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We characterize the Liouvillian and analytic first integrals for the polynomial differential systems
of the form x′ = a− (b + 1)x + x2y, y′ = bx− x2y, with a, b ∈ R, called the Brusselator differential
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1. Introduction and Statement of the Main Results

One of the more classical problems in the qualitative theory of planar differential systems
depending on parameters is to characterize the existence or not of first integrals.

We consider the system

x′ = a − (b + 1)x + x2y, y′ = bx − x2y (1)

that we call the Brusselator, where x and y are complex variables and the prime denotes
derivative with respect to the time t, which can be either real or complex. Such differential
systems appear in several branches of the sciences, mainly in chemistry since it studies a
certain chemical reaction (see [7, 9, 16] for details).

Let U ⊂ C
2 be an open and dense set in C

2. We say that the non-constant func-
tion H : C

2 → C is a first integral of the polynomial vector field χ on U , if H(x(t),
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y(t))= constant for all values of t for which the solution (x(t), y(t)) of chi is defined on
U . Clearly H is a first integral of χ on U if and only if χH = 0 on U .

An analytic first integral is a first integral which is an analytic function. As a particular
case, a first integral which is a polynomial is called a polynomial first integral.

A Liouvillian first integral is a first integral H which is a Liouvillian function, that is,
roughly speaking which can be obtained “by quadratures” of elementary functions. For a
precise definition see [20]. The study of the Liouvillian first integrals is a classical problem
of the integrability theory of the differential equations which goes back to Liouville, see for
details again [20].

As far as we know the Liouvillian and analytic first integrals of some multi-parameter
family of planar polynomial differential systems has only been classified for few differential
systems, see for instance [2, 8–18].

We first study system (1) with a = 0. In this case changing the independent variable t

as follows x dt = dτ , it becomes

ẋ = −b − 1 + xy, ẏ = b − xy, (2)

where the dot denotes derivative with respect to τ .
Let F be the Kummer confluent hypergeometric function, and Hb be the Hermite func-

tion, when b is a positive integer provides the Hermite polynomial of degree n. For more
details on these two functions see [1].

Proposition 1. System (2) has the analytic first integral

(b + 1)(y + x)F
(
− b

2 ; 3
2 ; (y+x)2

2

)
− xF

(
− b

2 ; 1
2 ; (y+x)2

2

)
√

2bHb−1

(
y+x√

2

)
− yHb

(
y+x√

2

) . (3)

It is easy to check that the function given in (3) is an analytic first integral of system
(1) with a = 0 defined in an open and dense set of C

2.

Theorem 2. The Brusselator system (1) with a �= 0 has no analytic first integrals.

Theorem 2 is proved in Sec. 2.
It follows from Theorem 2 that system (1) with a �= 0 has no Liouvillian first integrals

(otherwise it would have analytic first integrals since the last class include in particular the
Liouvillian first integrals). However when a = 0, it could be that for some values of b, the
first integral given in (3) could be of Liouvillian type and that system (2) could have a
Liouvillian first integral. We will see that this cannot happen. So, from now on we restrict
to system (2).

Let h(x, y) ∈ C[x, y]\C. As usual C[x, y] denotes the ring of all complex polynomials in
the variables x and y. We say that h = 0 is an invariant algebraic curve of the vector field
X associated to system (2) if it satisfies

(−b − 1 + xy)
∂h

∂x
+ (b − xy)

∂h

∂y
= Kh, (4)

the polynomial K = K(x, y) ∈ C[x, y] is called the cofactor of h = 0 and has degree at
most 1. We also say that h is a Darboux polynomial of system (1). Note that a polynomial
first integral is a Darboux polynomial with zero cofactor.
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The invariant algebraic curves are important because a sufficient number of them forces
the existence of a first integral. This result is the basis of the Darboux theory of integrability,
see for instance [2, 5, 8]. In the next result we characterize all the algebraic invariant curves
for system (2).

Proposition 3. The following statements hold for system (2).

(a) It has no Darboux polynomials with zero cofactor.
(b) It has an irreducible Darboux polynomial h = h(x, y) with nonzero cofactor if and only

if b = 0, and in this case h = y and the cofactor is −x.

Proposition 3 is proved in Sec. 3.
An exponential factor E of system (1) is a function of the form E = exp(g/h) �∈ C with

g, h ∈ C[x, y] coprime satisfying that

(−b − 1 + xy)
∂E

∂x
+ (b − xy)

∂E

∂y
= LE, (5)

for some polynomial L = L(x, y) of degree at most 1, called the cofactor of E.
The existence of exponential factors exp(g/h) is due to the fact that the multiplicity of

the invariant algebraic curve h = 0 is larger than 1, and when h is constant, the existence
of the exponential factor is due to the multiplicity of the straight line at infinity in the
projective plane, for more details see [5].

Proposition 4. System (2) has two exponential factors modulo constants: ex+y with cofac-
tor −1 and e(x+y)2 with cofactor −2(x + y).

Proposition 4 is proved in Sec. 4.

Theorem 5. System (2) has a Liouvillian first integral if and only if b = 0 and in this case
the Liouvillian first integral is

1
y

(√
2πy Erfi

(−x − y√
2

)
+ 2e

1
2
(x+y)2

)
,

where Erfi(z) is the imaginary error function, for more details see [1].

Theorem 5 is proved in Sec. 5.
As a corollary of Theorems 2 and 5 we have the following result.

Corollary 6. System (1) has a analytic first integral if and only if a = 0. Moreover such
first integral is Liouvillian if and only if b = 0.

2. Proof of Theorem 2

We will show that system (1) has no analytic first integrals. To do so, we need the following
auxiliary result, it is due to Poincaré in [19], see also [6] for a direct proof. Through the
paper Z

+ will denote the set of non-negative integers.

Theorem 7. Assume that the eigenvalues of the linear part at some singular point p of the
vector field χ, λ1 and λ2 are nonzero and that they do not satisfy any resonance condition
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of the form

λ1k1 + λ2k2 = 0 for k1, k2 ∈ Z
+ with k1 + k2 > 0.

Then the vector field χ has no analytic first integrals defined in a neighborhood of p.

Proof of Theorem 2. We compute the singular points of system (1) and we get that these
are p =

(
a, (b + a2)/a

)
. Computing the eigenvalues λ1 and λ2 of the Jacobian matrix of

system (1) at the fixed point p we get that they are

λ1,2 =
1
2
(b − 1 − a2 ±

√
−4a2 + (1 + a2 − b)2).

Suppose that there exists k1, k2 ∈ Z
+ such that k1λ1 + k2λ2 = 0. Note that by Theorem 7

if such integers do not exist we are done. Then λ1 = −αλ2 with α a positive rational, and
hence in particular λ1λ2 = −αλ2

2 < 0. But we have that λ1λ2 = a2 > 0. This completes the
proof of Theorem 2.

3. Proof of Proposition 3

We first prove the part of the proposition concerning the existence of polynomial first
integrals.

Lemma 8. System (2) has no polynomial first integrals.

Proof. We introduce the change of variables

X = x, Y = y + X (6)

and system (2) becomes

X ′ = −b − 1 + XY − X2, Y ′ = −1. (7)

Since the change is linear, clearly it is equivalent to look for polynomial first integrals h(x, y)
of system (2) that to look for polynomial first integrals h̄(X,Y ) = h(x, y) of system (7). We
write h̄ as a polynomial in the variable X, i.e.

h̄ =
n∑

j=0

h̄j(Y )Xj , (8)

where each h̄j are polynomials in the variable Y . Since h̄ is a polynomial first integral we
can assume that h̄n �= 0 and n > 0, because if n = 0 then h̄(X,Y ) would be constant.
Furthermore, it satisfies

(−b − 1 + XY − X2)
∂h̄

∂X
− ∂h̄

∂Y
= 0. (9)

Computing in (9) the coefficient of Xn+1 we get

−nh̄n(Y ) = 0 that is h̄n(Y ) = 0,

a contradiction. This concludes the proof of the lemma.
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To prove Proposition 3 we are left with the part of the Darboux polynomials with non-
zero cofactor. To prove this part we will use the following result whose proof can be found
in [2, 4].

Proposition 9. We suppose that h ∈ C[x, y] and let h = hn1
1 · · · hnr

r be its factorization
in irreducible factors over C[x, y]. Then for a polynomial system (2) h = 0 is an invariant
algebraic curve with cofactor Kh if and only if hi = 0 is an invariant algebraic curve for
each i = 1, . . . , r with cofactor Kfhi. Moreover Kh = n1Kh1 + · · · + nrKhr .

Basically Proposition 9 states that to study the Darboux polynomials it is enough to
consider the irreducible ones.

More precisely we will prove the following result.

Lemma 10. System (2) has an irreducible Darboux polynomial h = h(x, y) with nonzero
cofactor if and only if b = 0, and in this case h = y and the cofactor is −x.

Proof. Let h = h(x, y) be an irreducible Darboux polynomial of system (2) with nonzero
cofactor. We introduce the change of variables

Y = y, X = x + Y

and write system (2) in the form

X ′ = −1, Y ′ = b − XY + Y 2, (10)

that can be written as
dY

dX
= −b + XY − Y 2.

Then h̄ = h̄(X,Y ) = h(x, y) is an irreducible Darboux polynomial of system (10) with
nonzero cofactor k̄ = α0 + α1X + α2Y with α0, α1, α2 ∈ C not all zero. Then h̄ satisfies

dh̄

dX
=

∂h̄

∂X
+

∂h̄

∂Y
(−b + Y X − Y 2) = (α0 + α1X + α2Y )h̄,

that is

dh̄

dX
= (α0 + α1(X − Y ) + (α1 + α2)Y )h̄. (11)

Now using that

X − Y =
1
Y

dY

dX
+

b

Y
,

we rewrite (11) as

dh̄

h̄
= α0 dX +

α1

Y
dY +

(bα1

Y
+ (α1 + α2)Y

)
dX,

that is, after integrating and taking exponentials,

h̄ = CY α1 exp
(

α0X +
(

bα1

Y
+ (α1 + α2)Y

)
X

)
,

where C is a constant. Since h̄ must be a polynomial we have α0 = 0, α1 + α2 = 0 and
bα1 = 0. Then the cofactor of h̄ is nonzero if and only if b = 0, and in this case h̄ is a
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polynomial of the form h̄ = CY α1 . Since h̄ is irreducible we get that α1 = 1. So we can
take h̄ = Y which yields h = y and the cofactor k = −x. This completes the proof of the
lemma.

Proof of Proposition 3. It follows directly from Lemmas 8 and 10.

4. Proof of Proposition 4

To prove Proposition 4 we will use the following known result whose proof and geometrical
meaning is given in [5].

Proposition 11. The following statements hold.

(a) If E = exp(g/h) is an exponential factor for the polynomial system (2) and h is not a
constant polynomial, then h = 0 is an invariant algebraic curve.

(b) Eventually eg for k = 1, 2, . . . can be exponential factors, coming from the multiplicity
of the infinite invariant straight line.

Let E = exp(g/h) be an exponential factor of system (2). In view of Propositions 3 and
11, we have that E = exp(g) if b �= 0, and E = exp(g/yn) with n ≥ 0 if b = 0. When n > 0
then y � |g.

We first consider the case E = exp(g), g ∈ C[x, y]. We have that the cofactor L has
degree one. We introduce the change of variables of (6), then g(x, y) = ḡ(X,Y ) and ḡ

satisfies

(−b − 1 + XY − X2)
∂ḡ

∂X
− ∂ḡ

∂Y
= β0 + β1X + β2Y, (12)

for some β0, β1, β2 ∈ C. We write ḡ as a polynomial in the variable X as in (8). Computing
in (12) the coefficient of Xn+1 for n ≥ 1 we get

−nḡn(Y ) = 0 that is ḡn(Y ) = 0.

Therefore ḡ = ḡ0(Y ). Imposing that it satisfies (12) we get

dḡ0

dY
= −β0 − β1X − β2Y.

Solving it we get β1 = 0 and ḡ = −β0Y −β2Y
2/2. So we have the exponential factor exp(Y )

with cofactor −1 and exp(Y 2) with cofactor −2Y .
Now we assume b = 0 and that E = exp(ḡ/(Y − X)n) with n ≥ 1 and ḡ satisfies

(−1 + XY − X2)
∂ḡ

∂X
− ∂ḡ

∂Y
= −nXḡ + (β0 + β1X + β2Y )(Y − X)n,

for some β0, β1, β2 ∈ C. Denoting by ĝ = ĝ(X) = ḡ(X,X) that is, evaluating it on Y = X

we get that it satisfies

dĝ

dX
= nXĝ.

So ĝ = CenX2/2 with C a constant. Since ĝ is a polynomial it follows that C = 0. So
ĝ = 0, and Y −X divides ḡ(X,Y ). Consequently y|g(x, y) a contradiction. This completes
the proof of the proposition.
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5. Proof of Theorem 5

We first recall that a non-constant complex function R : C
2 → C is an integrating factor of

the polynomial vector field χ on U , if one of the following three equivalent conditions holds

∂(RP )
∂x

= −∂(RQ)
∂y

, div(RP,RQ) = 0, χR = −Rdiv(P,Q),

on U with P = −b − 1 + xy and Q = b − xy. As usual the divergence of the vector field χ

is given by

div(P,Q) =
∂P

∂x
+

∂Q

∂y
= y − x.

From the Darboux theory of integrability we have the next result proved, for instance, in [4].

Theorem 12. Suppose that the polynomial vector field χ of degree m defined in C
2 admits

p invariant algebraic curves fi = 0 with cofactors Ki for i = 1, . . . , p, and q exponential
factors Ej = exp(gj/hj) with (gj , hj)= 1 and cofactors Lj for j = 1, . . . , q. Then there exist
λi, µj ∈ C not all zero such that

p∑
i=1

λiKi +
q∑

j=1

µjLj = −div (P,Q),

if and only if the function of Darboux type

fλ1
1 · · · fλp

p Eµ1
1 · · ·Eµq

q (13)

is an integrating factor of the vector field χ.

To prove the results related with Liouvillian first integrals we use the following result
proved in [3, 20].

Theorem 13. The polynomial differential system (2) has a Liouvillian first integral if and
only if it has an integrating factor of Darboux type (see (13)).

By Proposition 3 system (2) has a Darboux polynomial if and only if b = 0 (in which
case it is y with cofactor K1 = −x), and by Proposition 4 it has the exponential factors
exp(x + y) and exp((x + y)2) with cofactors L1 = −1 and L2 = −2(x + y), respectively.

In order that system (2) has a Liouvillian first integral, by Theorem 13, system (2) must
have an integrating factor of Darboux type. From Theorem 12 system (2) has an integrating
factor of Darboux type if and only if

λ1K1 + µ1L1 + µ2L2 = −λ1x − µ1 − 2µ2(x + y) = −(y − x), λ1, µ1, µ2 ∈ C.

This equality is possible if and only if µ1 = 0, λ1 = −2 and µ2 = −1/2. Therefore, the
integrating factor is y−2e(x+y)2/2. Computing the first integral associated to this integrating
factor we get the one stated in Theorem 5. This completes the proof of the theorem.
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