

∑
�=1,� �=n

(
un

u�
)2(1− un

u�
)−1

=
1
u2

n

N

∑
�=1,� �=n

u−2
� [1− (1−u�)−1] =−N −3

2u2
n

; (6.64b)

N

∑
�=1,� �=n

u−1
� (1− u�

un
)−1 =−un

N

∑
�=1,� �=n

u−2
� (1− un

u�
)−1 =

N −3
2un

; (6.64c)

N

∑
�=1,� �=n

u�(1− u�
un

)−1 =−un

N

∑
�=1,� �=n

(1− u�
un

)−1 =−N −1
2

un; (6.64d)

N

∑
�=1,� �=n

u2
�(1−

u�
un

)−1 =−un

N

∑
�=1,� �=n

u�(1− un

u�
)−1 =−N −3

2
u2

n . (6.64e)

wn −w� =−γ wn w� (un −u�)

= −γ
(

u−1
n + γ + γ

u�
un

+ γ2 u�

)−1 (
1− u�

un

)
, (6.65a)
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(wn −w�)
−1 =−γ−1

(
u−1

n + γ + γ
u�
un

+ γ2 u�

) (
1− u�

un

)−1

; (6.65b)

σ (1)
n (N;γ)≡

N

∑
�=1, � �=n

(wn −w�)
−1 =−N −1

2 γ un

(
1− γ2 u2

n
)
. (6.66)

σ (2)
n (N;γ)≡

N

∑
�=1, � �=n

(wn −w�)
−2 . (6.67)

[
N

∑
�=1, � �=n

(wn −w�)
−1

]2

=
[
σ (1)

n (N;γ)
]2

=
N

∑
�=1, � �=n

(wn −w�)
−1

N

∑
�′=1, �′ �=n

(wn −w�′)
−1

= σ (2)
n (N;γ)+

N

∑
�=1, �′=1, � �=n, �′ �=n, �′ �=�,

(wn −w�)
−1 (wn −w�′)

−1

= σ (2)
n (N;γ)

+
N

∑
�=1, �′=1, � �=n, �′ �=n, �′ �=�,

{[
(wn −w�)

−1 − (wn −w�′)
−1
]
(w�−w�′)

−1
}

= σ (2)
n (N;γ)+2

N

∑
�=1, �′=1, � �=n, �′ �=n, �′ �=�,

[
(wn −w�)

−1 (w�−w�′)
−1
]

= 3 σ (2)
n (N;γ)+2

N

∑
�=1, �′=1, � �=n, �′ �=�,

[
(wn −w�)

−1 (w�−w�′)
−1
]

;

(6.68a)

σ (2)
n (N;γ) =

1
3

[
σ (1)

n (N;γ)
]2

− 2
3

N

∑
�=1, � �=n

[
(wn −w�)

−1 σ (1)
� (N;γ)

]
; (6.68b)

σ (2)
n (N;γ) =

1
3

[
σ (1)

n (N;γ)
]2

+
N −1

3 γ

N

∑
�=1, � �=n

[
(wn −w�)

−1 (
u−1
� − γ2 u�

)]
; (6.68c)

(wn −w�)
−1 (

u−1
� − γ2 u�

)

= −γ−1
(

u−1
n + γ + γ

u�
un

+ γ2 u�

) (
u−1
� − γ2 u�

) (
1− u�

un

)−1

=
(
u−1

n + γ
) [

−1− (γ u�)
−1 + γ u� (1+ γ u�)

] (
1− u�

un

)−1

(6.69)
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σ (2)
n (N;γ) =−(N −1) (1+ γ un)

2

12 (γ un)
2 ·

·[(N −5)
(
1+ γ2 u2

n
)
+2(N +1) γ un

]
. (6.70)
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