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In this article, we focus on left-invariant pseudo-Einstein metrics on Lie groups. To begin with,
we give some examples of pseudo-Einstein metrics on Lie groups. Also we calculate the Levi-
civita connection, and then Ricci tensor associated with left-invariant pseudo-Riemannian metrics
on the unimodular Lie groups of dimension three. Furthermore, we show that the left-invariant
pseudo-Einstein metric on SL(2) is unique up to a constant. At last, we study the left-invariant
pseudo-Riemannian metrics on compact Lie groups and classify the pseudo-Einstein metrics on the
low-dimensional compact Lie groups.

Keywords: Pseudo-Riemannian metric; pseudo-Einstein metric; Levi-civita connection; Ricci
curvature.
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1. Introduction

We focus on left-invariant pseudo-Einstein metrics on Lie groups. Let G be a Lie group with
the Lie algebra g, g a left-invariant pseudo-Riemannian metric. Then the unique torsion-free
affine connection, i.e. Levi-Civita connection, is determined by

9(V292) = 5(0(02,0),2) — 9(ly: 2,2 + ([=21,9) (1.1)

The curvature tensor is defined by
R(z,y)z = V;Vyz =V, V2 — Vi 2. (1.2)
The metric g is said to be flat if R = 0. For any pair =,y € g, the Ricci tensor is defined by
Ric(z,y) = Tr{z — R(z,x)y}. (1.3)
The metric g is said to be pseudo-Einstein if Ric = Ag for some constant A. Furthermore,

the metric g is said to be Ricci flat if A = 0.
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There are many important results on Einstein manifolds [4, 10-13]. A detailed exposition
on Einstein manifolds can be found in the book of Besse [3] and a lot of more recent
results on homogeneous Einstein manifolds can be found in the survey of Wang [9]. On
solvmanifolds, Lauret proved an important result that Einstein solvmanifolds are standard
[7]; Hervik also did some interesting work about homogeneous Einstein solvmanifolds with
negative curvature and described some applications in physics [5, 6]. However, the pseudo-
Einstein case is totally different from the Einstein case. In this paper, we discuss some
lower dimensional examples and give the algebraic formula of Ricci curvature on compact
Lie groups. May be it will be a basis of further discussion on this field.

The article is organized as follows. In Sec. 2, we give some examples of pseudo-Einstein
metrics on Lie groups. In Sec. 3, we calculate the Levi-civita connection, and then Ricci
tensor associated with left-invariant pseudo-Riemannian metrics on the unimodular Lie
groups of dimension three. Furthermore, we show that the left-invariant pseudo-Einstein
metric on SL(2) is unique up to a constant. In Sec. 4, we focus on the left-invariant pseudo-
Riemannian metrics on compact Lie groups. Firstly we get a formula of Ricci curvatures.
And then we denote the formula by the structure constants of the Lie algebra of the given
Lie group. At last, we apply the formula to calculate the pseudo-Einstein metrics on the
low-dimensional compact Lie groups.

2. Examples of Pseudo-Einstein Metrics

Example 2.1. Let G be the nonabelian Lie group of dimension two with the Lie algebra
g, g a left-invariant pseudo-Einstein metric on G. Then there is a basis {x,y} of g such that

(1) g(z,z) = a,9(y,y) = b, [z,y] =y, where a,b # 0, or
(2) 9(z,y) = 1L, [z,y] = y.
For the first case, Vo = V,y =0,Vyx = -y, V,yy = g:c. Then

b
Ric(xz,z) = —1, Ric(x,y) =0, Ric(y,y)=——.
a

That is, Ric = —%g. For the second case, Vo = —2,V,y = y,Vyo = Vyy = 0. It is easy
to see that g is flat, and then Ricci flat.

Remark 2.2. Let g be a left-invariant pseudo-Einstein metric of a Lie group G with the
Einstein constant A. Then for any nonzero constant a, ag is also a left-invariant pseudo-
Einstein metric with the constant %

Example 2.3. Let G; be a compact Lie group with a left-invariant Einstein metric g,
the corresponding Einstein constant A1(> 0). Let G5 be a solvable Lie group with a left-
invariant Einstein metric g9, the corresponding Einstein constant \o(< 0). Let G = G x Go,
for any constant a # 0, define a left-invariant pseudo-Riemannian metric g on G by

/\1 )\2
g‘glxglzng g|gl><92:0a 9|gg><92:;92-

Then g is a pseudo-Einstein metric with the constant a.

Conjecture 2.4 ([3]). Let M = G/K be a noncompact homogeneous FEinstein manifold.
Then K is a mazimal compact subgroup of G.
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Remark 2.5. Conjecture 2.4 is Alekseevskii conjecture on Riemannian metrics. By Exam-
ple 2.3, Alekseevskii conjecture on pseudo-Riemannian metrics does not hold.

Example 2.6. Let G; be a compact Lie group with a left-invariant Einstein metric gq, the
corresponding Einstein constant A1(> 0). Let G2 be the solvable Lie group of dimension two
given in Example 2.1. Assume that gs is a left-invariant pseudo-Riemannian metric such that
there is a basis z,y of go satisfying go(z, ) = A2, 92(y,y) = A3, [z, y] = y, where AaA3 < 0.
Let G = G x G4, for any constant a > 0, define a left-invariant pseudo-Riemannian metric
g on G by

A1 1
g |gl><91: 3917 g |gl><92: 0, g ‘QQXQQZ _a—)\292-

Then g is a Lorentzian Einstein metric with the constant a.

3. Pseudo-Riemannian Metrics on Three-Dimensional
Unimodular Lie Groups

Let G be a connected three-dimensional unimodular Lie group with the Lie algebra g, ¢
a left-invariant pseudo-Riemannian metric with signature (2,1). Then there exists a basis
{e1,e2,e3} of g such that

gler,e1) = glez, e2) = —gles, e3) = 1, (3.1)
[e2,e3] = Are1 +aes, [es,e1] = Aaea + bes, [e1,ea] = ae; + bea + Azes.  (3.2)

Proposition 3.1. Let notations be as above. Then the Levi-Civita connection is given by
1
Ve €1 = —aea, V. es =ae; + 5()\1 — A2+ A3)es,
1 1
Veleg = 5()\1 — )\2 -+ )\3)62, v62€1 = —b€2 + 5()\1 — )\2 — /\3)63,
1
Ve,e2 =bey, Ve,e3 = 5(/\1 — A2 — A3)eq,
1
Ves€1 = 5()\1 + Ao + )\3)62 + bes,
1
V63€2 = —5()\1 + Ao + )\3)61 — aes, V6363 = bey — aes.

Proof. By Egs. (1.1), (3.1) and (3.2), we have

g(ve1€1a 61) = Oa g(vfﬁeb 62) = —a, g(vffleb 63) =0.
It follows that V., e; = —aez. The others are similar. O

Proposition 3.2. Let notations be as above. The nonzero Ricci curvatures are given by

Ric(el, 63) = a()\l - )\2 - )\3), (33)
RiC(@Q, 63) = b(—)\l + Ay — )\3), (3.4)
1250015-3
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1
Ric(el, 61) = 5(/\1 + Ao + )\3)(—)\1 + Ao + /\3), (3.5)
, 1
RIC(€2, 62) = 5(/\1 + Ao+ )\3)()\1 — Xy + /\3), (3.6)
1
Ric(es, e3) = —2a® — 2b* + 5 (FAL A2+ A3) (A1 = Ao + Ag). (3.7)

Proof. By the Egs. (1.3), (3.1), (3.2) and Proposition 3.1,
Ric(e1,e1) = g(R(e1,e1)er, e1) + g(R(ez, e1)er, €2) — g(R(es, e1)er, e3) = 0.
By similar calculation, we have the proposition. O

Theorem 3.3. Let G be a connected three-dimensional unimodular Lie group with the Lie
algebra g, g a left-invariant pseudo-Riemannian metric with signature (2,1). If g is pseudo-
Finstein, then there exists a basis {e1,e2,e3} of g such that

gler,e1) = g(ea, e2) = —gles,e3) =1,
le2,e3] = Arer, [e3,e1] = Aaea, [e1,e2] = Azes,

where \; must be one of the following cases:

(1) Mi=X=X3=0;

(2) Mi =0, Ay =—-A3#0;
(3) Ao =0, A\{ =—=A3#0;
(4) A3 =0, A\ = X2 #0;
(5)

Here g is Ricci flat for the first four cases.

Proof. Let {e1,e2,e3} be the basis of g satisfying the Egs. (3.1) and (3.2). It is enough to
show that a = b = 0. Since g is pseudo-Einstein, by Proposition 3.2, we have

(I()\l — Ay — )\3) = b(—)\l + Ao — /\3) =0.
Assume that a # 0. Then A\; — Ay — A3 = 0. Thus Ric(eq, e1) = 0. It follows that
Ric(es, e3) = —2a% — 2b% = 0.

Namely a = b = 0. It is a contradiction. So a = 0. Similarly, b = 0.
Thus by Proposition 3.2,

1

Ric(el, 61) = 5()\1 + Ao + )\3)(—/\1 + Ao + /\3),
1

Ric(eg, 62) = 5()\1 + Ao + )\3)()\1 — Ay + )\3),

1
—A+ Ao+ )\3)()\1 — Ao+ /\3).

Ric(es, e3) = 5(
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Assume that Ay + A\ + A3 = 0. Then Ric(ej, e1) = Ric(eg, e2) = 0. Therefore

1
Ric(el, 61) = 5(—/\1 + Ao + /\3)(/\1 — Aoy + /\3) =2\ = 0.

Thus A\ =0 or Ay = 0. Then we have the first three cases.
Assume that A\; + Ay + A3 # 0. Then by Ric(e1,e1) = Ric(eg,e2), we have A\j = Ag.

Furthermore by Ric(es, e2) = —Ric(es, e3), we have

(2M1 + A3)A3 = — A3
If A3 = 0, then we have the fourth case. If \3 # 0, then A\ = —M\3, i.e., A\ = Ao =
“ )3 £0. 0

Theorem 3.4. The left-invariant pseudo-FEinstein metric on SL(2) is unique up to a
constant.

Proof. By the results of [8], we know there is no left-invariant Einstein metric on SL(2).
Thus the signature of left-invariant pseudo-Einstein metric on SL(2) must be (2, 1) or (1, 2).
By Remark 2.2, we can assume that the signature is (2,1). By Theorem 3.3, there exists a
basis {e1, e2,e3} of SL(2) such that
gler,e1) = glez,e2) = —gles,e3) =1, [ez,e3] = Aer, [es,e] = Aea,  [er, €] = —Aes.
Here \ # 0. Let K be the killing form of sl(2). Then we can check that
K(ei, Ej) = 2)\2‘9(61‘, Ej).

That is, the left-invariant pseudo-Einstein metric on SL(2) is unique up to a constant. [

4. Pseudo-Riemannian Metrics on Compact Lie Groups

Let G be a compact Lie group with the Lie algebra g. Let (, ) be a bi-invariant metric on
(. Assume that g is a left-invariant pseudo-Riemannian metric on GG. There exists a unique
endmorphism D of g such that

9(z,y) = (z,Dy) = (Dz,y).
Denote by V the Levi-Civita connection associated with g, i.e.,

1
Ve = 5(adz — D™ 'adDz + D™ 'adaD).

Choose an orthonormal basis ey, ..., e, of g with respect to ( , ) such that De; = \e;.
Hence g(e;, e5) = Xidyj.

Theorem 4.1. For any z,y € g, Ric(z,y) = —Tr(V, — adz)(V, — ady).

Proof. For any basis eq,...,e, of g, e the dual basis associated to g, we have

Ric(z,y) = Z g(R(ei, x)y, e;)
i=1

= Z g(vfizva?y - vaeiy - V[ei,x}ya 6:)

i=1

1250015-5
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= Zg((vvzyei + [ei, Vayl) — vm(vyei + leiyl) — (Vy[ei’x] + [les, 2], 91), €7)
=1

= 9((VaVy = Vaady — Vy,, + adV,y — Vyade + adyadz)(e;), ef)
=1
=Tr(V,V, — Vsady — Vy,y + adV,y — Vyade + adyade)

=Tr(Vy,y) — Tr(adV,y) — Tr(V(Vy — ady)) + Tr((V, — ady)adzx)
=Tr(Vy,y) — Tr(adV,y) — Tr(V,(Vy — ady)) + Tr(adz(V, — ady))
(

=Tr(Vy,y) — Tr(adV,y) — Tr(V, — adx)(V, — ady).

x

By the Eq. (1.1), we have
9(Vey, 2) + gy, Vaz) = 0.
It follows that TrV, = 0 for any « € g. Furthermore, for any z,y, z € g, we have
(adz(y), 2) + (y,adz(z)) =0,
so Tr adx = 0, for any = € g. This completes the proof of the assertion. O

Assume that [e;, e;] = > C’fjel. By the invariancy of ( , ), one has C’fj = C’;l = Cljl
Then we have

1 - _
Ve, 5 = 5([61»63'] — D7 '[De;, e;] + D™ '[e;, Dej))

1. _ -
= 5(id =AD" + XD ([es ¢])
1 <& AN =N+ Ay
=327 O
=1

By the above theorem, one has the following formula.
Theorem 4.2.

Cllm' CJl'i
NN

. 1
Ric(ej, ex) = 5 D (= 20)? = \e\)
i<l

Proof. By Theorem 4.1,

Ric(ej, ex) = —Tr(Ve, —ade;)(Ve, — adey)

=— Zg((vej —ade;)(Ve, —adey)e;, €;)
i=1

R Tem /N =M+ N\ . .
—— ;g ((Vej — ade;) <§ Z <7)\l — 2> Cm'@l),@i)

=1

1250015-6
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n n

1 N AN N AN
1 cL. Cl

S A= Ni)2 = A\ ) =k 0
5 2= A= k)3

Example 4.3. Let G = SU(2) and {ej, e2,e3} an orthonormal basis of su(2) with respect
to the given inner product ( , ) and g(e;,e;) = A, i =1,2,3. So

[ela 62] = aes, [627 63] = aey, [637 62] = aez.
By Theorem 4.2, Ricci curvatures are given by

Ric(ej,er) =0, j #k;

2
Ric(er, e1) = 2;%3 (M 4+ A2 — A3) (=M1 + Ao — Ag),
. a?
1C(€2,€2) = 1 2 — A3 1 — A2 — A3),
Ric( ) 2/\1)\3(/\ + A2 — A3)(A1 — A2 — A3)
a2
Ric(eg,eg) = m(/\l — Xy + /\3)()\1 — Ay — /\3).

If g is pseudo-Einstein, then we have A\ = Ao = A3. That is, g is positive definite or negative
definite.

Example 4.4. Let G = SU(2) x S* and {ey, e2,e3,e4} an orthonormal basis with respect
to the given inner product ( , ) and g(e;,e;) = A, i = 1,2,3,4. Then

[e1,ea] = aes + bey, [e1,e3] = —aeq + ceq, [e1,e4] = —beg — ces,

le2, €3] = aer +deq, [e2,e4] =ber —des, [es, eq] = cer + des.
By Theorem 4.2, the Ricci curvatures are given as following.

Cd((/\4 — )\3)2 — )\1)\2)

Ricler, &) = 223\ ,
Ric(en, e5) — — M ;AZZA)S = 2us)
Rie(eye5) = "2V 2 0d)
Ric(es, eq) = —2U8 ;A)l\l)\)j k)

1250015-7
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ab(()\g — /\1)2 — )\3)\4)

Ric(es,eq) =

2A1 M\ ’

Ric(ey,e1) = a*(A3 = A2)* = ) n b2((Ag — X2)? — \?) N (A — A3)? = A2)
) 2X9 A3 294 223\, )

Ric(eg, e2) = a* (A3 = M1)* = ) n bAH((Ag — A1)% = A3) N (M — A3)? — A3)
2, €2 2M1 A3 201 \4 3V ,
Ric(es, e3) = a*(A2 = M1)* = ) n A((Ag— )%= A2) N (M — X2)? — A3)
) 2M1 2 20\ s ;

i (A=A =) (s —M)2 =N | (s —Xe)? = \))

felened) = 2M1 A9 * 2M1 3 * 2X2)3

Without loss of generality, we can assume that d # 0.
(1) a®> +b? +c? =0.
Then Ric(eg, e1) = 0. Therefore Ric(e;, e;) = 0. Namely, we must have
M=) =X =M— )= X=0—- )= N =0 (4.1)
For any case, we must have A\ A2 A3\4 = 0. It is a contradiction.

(2) abe # 0.

Then we have
M= A3)2 = Mo =M —A2)? = M3 =0,
A3 —A2)2 = MA = (M — A2 = X3 =0,
(A3 =A% = Xadg = (A2 — A)? — A3y = 0.
By

Then \; # A; for i # j since A\j AdaA3Ag # 0.
have

(A4 — )\3) — )\1)\2 = ()\4 — )\2)2 — Al)\g, we

204 = A+ Ao + A3,
Similarly, by (/\3 — /\1)2 — )\2)\4 = (/\2 — )\1)2 — /\3/\4, we have
20 = A2+ A3+ A

It follows that Ay = A4, which is a contradiction.

(3) Two of a, b, c are zero. Assume that a? + b = 0 and ¢ # 0.
Then we must have

Ric(el, 62) = (/\4 — )\3)2 — )\1)\2 =0. (4.2)
By Ric(z,y) = mg(x,y), we have
A\ = A3)> = X))

Ric(el, 61) = 2A3)\4 = m)\l,
, d?(\s — X3)? — A3
1250015-8
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It follows that (c? + d?)(A; — \2) = 0. That is,
Al =X, m=0.
Furthermore, we have
(A= A3)2 = A= (A= X)” = A3 = (A3 — N)? — AT = 0.
For any case, we must have A\ AaA3A4 = 0. It is a contradiction.

(4) Only one of a, b, ¢ is zero. Assume that a = 0, bc # 0.
Then we have

M= A)2=Xd3 =M —2)2 = Ads = (Mg — A3)2 = A\ A = 0. (4.3)
It follows that

(A3 — A2)(2Ag — A1 — A2 — A3) = 0.

Assume that 2Ag — A\ — X\g — A3 # 0. Then \; = Ao = A3. By Eq. (4.3), Ay = 2. It follows
that

Ric(e1, e1) = Ric(ez, e2) = Ric(es, e3) = 0.
Also

(b + 2 +d*) ()3
203

Ric(eyq,e4) = =0.

Thus Ay = 0. It is a contradiction. Then we must have
20— A — A — A3 =0.
Let k; = i‘—i,i =2,3,4. By (A4 — A\2)?2 — A1 \3 = 0 and the above equation, we have
2ky—1—ky—k3=0 and (kg —k3)? — kg =0.
Then we have k3 = kg +2vks + 1. Let k = ko > 0. Then

Ao =kh, A= (k+2VE+DN, M= (kEVE+1AL.

Case 1. Ao = kA, A3 = (kK + Wk + DA, A\ = (B + VE + 1)A1. Then we have

Ric(ey, 1) = P(VE+1)% 1) Ak —1)
O e+ Vi + 1) 2+ 2VE+ )k + VR 1)
Ric(eg, ca) = V((k +Vk)? — k?) N 2k — k?)

2(k +Vk + 1) 2k +2vVk + 1) (k +VEk+1)’

1250015-9
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Ak + VR? = (k+2VE+1)?)  (VEk+1D)? = (k+2VE+1))

Ric(es, e3) =

2(k+\/E+1) 2k3(k+\/E—|-1) )
Ric(eg, eg) = L= = (bt VE+ 1) | A(k+2VE)° — (k+ VE+1)°)
o 2 20k + 2k 1 1)
L P@VE+1D)T - (k+VE+1)?)
2k(k +2vVEk + 1) '

It is easy to see that Ric(es, e3) < 0. Then we must have Ric(e, e1) < 0 and Ric(es, e2) < 0.
It follows that

k—1<0, k—k <o.

It is a contradiction since k > 0.

Case 2. \g = kA1, A3 = (k — 2k + DA, A = (k- VE + 1)A1. Then we have

Ric(ey,e1) = P(—VEk+1)*-1) 4 Ak —1)
VT k= VE+1) 2k —2VE+ Dk — VE+ 1)

Rictep.eg) = PUE= V=) 2k 1)

ST Tk VEY D) 2k 2R+ Dk VER D)

Ric(es, eg) = C (B = VR = (k=2VE+ 1) | (= + 1) = (k =2k +1)?)
3,63) = 2(k—\/E+1) 21{:(1{—@4—1) )

Ric(eg, eg) = L= = (k= VE+ 1) | A((k=2VE)* — (k — VE+1)°)
o 2k 2(k —2vk + 1)

N P(—2vE+1)2 = (k —VE+1)?)
2k(k — 2vk +1)
If k£ > 4, then Ric(er,e1) > 0 and Ric(eg,e2) < 0. If 1 < k < 4, then Ric(es,e3) > 0 and
Ric(ez,e2) < 0. If 1 < k < 1, then Ric(e1,e1) < 0 and Ric(es,e3) > 0. If 0 < k < %, then
Ric(ep,e1) < 0 and Ric(eg, e2) > 0. It is a contradiction.
So we prove the following assertion.

Proposition 4.5. There is no Einstein metric on the nonabelian compact Lie group of
dimension four.
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