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In this work we consider the modified Michaelis-Menten equation in biochemistry

ẋ =−a(E −y)x+by, ẏ = a(E −y)x− (b+ r)y, ż = ry.

It models the enzyme kinetics. We contribute to the understanding of its global dynamics, or more precisely, to
the topological structure of its orbits by studying the integrability problem. We prove that a = 0, or r = 0, or
E = 0 are the unique values of the parameters for which the system is integrable, and in this case we provide
an explicit expression for its first integrals.

Keywords: Liouvillian integrability, Michaelis-Menten equation, invariant algebraic surfaces, Darboux first
integrals, exponential factors

2010 Mathematics Subject Classification: 34C05 34A34

1. Introduction

In biochemistry, the Michaelis-Menten equation models the enzime kinetics, that is, the chemical
reactions that are catalysed by enzymes. In particular, it describes the rates of irreversible enzymatic
reactions by relating reaction rates to the concentrations of the substrate. It was given by Michaelis
and Menton in [7].

In this work we consider the Michaelis-Menten equation in the following form (see [7]):

ẋ =−a(E − y)x+by, ẏ = a(E − y)x− (b+ r)y, ż = ry. (1.1)

where x,y,z are the thickness of matters, a,b,r are rates of response, which are nonnegative real
numbers and E is the quantity of enzyme, which is a constant. A number of dynamic aspects of
system (1.1) have been analysed. In [3] it was discussed the existence of periodic solutions and
in [4], the authors give an equation, called the Goldbeter-Koshland equation that gives the steady
state solution for a chemical equilibrium modeled by the Michaelis-Menton kinetics.

Here we further contribute to the understanding of the complexity, or more precisely of the
topological structure of the dynamics of system (1.1) by studying its integrability.

For the three dimensional system of differential equations the existence of one first integral
reduces the complexity of its dynamics and the existence of two first integrals that are functionally
independent solves completely the problem (at least theoretically) of determining its phase portraits.
In general for a given differential system it is a difficult problem to determine the existence or non–
existence of first integrals. Thus, for proving our main results we shall use the information about
invariant algebraic surfaces of this system. This is the basis of the so called Darboux theory of
integrability, for more details see Section 2.
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We first consider the case in which either a = 0, or r = 0, or E = 0. We start with the following
result.

Theorem 1.1. The following holds for system (1.1).

(a) if a = 0, it is integrable with the polynomial first integrals

H1 = (b+ r)x+by and H2 = rx−hz.

(b) if r = 0 and a �= 0, it is integrable with the polynomial first integrals

H3 = x+ y and H4 = z.

(c) if E = 0 and ar �= 0, it is integrable with the first integrals

H5 = x+ y+ z and H6 =
b+ax

a
ea(x+y)/r.

It is straightforward to verify that H1, H2, H3, H4, H5 and H6 in the statement of the theorem are
first integrals of system (1.1). Therefore the proof of Theorem 1.1 will be omitted and from now on
we consider the case in which arE ∈ R\{0}. We note that the first integrals H1,H2,H3,H4,H5 and
H6 are all Liouvillian.

When arE ∈ R\{0} we have that

H = x+ y+ z

is a first integral of system (1.1). Therefore, setting H = h, h ∈R we can rewrite system (1.1) as the
following system in the plane (z = H − x− y):

ẋ =−a(E − y)x+by, ẏ = a(E − y)x− (b+ r)y. (1.2)

From now on instead of working with system (1.1) we will work with system (1.2). In particular,
we introduce the variables X = x+ y,Y = y. We have that

Ẋ =−rY, Ẏ =−(b+ r+aE)Y +aEX −aY X +aY 2. (1.3)

The following theorem is the main result of this paper. In particular, it states the non-existence
of Liouvillian first integrals for system (1.1) when arE ∈R\{0}.

Theorem 1.2. The following statements hold for system (1.3) with arE ∈ R\{0}:

(a) It does not admit any polynomial first integral;
(b) It has an irreducible Darboux polynomial with non-zero cofactor if and only if b = 0 and in this

case the Darboux polynomial is f = X −Y and the cofactor is −a(E −Y ).
(c) Its only exponential factor is eX with the cofactor −rY ;
(d) It does not admit any Darboux first integral.
(e) It does not admit any Liouvillian first integral.

As far as we know the Liouvillian first integral of some multi-parameter family of planar poly-
nomial differential systems has been classified for very few families of systems (see for instance
[1, 6, 8]).

The paper is organised as follows. In Section 2 we introduce some basic definitions and results
related to the Darboux theory of integrability that we shall need in order to prove one of our main
results. In Section 3 we prove Theorem 1.2.
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2. Preliminary results

During recent years the interest in the study of integrability of differential equations has attracted
much attention. Darboux theory of integrability plays a central role in the integrability of the poly-
nomial differential models. It gives a sufficient condition for the integrability inside the family of
Darboux functions. More precisely, the significance of this method is that we can compute Darboux
first integrals by knowing a sufficient number of algebraic invariant surfaces (the so-called Darboux
polynomials) and of the so-called exponential factors. We would like to highlight that it works for
real or complex polynomial ordinary differential equations. The study of complex invariant alge-
braic curves is necessary for obtaining all the real first integrals of a real polynomial differential
equation, for more details see [5].

We associate to system (1.1) the following vector field

X=−rY
∂

∂X
+(−(b+ r+aE)Y +aEX −aY X +aY 2)

∂
∂Y

. (2.1)

Let U ⊂ R
2 be an open subset. We say that the non–constant function H : U → R is a first integral

of the polynomial vector field (2.1) associated to system (1.3), if H(X(t),Y (t)) = constant for all
values of t for which the solution (X(t),Y (t)) of X is defined on U . Clearly H is a first integral of
X on U if and only if XH = 0 on U . When H is a polynomial we say that H is a polynomial first
integral.

Let h = h(X ,Y ) ∈ C[X ,Y ] be a non–constant polynomial. We say that h = 0 is an invariant
algebraic surface of the vector field X in (2.1) if it satisfies Xh = Kh, for some polynomial K =

K(X ,Y) ∈ C[X ,Y ], called the cofactor of h. Note that K has degree at most 1. The polynomial h is
called a Darboux polynomial, and we also say that K is the cofactor of the Darboux polynomial h.
We note that a Darboux polynomial with a zero cofactor is a polynomial first integral.

The following proposition provides a basic property of the Darboux polynomials and it states
that to study Darboux polynomials it is sufficient to study the irreducible ones.

Proposition 2.1. Let f be a polynomial and f =
s

∏
j=1

f α j
j its decomposition into irreducible factors

in C[x1, . . . ,xn]. Then, f is a Darboux polynomial if and only if all the f j are Darboux polynomials.

Moreover, if K and Kj are the cofactors of f and f j, then K =
s

∑
j=1

α jKj.

Let g,h ∈ C[X ,Y ] be coprime. We say that a non–constant function E = eh/g is an exponential
factor of the vector field X given in (2.1) if it satisfies XE = LE , for some polynomial L = L(X ,Y )∈
C[X ,Y ], called the cofactor of E and having degree at most 1. Note that this relation is equivalent
to

−rY
∂ (g/h)

∂X
+(−(b+ r+aE)Y +aEX −aY X +aY 2)

∂ (g/h)
∂Y

= L.

For a geometrical and algebraic meaning of the exponential factors see [2].

A first integral G of system (1.1) is called of Darboux type if it is of the form

G = f λ1
1 · · · f λp

p Eμ1
1 · · ·Eμq

q , (2.2)
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where f1, . . . , fp are Darboux polynomials, E1, . . . ,Eq are exponential factors and λ j,μk ∈ C for
j = 1, . . . , p, k = 1, . . . ,q. For more information on the Darboux theory of integrability see, for
instance, [5] and the references therein.

For a proof of the next proposition see [2].

Proposition 2.2. The following statements hold:

(a) If E = eg/h is an exponential factor for the polynomial system (1.1) and h is not a constant
polynomial, then h = 0 is an invariant algebraic curve.

(b) Eventually eg can be an exponential factor, coming from the multiplicity of the infinite invariant
straight line.

A Liouvillian first integral is a first integral H which is a Liouvillian function, that is, roughly
speaking which can be obtained “by quadratures” of elementary functions. For a precise definition
see [9]. The study of the Liouvillian first integrals is a classical problem of the integrability theory
of the differential equations which goes back to Liouville, see for details again [9].

A non–constant complex function R : C2 → C is an integrating factor of the polynomial vector
field X in (2.1) on U , if one of the following three equivalent conditions holds

∂ (RP)
∂X

=−∂ (RQ)

∂Y
, div(RP,RQ) = 0, XR =−Rdiv(P,Q),

on U and where P = −rY and Q = −(b+ r+ aE)Y + aEX − aY X + aY 2. As usual the divergence
of the vector field X is given by

div(P,Q) =
∂P
∂X

+
∂Q
∂Y

.

To prove the results related with Liouvillian first integrals we use the following result proved
in [9].

Theorem 2.1. The polynomial differential system (1.3) has a Liouvillian first integral if and only if
it has an integrating factor of Darboux type.

We also need the following well-known statement.

Theorem 2.2. Suppose that the polynomial vector field (1.3) has p invariant Darboux polynomials
with cofactors Ki, for i = 1, . . . , p and q exponential factors with cofactors L j, for j = 1, . . . ,q. Then
there exist λi,μ j ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
j=1

μ jL j =−div(P,Q),

if and only if the function of Darboux type (2.2) is an integrating factor of the vector field X.

3. Proof of Theorem 1.2

We separate the proof of Theorem 1.2 into different propositions.

Proposition 3.1. System (1.3) with arE ∈ R\{0} does not admit a polynomial first integral.
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Proof. Let h be a polynomial first integral of system (1.3). Then it satisfies

−rY
∂h
∂X

+(−(b+ r+aE)Y +aEX −aY X +aY 2)
∂h
∂Y

= 0. (3.1)

Without loss of generality we can write

h =
n

∑
j=1

hj(X ,Y ), (3.2)

where each hj = hj(X ,Y ) is a homogeneous polynomial of degree j and we assume that hn �= 0.

Computing the terms of degree n+1 in (3.1) we get

aY (Y −X)
∂hn

∂Y
= 0. (3.3)

Solving this differential equation we obtain hn = hn[X ]. Since hn �= 0 is a homogeneous polynomial
of degree n ≥ 1, we conclude that hn = αnXn, with αn ∈C.

Computing the terms of degree n in (3.1) we get

aY (Y −X)
∂hn−1

∂Y
− rY nαnXn−1 = 0. (3.4)

Evaluating it on X = Y it yields −rnαnY n = 0, which implies αn = 0, and this is not possible. This
concludes the proof of the proposition.

Proposition 3.2. System (1.3) with arE ∈ R \ {0} admits an irreducible Darboux polynomial f
with nonzero cofactor K if and only if b = 0 and in this case f = X −Y and K =−a(E −Y ).

Proof. Let h be an irreducible Darboux polynomial of system (1.1) with nonzero cofactor K, where
K = α0 +α1X +α2Y , with αi ∈ C for i = 0,1,2 not all zero.

Then h satisfies

−rY
∂h
∂X

+(−(b+ r+aE)Y +aEX −aY X +aY 2)
∂h
∂Y

= (α0 +α1X +α2Y )h. (3.5)

It is easy to see by direct computations that if h has degree one then h is different from zero if and
only if b = 0 and in this case h =Y −X . Now we assume that h is irreducible and has degree greater
or equal to two. Thus we decompose h as a sum of homogeneous polynomials similarly as in (3.2),
where n ≥ 2 and hn �= 0.

Computing the terms of degree n+1 in (3.5) we get

aY (Y −X)
∂hn

∂Y
= (α1X +α2Y )hn.

Solving this linear differential equation we obtain

hn=Kn(X)Y−α1/a(Y −X)α2/a+α1/a,

where Kn is a function in the variable X . Since hn is a homogeneous polynomial of degree n we
must have α1 = 0 and α2 = am with m ∈ N. Hence

hn = cnXn−m(Y −X)m, (3.6)

where cn ∈ C\{0} (since hn �= 0).
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Computing the terms of degree n in (3.5) we get

aY (Y −X)
∂hn−1

∂Y
+(aEX − (b+ r+aE)Y)

∂hn

∂Y
− rY

∂hn

∂X
= amY hn−1 +α0hn. (3.7)

Substituting (3.6) into equation (3.7) and solving it with respect to hn−1 we obtain

hn−1 = cn(X)(X −Y )m − cn

a
Xn−m−1(Y −X)m−1(bmX

+(X −Y )
(
(α0 +aEm−mr+nr) log(X −Y )− (α0 +aEm) log(−Y )

)
.

Since arE �= 0, cn �= 0 and hn−1 is a homogeneous polynomial of degree n−1, we get the conditions

m = n and α0 =−aEn.

Hence

hn = cn(Y −X)n and hn−1 =−cnbn
a

(X −Y)n−1. (3.8)

Now we consider two cases.

Case 1: b �= 0. Computing the terms of degree n−1 in (3.5) we get

aY (Y −X)
∂hn−2

∂Y
+(aEX − (b+ r+aE)Y)

∂hn−1

∂Y
− rY

∂hn−1

∂X
= anY hn−2 −aEnhn−1. (3.9)

Substituting (3.8) into equation (3.9) and solving it with respect to hn−2 we obtain

hn−2 =
cnbn
2aX2 (Y −X)n−2(X(b(n−1)X +2aE(X −Y ))

+2aE(X −Y )2(− log(X −Y )+ log(−Y ))
)
+Kn−2(X)(X −Y )n.

Since hn−2 is a homogeneous polynomial of degree n−2 and aEb �= 0 we get a contradiction. Hence
this case is not possible.

Case 2: b = 0. In this case hn = cn(Y −X)n and hn−1 = 0. We consider h̄ to be the restriction of
h to Y = X . If we write h̄ in sum of its homogeneous parts we get that h̄ = ∑n

j=0 h̄ j where each
h̄ j = h̄ j(X) is a homogeneous polynomial of degree j and h̄ j is the restriction of hj to Y = X . Since
h is irreducible we must have h̄ �= 0. However we have that h̄n = 0 and then h̄ = 0, which is not
possible. This completes the proof of the proposition.

Proposition 3.3. The only exponential factors of system (1.3) with arE ∈ R \{0} are eX with the
cofactor −rY .

Proof. We consider two different cases.

Case 1: b �= 0. In this case it follows from Proposition 2.2 that we can write E = eg and g
satisfies

−rY
∂g
∂X

+(−(b+ r+aE)Y +aEX −aY X +aY 2)
∂g
∂Y

= α0 +α1X +α2Y, (3.10)

where αi ∈ C, for i = 0,1,2 are not all zero.

We first prove that g is a polynomial of degree two. We proceed by contradiction. Assume that
g is polynomial of degree n ≥ 3. We write it as a sum of its homogeneous parts as in equation (3.2)
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with hj replaced by gj. Since the right–hand side of equation (3.10) has degree at most one, com-
puting the terms of degree n+1 in equation (3.10) we get

aY (Y −X)
∂gn

∂Y
= 0,

which is equation (3.3) replacing hn by gn. Then the arguments used in the proof of Proposition 3.1
imply that gn = αnXn with αn ∈C.

Now computing the terms of degree n ≥ 3 in (3.10) and taking into account that the right–hand
side of (3.10) has degree one, we get equation

−rY
∂gn−1

∂X
+(−(b+ r+aE)Y +aEX)

∂gn−1

∂Y
+aY (Y −X)

∂gn

∂Y
= 0,

which is equation (3.4) with hn replaced by gn and hn−1 replaced by gn−1. The arguments used in
the proof of Proposition 3.1 imply that gn = 0. Then we have that gn = 0 for n ≥ 3, and thus, g is
a polynomial of degree at most two satisfying (3.10). Solving now (3.10) we get that g must be X
with cofactor L =−rY and the proposition follows.

Case 2: b = 0. In this case it follows from Proposition 2.2 that we can write E = eg/(Y−X)n
with

n ∈ N∪{0} and g being coprime with Y −X (when n > 0). Furthermore, g ∈ C[X ,Y ] satisfies

− rY
∂g
∂X

+(−(b+ r+aE)Y +aEX −aY X +aY 2)
∂g
∂Y

= na(E −Y )g+(α0 +α1X +α2Y )(Y −X)n,

where αi ∈C, for i = 0,1,2 are not all zero. If n = 0 then E = eg and g satisfies equation (3.10) and
proceeding as in Case 1 we get that g = X with the cofactor L =−rY . Now we assume that n > 0.
In this case if we denote by ḡ = ḡ(X) the restriction of g to Y = X we get that ḡ �= 0 (otherwise g
would not be coprime with Y −X ) and satisfies

−rX
∂ ḡ
∂X

= na(E −X)ḡ.

Solving it we get ḡ = KeanX/rX−adn/r, K ∈ C. Since ḡ must be a polynomial and anr �= 0 we must
have K = 0 and then ḡ = 0, a contradiction. This case is not possible. This concludes the proof of
the proposition.

3.1. Proof of Theorem 1.2

Statements (a), (b) and (c) in the theorem follow directly from Propositions 3.1, 3.2 and 3.3, respec-
tively. In what follows we prove statements (d) and (e) by contradiction.

We first prove statement (d). Assume that G is a first integral of Darboux type. Then in view of
its definition in (2.2) and taking into account Propositions 3.1, 3.2 and 3.3, G must be of the form

G =

{
eμ1X , with μ1 ∈ C, if b �= 0,

(Y −X)λ1eμ1X , with λ1,μ1 ∈C, if b = 0.
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Since G is a first integral it must satisfy XG = 0, that is,

0 = XG =−rY
∂G
∂X

+(−(b+ r+aE)Y +aEX +aY (Y −X))
∂G
∂Y

=

{
−rμ1Y G, if b �= 0,

(−aλ1(E −Y )− rμ1Y )G, if b = 0.

Hence, since r �= 0 we get that if b �= 0 then μ1 = 0 and thus G is a constant. Moreover, since aE �= 0
if b = 0 we must have λ1 = 0 and then also μ1 = 0 and thus G is also a constant. In both cases we
get that G is a constant, in contradiction with the fact that G is a first integral. This completes the
proof of statement (d).

Now we prove statement (e). By Theorem 2.1 in order that system (1.3) has a Liouvillian first
integral it must have an integrating factor of Darboux type (see (2.2)). From Theorem 2.2 system
(1.3) has an integrating factor of Darboux type if and only if

b+ r+aE +aX −2aY =

{
−rμ1Y, if b �= 0,

−aλ1(E −Y )− rμ1Y, if b = 0,
(3.11)

with λ1,μ1 ∈ C. Since a �= 0 the equality in (3.11) is not possible because the right-hand side is
independent of X . This ends the proof of the theorem.
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