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In 2008–2009, L. F. O. Costa and C. A. R. Herdeiro proposed a new gravito-electromagnetic analogy,
based on tidal tensors. We show that connections on the tangent bundle of the space-time manifold
help in finding an advantageous geometrization of their ideas. Moreover, the combination tidal
tensors — connections on tangent bundle can underlie a common mathematical description of the
main equations of gravity and electromagnetism.
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1. Introduction

In two recent papers, [7, 8], L. F. O. Costa and C. A. R. Herdeiro provided a new gravito-
electromagnetic analogy, meant to overcome the limitations of the two classical ones —
the linearized approach, which is only valid in the case of a weak gravitational field and
the one based on Weyl tensors, which compares tensors of different ranks (an interesting,
related approach is also made in [9]). The central role in this analogy is played by worldline
deviation equations and the resulting tidal tensors; it is in terms of these tensors that the
fundamental equations of the gravitational and electromagnetic fields are expressed and
compared. We argue that this idea is a natural one and it can underlie not only an analogy
between the two fields, but also a common geometric language for them.

Still, in the cited papers, in order to be able to make such an analogy, it is imposed a
restriction: in the case of worldline deviation for charged particles in flat Minkowski space,
covariant derivatives of the deviation vector field w are required to identically vanish along
the initial worldline.

We have shown in a previous paper, [18], that, by raising to the tangent bundle TM
of the space-time manifold and using an appropriate 1-parameter family of Ehresmann
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connections
α
N , any restriction upon w becomes unnecessary — the “work” of eliminating

the unwanted term in the worldline deviation equation is taken by the adapted frame.
Moreover, the obtained tidal tensor expressions for the Einstein and Maxwell equations are
valid not only in the case when we have either gravity only, or electromagnetism only (as in
[7, 8]), but also in the general case, when both fields are present; thus, connections on the
space-time tangent bundle, together with tidal tensors, can provide a common geometric
language for the two physical fields.

Ehresmann connections give rise to very convenient frames on TM : adapted frames.
Also, to a given Ehresmann connection (not necessarily a linear one), one can naturally
attach a covariant differentiation law for tensors on TM . This mechanism of building covari-
ant differentiation laws starting from an Ehresmann connection is currently used in a geo-
metric theory of differential equations, [1, 6]. In the present paper, we will use it (in [18],
we had used different covariant derivatives), because it offers a series of advantages: (1) lifts
of worldlines of charged particles are autoparallel curves; (2) worldline deviation equations
become similar to the usual Jacobi equations (with no restrictions needed upon the devia-
tion vector field); (3) the obtained Ricci tensors, to be further used in a variational theory,
can be very easily obtained from tidal tensors.

Thus, information regarding gravity will be encoded in the metric, while information

regarding the electromagnetic field will be contained in the connections
α
N and in the cor-

responding covariant differentiation laws
α
D. This idea was first proposed by Miron and

collaboratorsa in [15, 13, 14] and we adopted it here as it leads to simpler computations
than other approaches on TM and to elegant equations; still, we use different connections
α
N,

α
D, meant to offer a more convenient expression for worldline deviation equations.
The paper is organized as follows. In Sec. 2, we present the elements of the gravito-

electromagnetic analogy by Costa and Herdeiro ([7, 8]) which are necessary in the subse-
quent. In Sec. 3, we present known results regarding Ehresmann connections and attached
covariant differentiation laws. In Sec. 4, we determine those connections on TM which lead
to the simplest geodesic deviation equations; the results in this section are an application
of the equation ([3]) of deviations of affine geodesics on fiber bundles. In Sec. 5, we intro-
duce the connections which “fit” the equations of charged particles subject to gravitational
and electromagnetic fields. Section 6 is devoted to the expressions of the basic equations of
the two physical fields in terms of tidal tensors. In the last section, we rewrite in terms of
adapted frames Costa and Herdeiro’s equations and point out that the restriction imposed
in ([7, 8]) upon the deviation vector field is no longer necessary.

2. Tidal Tensors and Gravito-Electromagnetic Analogy

Consider a 4-dimensional Lorentzian manifold (M,g), with signature (+,−,−,−), regarded
as space-time manifold, with local coordinates x = (xi)i=0,3 and Levi-Civita connection ∇,

aOther attempts of unifying gravity and electromagnetism, based on tangent bundle geometry, try to include
also information regarding electromagnetism in the metric tensor — thus getting Finslerian (Randers-type,
Beil-type etc.) metrics, ([5, 4]). Also, recently, Wanas, Youssef and Sid-Ahmed produced a description,
[19], based on teleparallelism on TM . Another version, using complex Lagrange geometry, is proposed by
Munteanu, [16].
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with coefficients γi
jk and curvature tensor r. Throughout the paper, we will mean by (∂i) the

natural basis of the module of vector fields on M ; the speed of light c and the gravitational
constant k will be considered equal to 1.

Worldlines of particles subject to gravity only are geodesics s �→ (x(s)) of (M,g):

∇ẋi

ds
= 0, (2.1)

where s is the natural parameter (i.e. gij ẋ
iẋj = 1). Curvature of space-time becomes man-

ifest in the geodesic deviation equation:

∇2wi

ds2
= ei

kw
k, (2.2)

where w = wi∂i is the deviation vector field and e = ei
jdxj ⊗ ∂i, e

i
k = r i

j klẋ
j ẋl is the tidal

(electrogravitic) tensor.b

On the other side, in special relativity (where gij = diag(1,−1,−1,−1)), the electro-
magnetic field is described by the 4-potential 1-form A = Ai(x)dxi and the electromagnetic
2-form F = dA, i.e.

F =
1
2
Fijdxi ∧ dxj , Fij = ∂iAj − ∂jAi. (2.3)

Worldlines of charged particles subject to an electromagnetic field are solutions of the
Lorentz equations:

∇ẋi

ds
=

q

m
F i

jẋ
j; (2.4)

here, ∇ẋi

ds = d2xi

ds2 , q is the electric charge of the particle and m, its mass. For families
of worldlines of particles with same ratio q

m , one can determine the worldline deviation
equation:

∇2wi

ds2
=

q

m

(
Ei

kw
k + F i

k

∇wk

ds

)
, (2.5)

where

Ei
k = ẋj∇∂k

F i
j. (2.6)

Obviously, Eqs. (2.4) and (2.5) also hold true in the case when both gravity and electro-
magnetism are present, with the only difference that, in this case, the covariant derivative
is no longer trivial.

We notice the appearance of a term containing the derivatives ∇wk

ds in the right-hand
side of (2.5), which hinders an analogy between (2.2) and (2.5). This problem is solved in

bHere, we have used a different sign convention for the curvature tensor (r i
j kl = ∂lγ

i
jk − ∂kγi

jl + γh
jkγi

hl −
γh

jlγ
i
hk) than in [7, 8], resulting in a different sign for ei

j .
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[7], by imposing the restriction that, along the initial worldline:

∇wi

ds
= 0; (2.7)

under this assumption, the worldline deviation equations reduce to:

∇2wi

ds2
=

q

m
Ei

kw
k, (2.8)

which makes it possible to compare (2.2) and (2.5). Following the analogy Ei
k ∼ ei

k, [7, 8],
Maxwell’s equations are written (after contracting with the 4-velocity ẋ) as:

∇∂i
F ij = 4πJj ⇒ Ei

i = 4πρc,

∇∂i
Fjk + ∇∂k

Fij + ∇∂j
Fki = 0 ⇒ E[ij] = ẋk∇∂k

Fij ,
(2.9)

(where E[ij] = Eij − Eji; and ρc := Jiẋ
i), while gravitational field equations take the form:

rij = 8π
(

Tij − 1
2
gijT

l
l

)
⇒ ei

i = −4π(2ρm − T i
i),

rjk = rkj ⇒ e[ij] = 0,
(2.10)

where Tij is the stress-energy tensor and ρm := Tijẋ
iẋj.

In the cited papers, the authors also use the analogues of the above tidal tensors, built
from the Hodge duals of the 2-forms r and F, leading to two more pairs of Eqs. (2.9) and
(2.10). As we will see in Sec. 6, (2.9) and (2.10) are also sufficient for our purposes, so we
have omitted these two extra pairs of equations.

3. Connections on Tangent Bundle

In the following three sections, we will try to find a notion of covariant derivative D such
that:

• the Lorentz equations of motion (2.4) are equivalent to geodesic equations for D;
• worldline deviation Eqs. (2.5) become formally similar to the classical Jacobi equation

(i.e. D2w
ds2 is equal to a linear expression in w, which does not contain any of the derivatives

Dẋ
ds or Dw

ds ).

Remark 3.1. Since the right-hand sides of both (2.4) and (2.5) depend on the parameter q
m ,

a single connection is not enough — we actually need a 1-parameter family of connections D.

To this aim, we will raise to the tangent bundle (TM , π,M) of the space-time manifold;
there, we denote the local coordinates by (x ◦ π, y) =: (xi, yi)i=0,3 and by ,i and ·i, partial
differentiation with respect to xi and yi respectively.

An Ehresmann connection on TM is defined as a splitting TuTM = HuTM ⊕ VuTM of
the tangent space at each u ∈ TM , where VuTM is the vertical subspace, spanned by ∂

∂yi |u.

A first advantage of the use of Ehresmann connection is the presence of adapted frames
and subsequently, of tensor components with simple transformation rules.
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Any Ehresmann connection N on TM , [13, 17], gives rise to the adapted basis
(

δi =
∂

∂xi
− N j

i(x, y)
∂

∂yj
, δ̇i =

∂

∂yi

)
, (3.1)

(where the horizontal subspace HuTM is spanned by δi’s calculated at u) and to its dual
(dxi, δyi = dyi + N i

jdxj). With respect to coordinate transformations on TM , induced by
coordinate transformations xi′ = xi′(x) on M, the elements of the adapted basis/cobasis
transform by the same rules as vector fields/covector fields on M, i.e.

δi =
∂xi′

∂xi
δi′ , δ̇i =

∂xi′

∂xi
δ̇i′ , dxi =

∂xi

∂xi′ dxi′ , δyi =
∂xi

∂xi′ δy
i′

(to a difference from the elements ∂
∂xi of the natural basis ( ∂

∂xi ,
∂

∂yi ), which obey a more
complicated rule, [13]).

Any vector field X on TM can be (uniquely) written as: X = Xiδi + X̃iδ̇i; its horizontal
component hX = Xiδi and its vertical component vX = X̃iδ̇i, taken separately, are vector
fields on TM . Similarly, 1-forms (and accordingly, tensors of any rank) split into components
which are tensor fields.c

The adapted basis {δi, δ̇i} is generally nonholonomic, the Lie brackets of its elements
are:

[δj , δk] = Ri
jkδ̇i, [δj , δ̇k] = Li

kj δ̇i, [δ̇j , δ̇k] = 0;

where, [17],

Ri
jk = δkN

i
j − δjN

i
k (3.2)

provides the curvature object of N and

Li
kj = δ̇kN

i
j (3.3)

is called the connection object of N (for reasons we will see several paragraphs below).
In the presence of an Ehresmann connection, vector fields on M can be mapped to

horizontal vector fields on TM :X = Xi(x)∂i �→ lh(X) = Xi(x)δi by means of the horizontal
lift lh; similarly, 1-forms ω = ωi(x)dxi on M can be “raised” into horizontal 1-forms lh(ω) =
ωi(x)dxi on TM .

Another advantage of Ehresmann connections is the possibility of defining covariant
derivatives of vector (and tensor) fields on TM . Such a notion of covariant derivative of
vector fields TM is given by the rule:

(X,Y ) �→ DXY := v[hX, vY ] + h[vX, hY ] + J [vX, θY ] + θ[hX, JY ], (3.4)

where J = δ̇i ⊗ dxi and θ = δi ⊗ δyi.

cHence, the coordinates Xi, X̃i in the adapted basis (and accordingly, coordinates of 1-forms and of tensors
of higher rank) also transform by the same rule as the components of vector fields/1-forms/tensors on the
base manifold M.
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The above defined mapping D is called the Berwald covariant differentiation lawd

attached to the Ehresmann connection N . Moreover, for any two vector fields X, Y on
TM , there holds, [1]:

DX(hY ) = hDXY, DX(vY ) = vDXY. (3.5)

The action of D on the vectors of the adapted basis is given by:

Dδk
δj = Li

jkδi, Dδk
δ̇j = Li

jkδ̇i, Dδ̇k
δj = Dδ̇k

δ̇j = 0, (3.6)

where the functions Li
jk define the connection object (3.3).

The torsion tensor of D is

T = T i
jkdxk ⊗ dxj ⊗ δi + Ri

jkdxk ⊗ dxj ⊗ δ̇i,

where T i
jk = Li

jk − Li
kj and Ri

jk is the curvature object (3.2). The curvature tensor is
very easily expressed in terms of the curvature and connection objects:

R = R i
j klδi ⊗ dxl ⊗ dxk ⊗ dxj + R i

j klδ̇i ⊗ dxl ⊗ dxk ⊗ δyj

+ P i
j klδi ⊗ δyl ⊗ dxk ⊗ dxj + P i

j klδ̇i ⊗ δyl ⊗ dxk ⊗ δyj , (3.7)

where:

R i
j kl = δ̇jR

i
kl, P i

j kl = δ̇lL
i
jk. (3.8)

4. Geodesics and their Deviations

Consider a curve c : t �→ (xi(t)) on the base manifold M. We denote by c′ : t �→ (xi(t), ẋi(t))
its lift to TM and by V = dc′

dt , its tangent vector field (identified along c′ with the operator
d
dt). In the adapted basis, V is written as:

V = yiδi +
δyi

dt
δ̇i, yi = ẋi. (4.1)

The curve c : t �→ (xi(t)) is called an autoparallel curve (a geodesic), of the Ehresmann
connection N, if

vV = 0.

In local writing, this is, [13]:

δyi

dt
≡ dyi

dt
+ N i

j(x, y)yj = 0, yi = ẋi. (4.2)

dThe Berwald covariant differentiation law (Berwald connection) is defined in [2, 1] for a special class of
Ehresmann connections; still, the generalization to arbitrary ones is straightforward — and it obeys all the
properties of an affine (linear, Cartan-type, [11]) connection on TM .
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On the other side, the lift c′ of c is a geodesic of D if DV V = 0, that is, if:

DV (hV ) = 0, DV (vV ) = 0, (4.3)

or, in local coordinates:



dyi

dt
+ Li

jk(x, y)yjyk = 0, yi = ẋi,

d

dt

δyi

dt
+ Li

jk(x, y)yj δyk

dt
= 0.

(4.4)

The systems (4.2) and (4.4) are, generally, not equivalent: lifts of geodesics of N are
generally not geodesics of D and vice versa. This gives rise — at least for the moment —
to two (generally, inconsistent) notions of geodesic. Moreover, comparing the system (4.4)
to (2.4), we notice that the former contains four extra equations, which would thus impose
extra (possibly, non-physical) restrictions on the trajectories.

All these problems are solved if we require the connection N to be homogeneous, i.e.
the coefficients N i

j should be homogeneous functions of degree 1 in the fiber coordinates
yi. Thus, by Euler’s theorem, we have:

Li
kjy

k = N i
j . (4.5)

In this case, there holds the following result.

Proposition 4.1. Suppose that the Ehresmann connection N on TM is homogeneous.
Then, the following statements are equivalent:

(1) the curve c : t �→ x(t) is a geodesic of N : vV = 0;
(2) the lift c′ of c satisfies: DV (hV ) = 0;
(3) the lift c′ of c is a geodesic of D, i.e. DV V = 0.

Proof. (1) is equivalent to (2) by virtue of (4.5).
(2) → (3) Relation DV (hV ) = 0 implies vV = 0; thus, we have DV (hV ) = 0 and

DV (vV ) = 0, which, put together, yields DV V = 0.
(3) → (2) is obvious.

In the following, we will assume that N is homogeneous.
Assume that c : t �→ x(t) is a geodesic of N and we have a variation α : (t, ε) �→ α(t, ε),

α(t, 0) = x(t) (with ε in a neighborhood of 0 ∈ R) of c, with deviation vector field w(t) =
∂α
∂ε |ε=0.

Raising to TM , to the lift α′(t, ε) := (α(t, ε), ∂α
∂t (t, ε)) of α, it corresponds the deviation

vector field: W := ∂α′
∂ε |ε=0 = wi ∂

∂xi + dwi

dt
∂

∂yi . In the adapted basis, this is:

W = wiδi +
(

dwi

dt
+ N i

j(x, y)wj

)
δ̇i,

Thus, by (4.5), we have vW = DV (hW ).
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We will express (though, in a redundant manner) the fact that c is a geodesic as:

DV V = 0. (4.6)

Differentiating this relation with respect to W, we get:

0 = DW DV V = DV DW V + R(W,V )V (4.7)

(where we have taken into account that [V,W ] ≡ [ ∂
∂t ,

∂
∂ε ] = 0); further, DW V = DV W +

T (W,V ). Thus, geodesic deviation equations are, [3]:

D2
V W = R(V,W )V + DV T (V,W ). (4.8)

Taking into account (3.5), relation (4.8) splits into horizontal and vertical components:

D2
V (hW ) = R(V,W )(hV ) + DV (hT (V,W )); (4.9)

D2
V (vW ) = R(V,W )(vV ) + DV (vT (V,W )). (4.10)

In (4.9), if the torsion term DV (hT (V,W )) is nonzero, we obtain in the right-hand side
a term in the derivatives DV (hW ) (more exactly, T i

jky
k Dwj

dt ). Hence, if we want geodesic
deviation equations (4.9) to be formally similar to the usual Jacobi equations, we have to
impose that T i

jky
k = 0, i.e.

(Li
jk − Li

kj)y
k = 0 ⇒ N i

k·jy
k = N i

j

(where we had in view (4.5)), which is: N i
j = 1

2(N i
ky

k)·j, j, k = 0, 3. Denoting 2Gi := N i
ky

k,

we obtain that there exist some smooth, 2-homogeneous in y functions Gi = Gi(x, y) such
that:

N i
j = Gi

·j. (4.11)

If this holds true, then relations (4.9) and (4.10) are, actually, redundant. Indeed, taking
into account in (4.10) that vW = DV (hW ), its left-hand side is D3

V (hW ). On the other side,
since vV is zero, the right-hand side is DV (vT (V,W )). Taking into account (3.8) and the
homogeneity of the connection N , we get that vT (V,W ) = DV (R(V,W )hV ; this, together
with the remark that hT (V,W ) = 0, leads to the conclusion that (4.10) is a consequence
of (4.9).

Thus, (4.9) is sufficient for characterizing geodesic deviations.
Conversely, if the 1-homogeneous functions N i

j can be written as in (4.11), then devi-
ation equations can be written as: D2

V (hW ) = R(V,W )(hV ). We have thus obtained the
following proposition.

Proposition 4.2. For a 1-homogeneous Ehresmann connection N, the following statements
are equivalent:

(i) There exist some functions Gi = Gi(x, y), homogeneous of degree 2 in y, such that e

N i
j = Gi

·j;

eEhresmann connections with the property (i) (called spray connections), [2, 6], are used in the theory of
dynamical systems.
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(ii) Lifts to TM of the geodesics of N are geodesics of the associated Berwald connection D:

DV V = 0; (4.12)

and deviations of these lifts obey the Jacobi equation:

D2
V (hW ) = R(V,W )(hV ). (4.13)

Remark 4.3. If N satisfies the properties in Proposition 4.2, then

DV (hV ) = 0, (4.14)

is enough to characterize geodesics.

In the following, we will assume that N is as in Proposition 4.2. Equation (4.14) is
locally written as:

D2wi

dt2
= R i

j kly
jylwk, yi = ẋi.

Thus, with

Ei
k := R i

j kly
jyl = Ri

kly
l, (4.15)

we obtain a tensor

E = Ei
k(x, y)dxk ⊗ δi,

which encompasses all the information regarding geodesic deviation. We will call this tensor,
the tidal tensor f attached to N. In terms of the tidal tensor, geodesic deviation equation
(4.14) is written as:

D2
V (hW ) = E(W ). (4.16)

5. A Special Family of Connections

Let us go back to the equations of motion of charged particles (2.4). As is well known, they
arise from the variation of the Lagrangian:

L =
√

gij(x)ẋiẋj +
q

m
Aiẋ

i (5.1)

with respect to the trajectory t �→ x(t). The value of the integral
∫

Ldt does not depend on
the choice of the parameter t along the curve, thus, we can freely choose this parameter.
With t = const · s, where s is the arc length, extremal curves of L are given by:

dẋi

dt
+ γi

jkẋ
j ẋk − q

m
‖ẋ‖F i

jẋ
j = 0, (5.2)

where F i
j := gihFhj, ‖ẋ‖ =

√
gij ẋiẋj. (Usually, the factor ‖ẋ‖ is “discarded” by choosing

t = s and hence, ‖ẋ‖ = 1. But, passing to the tangent bundle, where velocity can be treated
as a coordinate in its own right, this factor will matter.)

fThe tidal tensor is related to the Jacobi endomorphism Φ in [6] by the relation Φ = −J ◦ E.

1250018-9 277



July 2, 2012 8:49 WSPC/1402-9251 259-JNMP 1250018

N. Voicu

Equations (5.2) suggest us to define the following functions on TM :

α
Gi(x, y) =

1
2
(γi

jky
jyk − α‖y‖F i

jy
j), (5.3)

where y is timelike: gijy
iyj > 0, ‖y‖ :=

√
gijyiyj and α is a real parameter.

The functions
α
Gi are homogeneous of degree 2 in y and it can be easily checked that

the functions

α
N i

j :=
α
Gi

·j (5.4)

obey, with respect to coordinate changes on TM , the rule of transformation of the coeffi-
cients of an Ehresmann connection, [13].

We thus obtained a 1-parameter family of Ehresmann connections (
α
N)α∈R, satisfying

the properties in Proposition 4.2; also, we notice that the Eqs. (5.2) of charged particles
coincide with the geodesic equations

dyi

dt
+

α
N i

j(x, y)yj = 0, y = ẋ,

for the connection of the family corresponding to α = q
m . We obtain the following result.

Proposition 5.1. The lift to TM of the trajectory of any charged particle with mass m and
charge q, subject to gravitational and electromagnetic field, is a geodesic of the connection
α
D, where α = q

m :

α
DV V = 0, (5.5)

For particles having the same ratio q
m , worldline deviation equations are given by

α
D2

V (hW ) = E(W ), α =
q

m
. (5.6)

The writing (5.5) is redundant. Instead of it, we can also use its horizontal component
only:

α
DV (hV ) = 0, α =

q

m
. (5.7)

Thus, when dealing with equations of motion of particles, the parameter α will take spe-

cific values. In the following sections, connections
α
D will be also used in order to characterize

fields alone — and to this aim, we will leave α as arbitrary.

Remark 5.2. For α = 0, we get:
0
N i

j = γi
jky

k,
0
Li

jk = γi
jk. For vector fields

X,Y on the base manifold M, the horizontal lift lh(∇XY ) of the Levi-Civita covariant

derivative ∇XY and the
0
D-covariant derivative

0
Dlh(X)lh(Y ) of the lifted vector fields coin-

cide: lh(∇XY ) =
0
Dlh(X)lh(Y ). In this sense,

0
D can be considered as a TM -“equivalent” of
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the Levi-Civita connection ∇. It is worth noticing some of its properties:

0
R = r,

0
E = e; (5.8)

0
Dg = 0,

0
Dδk

yi = 0,
0
D‖y‖ = 0. (5.9)

All the other connections
α
N,

α
D of the family can be regarded as perturbations of

0
N

and
0
D:

α
N i

j =
0
N i

j +
α
Bi

j ,
α
Li

jk =
0
Li

jk +
α
Bi

jk,

with contortion tensors given by:

Bi
j = −α

2
(F ilj + ‖y‖F i

j),
α
Bi

jk := −α

2
(l·jkF i + ljF

i
k + lkF

i
j) (5.10)

where F i = F i
jy

j. We notice the property:
α
Bi

jky
k =

α
Bi

j .

In the following, if there is no risk of confusion, we will not explicitly indicate in the
notation of connections, covariant derivatives, tidal tensors etc., the parameter α (i.e. we

will use the notations N,D,N i
j , . . . , instead of

α
N,

α
D,

α
N i

j, . . . , etc.).

For α = 0, connections
α
D are generally, non-metrical. Also, they also have non-vanishing

torsion:

T = Ri
jkδ̇i ⊗ dxk ⊗ dxj , (5.11)

where Ri
jk are the components of the curvature object for N =

α
N .

The curvature of
α
R of D =

α
D is as in (3.7), where:

R i
j kl =

1
2
(Ei

k)·jl, P i
j kl = Bi

j·kl. (5.12)

In particular, the Ricci tensor Rjl = R i
j li is obtained from the Hessian with respect to y of

the trace of the tidal tensor as Ric = −1
2HessyE, i.e.:

Rjl = −1
2
(Ei

i)·jl. (5.13)

Conversely, the tidal tensor E can be written in terms of R as:

Ei
k = R i

j kly
jyl, Ei

i = −Rjly
jyl. (5.14)

6. Basic Equations of Gravitational and Electromagnetic Fields

6.1. Expression of electromagnetic 2-form

The differential forms A = Aidxi and F = dA = 1
2Fijdxi ∧ dxj , (2.3), will be lifted to hori-

zontal forms on TM , which we will denote in the same manner. Unless elsewhere specified,
the parameter α is arbitrary.
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Consider the horizontal 1-form on TM

l = lidxi, li =
yi

‖y‖ .

Let us calculate the covariant derivatives of l with respect to the vectors of the adapted
basis.

(1) First, we have: Dδ̇j
li = li·j = ‖y‖hij , where

hij = gij − lilj.

are the components of the angular metric h = hijdxi ⊗dxj, [2]. The (symmetric) tensor
h has the property

hijy
j = 0. (6.1)

This property means the following: for any vector field X on TM , h(X, ·)� (where

 means raising indices by means of g) is a vector field orthogonal to l� = liδi; the
angular metric is actually a TM version of the so-called projection tensor appearing,
for instance, in the Raychaudhuri equation.

(2) On the other side, Dδj
li =

0
Dδj

li − Bk
jli·k − Bk

ijlk.

From (5.9), we deduce that
0
Dδj

li = 0. Evaluating the remaining terms with the help
of (5.10) and taking into account (6.1), we get that:

Dδj
li =

α

2
Fij . (6.2)

These results can be put together, if we notice that the exterior derivative dl can
be expressed as, [12]: dl = 1

2(Dδj
li − Dδi

lj)dxj ∧ dxi + li·jδyj ∧ dxi.

Thus, we get that the exterior derivative dl is

dl =
1
2
αFijdxj ∧ dxi + ‖y‖hijδy

j ∧ dxi, (6.3)

that is, the electromagnetic 2-form can be expressed as:

αF = −h(dl).

In the following, we will relate Einstein–Maxwell equations to tidal tensors attached to

D =
α
D,α = 0.

6.2. Homogeneous Maxwell equations

We apply the Ricci identity DXDY ω − DY DXω = −ω ◦ R(X,Y ) + D[X,Y ]ω (where ω is a
1-form and X,Y are vector fields on TM ) to the 1-form l and the basis vectors δk, δj :

Dδk
Dδj

li − Dδj
Dδk

li = −R h
i jklh − Rh

jklh·i.

We recognize in the left-hand side the difference α
2 (Dδk

Fij − Dδj
Fik). Performing cyclic

summation over i, j, k and taking into account that
∑

R h
i jk = 0 (by first Bianchi identity
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∑{(DXT)(Y,Z) − R(X,Y )Z + T(T(X,Y ), Z)} = 0), we get

α(Dδk
Fij + Dδj

Fki + Dδi
Fjk) = −(Rh

jklh·i + Rh
ijlh·k + Rh

kilh·j).

Multiplying the latter relations with ‖y‖yk and taking into account (4.15) and (6.1), we
have:

α‖y‖(Dδk
Fij + Dδj

Fki + Dδi
Fjk)yk = −Ẽ[ij], (6.4)

where:

Ẽij = hikE
k
j. (6.5)

Expressing D =
0
D + B, the terms involving the contortion B cancel out and the above

relation is actually:

Ẽ[ij] = −α‖y‖(
0
Dδk

Fij +
0
Dδj

Fki +
0
Dδi

Fjk)yk. (6.6)

Since Fij = Fij(x) is projectable to M, we can write (6.6) as:

Ẽ[ij] = −α‖y‖(∇δk
Fij + ∇δj

Fki + ∇δi
Fjk)yk. (6.7)

Thus, homogeneous Maxwell equations imply: Ẽ[ij] = 0.
Conversely, if Ẽ[ij] = 0 holds true for any timelike vector y, then by first dividing it

to ‖y‖ and then differentiating it with respect to yk (regarded as a fiber coordinate), we
obtain ∇δk

Fij + ∇δj
Fki + ∇δi

Fjk = 0.
We have thus proven the following proposition.

Proposition 6.1. Homogeneous Maxwell equations equivalent to the fact that Ẽ is
symmetric:

Ẽ[ij] = 0. (6.8)

6.3. Inhomogeneous Maxwell equations

Maxwell’s equations with sources, as well as Einstein field equations, can be expressed in
terms of the trace trE = Ei

i of the tidal tensor. In the following, we will explicitly calculate
this trace.

The curvature object Ri
jk = δkN

i
j − δjN

i
k can be decomposed in terms of ri

jk =
0
Ri

jk

and of the contortion tensor B. In detail, Ri
jk = ri

jk +
0
Dδk

Bi
j−

0
Dδj

Bi
k +Bl

jB
i
kl−Bl

kB
i
jl.

Summing over i = j, noticing that Bi
i = 0, Bi

il = 0 and then contracting by yk, we
obtain:

Ei
i = ei

i −
0
Dδi

(2Bi) + Bl
iB

i
l, (6.9)

where 2Bi := Bi
jy

j = −α‖y‖F i.

The derivative term in (6.9) is: −
0
Dδi

(2Bi) =
0
Dδi

(α‖y‖F i
jy

j) = α‖y‖yj
0
Dδi

F i
j. Further,

we can write α‖y‖yj
0
Dδi

F i
j = α‖y‖yj∇∂i

F i
j. According to Maxwell’s equations with sources
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∇∂i
F i

j = 4πJj , we thus have:

−
0
Dδi

(2Bi) = 4παρc‖y‖2, (6.10)

where, as in [7], J and ρc = J ili represent, respectively, the (charge) current 4-vector and
the charge density as measured by an observer with 4-velocity l�. Conversely, if (6.10) holds
true for arbitrary y, then dividing it by α‖y‖ and subsequently differentiating it with respect
to yj, we get (taking into account the equalities ‖y‖·j = lj), ∇∂i

F i
j = 4πJj . This gives us

the right to state the following proposition.

Proposition 6.2. Inhomogeneous Maxwell equations are expressed in terms of tidal ten-
sors as:

Ei
i = ei

i + 4παρc‖y‖2 + Bl
iB

i
l. (6.11)

Remark 6.3. It can be proven by direct computation that the trace Ẽi
i = gijẼji of Ẽ

coincides with the trace of E; in other words, we can use in (6.11) either of the versions Ẽi
i

or Ei
i.

6.4. Einstein field equations

Contracted with yiyj , the Einstein field equations rij = 8π(Tij − 1
2T l

lgij) imply:

ei
i = −8π

(
Tijy

iyj − 1
2
T l

l‖y‖2

)
. (6.12)

Conversely, if (6.12) hold true for any (timelike) y, then, by differentiating it twice with
respect to y, we get again the classical form rij = 8π(Tij − 1

2T l
lgij) of the Einstein field

equations. Thus, we can use (6.12) as an equivalent expression of these.

The stress energy tensor Tij can be decomposed as: Tij =
em
T ij +

m
T ij, where

em
T ij is the

stress-energy tensor of the electromagnetic field, [10]:

em
T ij =

1
4π

(
−F h

iFhj +
1
4
F khFkhgij

)

and
m
T ij is the stress-energy tensor of matter (and/or other fields). The electromagnetic

stress-energy tensor
em
T ij has zero trace

em
T l

l = 0, hence, in (6.12), T l
l =

m
T l

l.

On the other side, taking in (6.2) covariant derivative by δk and successively contracting
by gjk and ‖y‖2li, we get:

4πα2
em
T ijy

iyj = ‖y‖2li�li −
0
Dδi

Bi,

where �li := gjkDδk
Dδj

li. Consequently, (6.12) is equivalent to:

ei
i = − 2

α2
(‖y‖2li�li −

0
Dδi

Bi) − 8π
(

m
T ijy

iyj − 1
2

m
T l

l‖y‖2

)
, (6.13)

Substituting ei
i into the expression (6.9) of Ei

i and denoting ρm :=
m
T ijl

ilj , we finally
have the following proposition.
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Proposition 6.4. Einstein field equations are equivalent to the following relation on TM :

1
‖y‖2

Ei
i =

2
‖y‖2

(
1 − α2

α2

0
Dδi

Bi +
1
2
Bi

lB
l
i

)
− 2

α2
li�li − 8π

(
ρm − 1

2

m
T l

l

)
. (6.14)

7. Particular Cases

A. Gravity only
In this case, we have Bi

j = 0, which means that all the affine connections coincide:
α
D =

0
D, ∀α ∈ R. The tidal tensor is given by ei

j = r i
l jky

lyk and Eqs. (2.10) become:

rij = 8π
(

m
T ij − 1

2
gij

m
T l

l

)
⇔ 1

‖y‖2
ei

i = −4π(2ρm − T i
i),

rjk = rkj ⇔ ẽ[ij] = 0,
(7.1)

where, this time, ρm = Tij l
ilj.

B. Electromagnetism in flat Minkowski space

In this case, we have γi
jk = 0, ei

j = 0 and Li
jk = Bi

jk. The curvature of
α
D (α = 0),

only depends on B.
Maxwell equations are written in terms of tidal tensors as:

∇∂i
F ij = 4πJ i ⇔ 1

‖y‖2
Ei

i = 4παρc +
1

‖y‖2
Bi

hBh
i,

∇∂i
Fjk + ∇∂k

Fij + ∇∂j
Fki = 0 ⇔ Ẽ[ij] = 0.

(7.2)

Thus, we found analogous equations to the ones determined by Costa and Herdeiro,
[7, 8], without resorting to any restriction upon the derivatives of the deviation vector w.
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