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In this second paper on the method of deriving linearizing transformations for nonlinear ODEs, we
extend the method to a set of two coupled second-order nonlinear ODEs. We show that beside the
conventional point, Sundman and generalized linearizing transformations one can also find a large
class of mixed or hybrid type linearizing transformations like point-Sundman, point-generalized
linearizing transformation and Sundman-generalized linearizing transformation in coupled second-
order ODEs using the integrals of motion. We propose suitable algorithms to identify all these
transformations (with maximal in number) in a straightforward manner. We illustrate the method
of deriving each one of the linearizing transformations with a suitable example.

Keywords: Nonlinear ODEs; linearization; first integrals.

1. Introduction

The present paper continues the investigation on the method of finding maximal linearizing
transformations of nonlinear ODEs. In the previous paper we have confined our studies to
scalar nonlinear ODEs only. In the present paper we extend the method described in Part-I
[8] to the case of two coupled second-order nonlinear ODEs. Our results show that in such
coupled ODEs there exists a wider class of linearizing transformations including hybrid ones
(for example point-Sundman transformation, point-generalized linearizing transformation
and Sundman-generalized linearizing transformation).

Unlike the scalar case, the study of linearization of coupled nonlinear ODEs is still in the
early stage and only very few results have been established so far. To our knowledge most of
the studies are focused on establishing necessary and sufficient conditions, both geometri-
cally and algebraically, for linearization of two coupled second-order nonlinear ODEs under
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invertible point transformations [1, 6, 9, 11, 14–17, 19, 21, 22]. We note that the necessary
and sufficient conditions for the linearization of N -coupled second-order nonlinear ODEs
under point transformations have been formulated only very recently [17]. The formulation
of such conditions for transformation other than point transformations is yet to be estab-
lished. Besides establishing the conditions one also encounters more difficulties in finding
explicit linearizing transformations in the case of coupled ODEs since Lie point symmetries
and ad-hoc methods rarely help one to get the required transformations for non-point or
nonlocal ones. In certain situations integrations cannot also be performed in a straightfor-
ward manner if only a lesser number of integrals are known. Under these circumstances the
method proposed here helps one to derive the general solution for the coupled second-order
nonlinear ODEs besides identifying linearizing transformations.

While extending the algorithm given in Part-I [8] (for the scalar case) to the case of
coupled equations we find that one can have the flexibility of having two types of lin-
earized equations, namely (i) the linearized equations which have the same independent
variable and (ii) the linearized equations which have different independent variables. The
first type can be captured by (i) point transformation, (ii) Sundman transformation and
(iii) generalized linearizing transformation, whereas the linearized equations of the second
type can be captured by certain hybrid varieties besides the above mentioned linearizing
transformations.

Our studies show that in the first case (the case in which the linearized equations share
the same independent variable) one can identify four distinct invertible linearizing point
transformations, three Sundman transformations and three generalized linearizing transfor-
mations, whereas in the second case one can identify eight invertible point transformations
and infinite number of all other transformations from the integrals. To our knowledge, all
these results are brought out for the first time in the theory of linearization of nonlinear
ODEs.

The plan of the paper is as follows. In Sec. 2, we present the method of deriving lin-
earizing transformations for the coupled second-order ODEs from the first integrals and
analyze in-depth the nature of transformations which can be identified through this proce-
dure. In Sec. 3, we focus our attention on Type-I linearizing transformations and discuss
the method of finding maximal number of linearizing transformations in each one of the
categories, namely point transformations, Sundman transformations and the generalized
linearizing transformations. We also illustrate the theory with an example in each category.
In Sec. 4 we discuss the method of finding maximal number of linearizing transformations
of Type II. Here, we divide our analysis into three groups depending upon the nature of
transformations. For example, we merge the method of finding point-Sundman transfor-
mation and point-generalized linearizing transformation into a single category since these
two transformations essentially differ only from the fact that one of the new independent
variable does possess a derivative term or not. In a similar fashion we merge Sundman
transformation, Sundman-generalized linearizing transformation and generalized lineariz-
ing transformations into another group and present the method of identifying maximal
number of linearizing transformations. For the sake of illustration, we give separate exam-
ples to each one of the linearizing transformations. Finally, we present our conclusions
in Sec. 5.
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2. Extension to Coupled ODEs

To begin with let us consider two coupled second-order nonlinear ODEs of the form

ẍ = φ1(t, x, y, ẋ, ẏ), ÿ = φ2(t, x, y, ẋ, ẏ), (2.1)

and assume that Eq. (2.1) admits at least two integrals of the form [6]

I1 = K1(t, x, y, ẋ, ẏ), I2 = K2(t, x, y, ẋ, ẏ). (2.2)

These two integrals can be constructed using the extended Prelle–Singer procedure [7]. As
we have shown for the case of scalar second-order ODEs, let us recast the integrals in the
form

I1 =
1

G1(t, x, y, ẋ, ẏ)
d

dt
F1(t, x, y), (2.3)

I2 =
1

G2(t, x, y, ẋ, ẏ)
d

dt
F2(t, x, y). (2.4)

Now identifying the functions F1, F2 and G1, G2 as new dependent and independent vari-
ables, namely

w1 = F1(t, x, y), z1 =
∫ t

o
G1(t′, x, y, ẋ, ẏ)dt′,

w2 = F2(t, x, y), z2 =
∫ t

o
G2(t′, x, y, ẋ, ẏ)dt′,

(2.5)

Eq. (2.2) can be brought to the form

Îi = dwi/dzi, i = 1, 2, (2.6)

which in turn provides the necessary two independent free particle equations, namely
d2wi/dz2

i = 0, i = 1, 2, upon differentiation.

2.1. The nature of transformations [6]

Unlike the scalar case, presently we have two independent variables, namely z1 and z2. As a
consequence we have the flexibility of fixing them either as the same variable or as different
variables, that is (i) z1 = z2 (Type I) or (ii) z1 �= z2 (Type II). In the first case one can deduce
point transformation, Sundman transformation and generalized linearizing transformation.
In all these cases the new independent variable is the same in both the equations. On the
other hand relaxing the condition, that is, the new independent variables need not be the
same in the linearized free particle equations, one gets d2wi/dz2

i = 0, i = 1, 2, which allows
one to identify a larger class of linearizing transformations, as we see below.

2.1.1. Type-I linearizing transformations (z1 = z2 = z)

In the case of Type-I transformations we have w1 = F1(t, x, y), w2 = F2(t, x, y), z1 = z2 =
z =

∫
G1(t, x, y, ẋ, ẏ)dt =

∫
G2(t, x, y, ẋ, ẏ)dt. Now appropriately restricting the form of G1

(= G2), one can identify three different types of linearizing transformations.
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(1) Suppose z1 = z2 = z is a perfect differential function and wi’s, i = 1, 2, and z do
not contain the variables ẋ and ẏ, then we call the resultant transformation, namely
w1 = F1(t, x, y), w2 = F2(t, x, y), z = Ĝ(t, x, y), as a point transformation of type-I.

(2) On the other hand, if z is not a perfect differential function, and wi’s, i = 1, 2, and
z do not contain the variables ẋ and ẏ, then we call the resultant transformation,
w1 = F1(t, x, y), w2 = F2(t, x, y), z =

∫
G(t, x, y)dt, as a Sundman transformation of

type-I.
(3) As a more general case, if we consider the independent variable z to contain the deriva-

tive terms also, that is w1 = F1(t, x, y), w2 = F2(t, x, y), z =
∫

G(t, x, y, ẋ, ẏ)dt, we have
the resultant transformation as a generalized linearizing transformation of type-I.

2.1.2. Type-II linearizing transformations (z1 �= z2)

In the Type-II linearizing transformations we have w1 = F1(t, x, y), w2 = F2(t, x, y) and
z1 =

∫
G1(t, x, y, ẋ, ẏ)dt, z2 =

∫
G2(t, x, y, ẋ, ẏ)dt, z1 �= z2. Now appropriately restricting the

forms of G1 and G2, one can get six different types of linearizing transformations.

(1) If z1 and z2 are perfect differential functions and wi’s and zi’s, i = 1, 2, do not contain
the variables ẋ and ẏ, then we call the resultant transformation, namely w1 = F1(t, x, y),
w2 = F2(t, x, y), z1 = G1(t, x, y), z2 = G2(t, x, y), as a point transformation of type-II.

(2) Suppose z1 is a perfect differential function and z2 is not a perfect differential function
or vice versa, and if z1 and z2 do not contain the variables ẋ and ẏ, then we can call
the resultant transformation, namely w1 = F1(t, x, y), w2 = F2(t, x, y), z1 = G1(t, x, y),
z2 =

∫
G2(t, x, y)dt or z1 =

∫
G1(t, x, y)dt, z2 = G2(t, x, y), as a mixed point-Sundman

transformation.
(3) On the other hand, if any one of the independent variables contains the variables ẋ and

ẏ, we call the resultant transformation, namely w1 = F1(t, x, y), w2 = F2(t, x, y), z1 =
G1(t, x, y), z2 =

∫
G2(t, x, y, ẋ, ẏ)dt or z1 =

∫
G1(t, x, y, ẋ, ẏ)dt and z2 = G2(t, x, y), as

a mixed point-generalized linearizing transformation.
(3) Suppose the independent variables are not perfect differential functions and are also not

functions of ẋ and ẏ, that is, w1 = F1(t, x, y), w2 = F2(t, x, y), z1 =
∫

G1(t, x, y)dt, z2 =∫
G2(t, x, y)dt, then we call the resultant transformation as a Sundman transformation

of type-II.
(4) Further, if one of the independent variables, say z1, does not contain the derivative terms

while the other independent variable z2 does contain the derivative terms or vice versa,
that is w1 = F1(t, x, y), w2 = F2(t, x, y), z1 =

∫
G1(t, x, y)dt, z2 =

∫
G2(t, x, y, ẋ, ẏ)dt or

z1 =
∫

G1(t, x, y, ẋ, ẏ)dt, z2 =
∫

G2(t, x, y)dt, then we call the resultant transformation
as a mixed Sundman-generalized linearizing transformation.

(5) As a general case, if we allow both the independent variables, z1 and z2, to be non-
perfect differential functions and also to contain derivative terms, that is, w1 =
F1(t, x, y), w2 = F2(t, x, y), z1 =

∫
G1(t, x, y, ẋ, ẏ)dt, z2 =

∫
G2(t, x, y, ẋ, ẏ)dt, then the

resultant transformation will be termed as a generalized linearizing transformation of
type-II.

In the following we will discuss the method of deriving maximal number of linearizing
transformations for each one of the above cases.
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3. Type-I Linearizing Transformations (z1 = z2 = z)

3.1. Invertible point transformation

3.1.1. First set

In this case w1 = F1(t, x, y), w2 = F2(t, x, y) and z =
∫ t
o G(t′, x, y, ẋ, ẏ)dt′ = Ĝ(t, x, y) is the

first pair of linearizing point transformations for the given equation which can be readily
identified from the two integrals, see Sec. 2.1.1 above.

Integrating the free particle equations we obtain the general solution of the form

w1 = I1z + I3, w2 = I2z + I4, (3.1)

where I1, I2, I3 and I4 are four integration constants. Now rewriting w1, w2 and z in terms
of the old variables one obtains the general solution for the given system of two coupled
second-order nonlinear ODEs.

3.1.2. Second set

We identify the second set of linearizing transformations from the integrals I3 and I4. To
do so we utilize the expressions (3.1) to express I3 and I4 and derive the remaining LTs.

Rewriting (3.1) in the form

I3 = w1 − I1z = w1 − dw1

dz
z,

I4 = w2 − I2z = w2 − dw2

dz
z,

(3.2)

and replacing w1, w2 and z in terms of F1, F2 and Ĝ, respectively, and dw1
dz and dw2

dz as Ḟ1
˙̂

G

and Ḟ2
˙̂

G
, respectively, we get

I3 =
1
˙̂
G

(F1
˙̂

G − Ḟ1Ĝ), I4 =
1
˙̂

G
(F2

˙̂
G − Ḟ2Ĝ). (3.3)

Now let us split the expressions which appear on the right-hand side in (3.3) further into
two perfect derivative functions such that they will provide us the second set of linearizing
transformations.

To start with we choose the dependent variables by rewriting (3.3) in the form

I3 = −(Ĝ)2

˙̂
G

d

dt

(
F1

Ĝ

)
, I4 = −(Ĝ)2

˙̂
G

d

dt

(
F2

Ĝ

)
. (3.4)

The above forms can be re-expressed as

I3 =
1

d
dt(

1
Ĝ

)
d

dt

(
F1

Ĝ

)
, I4 =

1
d
dt(

1
Ĝ

)
d

dt

(
F2

Ĝ

)
. (3.5)

Now identifying

w11 =
F1

Ĝ
, w21 =

F2

Ĝ
, z1 =

1
Ĝ

, (3.6)
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Eq. (3.5) can be brought to the form

I3 =
dw11

dz1
, I4 =

dw21

dz1
. (3.7)

In other words we have

d2w11

dz2
1

= 0,
d2w21

dz2
1

= 0. (3.8)

Through this procedure one can get a second set of linearizing point transformations from
the integrals I3 and I4.

3.1.3. Third set

We identify a third set of linearizing transformations by rewriting the expression (3.3) in
the form

I3 =
˙̂

G

Ḟ1

(
F1Ḟ1

˙̂
G

− Ḟ1
2

˙̂
G2

Ĝ

)
, I4 =

1
Ḟ1

(F2Ḟ1 + I3Ḟ2 − F1Ḟ2). (3.9)

Using the identity I1 = Ḟ1
˙̂

G
and I2 = Ḟ2

˙̂
G

, (vide Eqs. (2.3) and (2.4)) the above Eq. (3.9) can
be simplified to

I3 =
I1

Ḟ1

(F1
˙̂

G − Ḟ1Ĝ), I4 − I3I2

I1
=

1
Ḟ1

(F2Ḟ1 − F1Ḟ2). (3.10)

Interestingly the right-hand sides of both the equations in (3.10) can be brought to the
forms of total derivatives of suitable functions. To do so let us rewrite the right-hand sides
of the above two expressions in the form

Î3 =
F 2

1

Ḟ1

d

dt

(
Ĝ

F1

)
, Î4 =

F 2
1

Ḟ1

d

dt

(−F2

F1

)
, (3.11)

where Î3 = I3
I1

and Î4 = I1I4−I2I3
I1

. Proceeding further we find that the first term can be
recast in the form

Î3 =
1

d
dt(− 1

F1
)

d

dt

(
Ĝ

F1

)
, Î4 =

1
d
dt(− 1

F1
)

d

dt

(−F2

F1

)
. (3.12)

Now choosing

w12 =
Ĝ

F1
, w22 = −F2

F1
, z2 = − 1

F1
, (3.13)

Eq. (3.12) becomes

Î3 =
dw12

dz2
, Î4 =

dw22

dz2
. (3.14)

Thus, the set w12, w22 and z2 becomes the third pair of linearizing point transformations
for the given set of two coupled second-order nonlinear ODEs.
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3.1.4. Fourth set

We observe that one may rewrite (3.3) also in the form

I3 =
1
Ḟ2

(F1Ḟ2 + I4Ḟ1 − F2Ḟ1), I4 =
G

Ḟ2

(
F2Ḟ2

G
− Ḟ2

2

˙̂
G2

Ĝ

)
. (3.15)

Using again the identity I1 = Ḟ1
˙̂

G
and I2 = Ḟ2

˙̂
G

, Eq. (3.15) can be simplified to

I3 − I4I1

I2
=

1
Ḟ2

(Ḟ2F1 − Ḟ1F2), I4 =
I2

Ḟ2

(F2G − Ḟ2Ĝ). (3.16)

Interestingly the right-hand sides of both the expressions in (3.16) can also be rewritten as
a product of two perfect derivative terms as we see below.

Rewriting the terms inside the bracket in the right-hand side expressions of (3.16) as
perfect derivatives, that is

Ī3 =
F 2

2

Ḟ2

d

dt

(−F1

F2

)
, Ī4 =

F 2
2

Ḟ2

d

dt

(
Ĝ

F2

)
, (3.17)

where Ī3 = I2I3−I1I4
I2

and Ī4 = I4
I2

, and rewriting the prefactors suitably, we arrive at

Î3 =
1

d
dt(− 1

F2
)

d

dt

(−F1

F2

)
, Î4 =

1
d
dt(− 1

F2
)

d

dt

(
Ĝ

F2

)
. (3.18)

Now choosing the new dependent and independent variables in the following way,

w13 =
−F1

F2
, w23 =

Ĝ

F2
, z3 =

−1
F2

, (3.19)

Eq. (3.18) can be brought to the form

Ī3 =
dw13

dz3
, Ī4 =

dw23

dz3
. (3.20)

As a consequence one can arrive at the free particle equation through the fourth set of
variables, namely w13, w23 and z3.

Summarizing, we find that one can deduce four types of linearizing point transformations
from the integrals for a linearizable two coupled second-order nonlinear ODE, namely

(i) w1 = F1(t, x, y), w2 = F2(t, x, y) and z =
∫ t
o G(t′, x, y, ẋ, ẏ)dt′ = Ĝ(t, x, y),

(ii) w11 = F1

Ĝ
, w21 = F2

Ĝ
and z1 = 1

Ĝ
,

(iii) w12 = Ĝ
F1

, w22 = −F2
F1

and z2 = − 1
F1

and

(iv) w13 = −F1
F2

, w23 = Ĝ
F2

and z3 = −1
F2

.

One may observe that the first three sets of transformations are similar to the scalar case
(with appropriate extension to the second dependent variable) and the fourth set is similar
to the third set with suitable changes in the new dependent and independent variables.
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3.1.5. Transformation by interchange of variables

Finally, we note that since the dependent and independent variables in the point transforma-
tions are of invertible type, one can enumerate few more linearizing point transformations
just by interchanging the dependent and independent variables in the expressions (3.7),
(3.14) and (3.20). In fact, the set of transformations, (i) w1 = Ĝ, w2 = F2 and z = F1,
(ii) w1 = F1, w2 = Ĝ and z = F2, (iii) w11 = 1

Ĝ
, w21 = F2

Ĝ
and z1 = F1

Ĝ
, (iv) w11 = F1

Ĝ
,

w21 = 1
Ĝ

and z1 = F2

Ĝ
, (v) w12 = − 1

F1
, w22 = −F2

F1
and z2 = Ĝ

F1
, (vi) w12 = Ĝ

F1
, w22 = − 1

F1

and z2 = −F2
F1

, (vii) w13 = −1
F2

, w23 = Ĝ
F2

and z3 = −F1
F2

and (viii) w13 = −F1
F2

, w23 = −1
F2

and z3 = Ĝ
F2

, also form a nontrivial set of linearizing point transformations for the given
two coupled second-order nonlinear ODEs. These eight transformations can be identified
from the above four pairs by interchanging the independent variable in place of a dependent
variable and vice versa.

3.1.6. Transformation through linear combination

We also note that in the case of type-I linearizing transformations (z1 = z2 = z), w1 and
w2 act as two new dependent variables. Then the combination u1 = a1w1 + a2w2 and
u2 = b1w1 + b2w2, where a1, a2, a3 and b2 are arbitrary scalar constants, also acts as a set
of two new dependent variables. The new independent variable is z.

3.1.7. Nonexistence of other sets

Deducing point transformation from the integrals of motion is possible if and only if the
integrals are ratios of two polynomials where each polynomial is linear in the first derivative
of the dependant variables. To find out all the possible combinations of integrals that are
linear in the first derivatives let us consider a more general form of the integral which is
given by

I =
4∑

j=1

sjI
r1j

1 I
r2j

2 I
r3j

3 I
r4j

4

=
4∑

j=1

sj
Ḟ1

r1j
Ḟ2

r2j

˙̂
Gr1j+r2j+r3j+r4j

(F1
˙̂
G − Ḟ1Ĝ)r3j (F2

˙̂
G − Ḟ2Ĝ)r4j , (3.21)

where si’s and rij ’s, i, j = 1, 2, 3, 4, are some real numbers. The possible linear combination
of integrals that provide the linearizing transformations can be collected in the following
way:

K
(1)
(1,2) = a(1,2)I1 + b(1,2)I2 + c(1,2)I3 + d(1,2)I4

=
1
˙̂

G
[a(1,2)Ḟ1 + b(1,2)Ḟ2 + c(1,2)(F1

˙̂
G − Ḟ1Ĝ) + d(1,2)(F2

˙̂
G − Ḟ2Ĝ)],

K
(2)
(1,2) = a(1,2)

1
I1

+ b(1,2)
I2

I1
+ c(1,2)

I3

I1
+ d(1,2)

I4

I1
+ e(1,2)

(
I4 − I2I3

I1

)
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=
1
Ḟ1

[a(1,2)
˙̂

G + b(1,2)Ḟ2 + c(1,2)(F1
˙̂
G − Ḟ1Ĝ) + d(1,2)(F2

˙̂
G − Ḟ2Ĝ)

+ e(1,2)(F2Ḟ1 − F1Ḟ2)],

K
(3)
(1,2) = a(1,2)

I1

I2
+ b(1,2)

1
I2

+ c(1,2)
I3

I2
+ d(1,2)

I4

I2
+ e(1,2)

(
I3 − I1I4

I2

)

=
1
Ḟ2

[a(1,2)Ḟ1 + b(1,2)
˙̂

G + c(1,2)(F1
˙̂
G − Ḟ1Ĝ) + d(1,2)(F2

˙̂
G − Ḟ2Ĝ)

+ e(1,2)(F1Ḟ2 − F2Ḟ1)],

K
(4)
(1,2) = a(1,2)

I1

I3
+ b(1,2)

I2

I3
+ c(1,2)

1
I3

+ d(1,2)
I4

I3
+ e(1,2)

(
I2 − I1I4

I3

)

=
1

(F1
˙̂

G − Ḟ1Ĝ)
[a(1,2)Ḟ1 + b(1,2)Ḟ2 + c(1,2)

˙̂
G + d(1,2)(F2

˙̂
G − Ḟ2Ĝ) (3.22)

+ e(1,2)(F1Ḟ2 − F2Ḟ1)],

K
(5)
(1,2) = a(1,2)

I1

I4
+ b(1,2)

I2

I4
+ c(1,2)

I3

I4
+ d(1,2)

1
I4

+ e(1,2)

(
I1 − I3I2

I4

)

=
1

(F2
˙̂

G − Ḟ2Ĝ)
[a(1,2)Ḟ1 + b(1,2)Ḟ2 + c(1,2)(F1

˙̂
G − Ḟ1Ĝ) + d(1,2)

˙̂
G

+ e(1,2)(F1Ḟ2 − F2Ḟ1)],

K
(6)
(1,2) =

1
I1I4 − I3I2

(a(1,2)I1 + b(1,2)I2 + c(1,2)I3 + d(1,2)I4)

=
1

(F1Ḟ2 − F2Ḟ1)
[a(1,2)Ḟ1 + b(1,2)Ḟ2 + c(1,2)(F1

˙̂
G − Ḟ1Ĝ)

+ d(1,2)(F2
˙̂

G − Ḟ2Ĝ)],

where a(1,2), b(1,2), c(1,2), d(1,2) and e(1,2) are arbitrary real numbers. Here K
(i)
(1) and K

(i)
(2),

i = 1, 2, . . . , 6, are the first and second integrals of the ith collection. For the linearizing
point transformations of type I we find that all the four sets found in Sec. 3.1 can be
extracted from the above. Any other set which can be extracted from the above other than
the basic four sets are either found to be a linear combination of the dependent variables
or an interchange of the dependent and the independent variable within a set. Thus we
conclude that there exist only four basic sets of invertible linearizing point transformations
of type-I for a given coupled second-order ODE.

3.1.8. Example 1

Now we illustrate the procedure proposed above by considering an example [21]

ẍ = ẋ2 + ẏ2, ÿ = 2ẋẏ. (3.23)

1250013-9 211



July 2, 2012 8:47 WSPC/1402-9251 259-JNMP 1250013

V. K. Chandrasekar, M. Senthilvelan & M. Lakshmanan

The first integrals, which can be obtained using the formulation given in Chandrasekar et al.
[7], can be written as

I1 = −(ẋ + ẏ)e−(x+y), I2 = (ẏ − ẋ)e(y−x). (3.24)

Rewriting (3.24), we get

I1 =
d

dt
e−(x+y) =

dw1

dz1
, I2 =

d

dt
e(y−x) =

dw2

dz2
(3.25)

so that

w1 = e−(x+y), w2 = e(y−x), z = t. (3.26)

Since the transformation is of invertible point type one can also express old coordinates in
terms of new coordinates in the form

x = −1
2

log(w1w2), y =
1
2

log
(

w2

w1

)
, t = z. (3.27)

By utilizing the transformation (3.27), one can transform (3.23) to the second-order free
particle equations, namely, d2w1

dz2 = 0 and d2w2
dz2 = 0.

We get the remaining two integrals of motion for Eq. (3.23) in the form [7],

I3 = (1 + (ẋ + ẏ)t)e−(x+y), I4 = (1 + (ẋ − ẏ)t)e(y−x). (3.28)

Let us rewrite (3.28) as

I3 = −t2
d

dt

(
e−(x+y)

t

)
=

dŵ1

dẑ
, (3.29)

I4 = −t2
d

dt

(
e(y−x)

t

)
=

dŵ2

dẑ
, (3.30)

where

w11 =
e−(x+y)

t
, w21 =

e(y−x)

t
, z1 =

1
t
. (3.31)

Using the new variables (3.31) one can transform (3.23) to the two uncoupled free particle
equations.

The other two linearizing point transformations can be obtained straightforwardly from
the expressions given in (3.13) and (3.19) which in turn read

w12 = te(x+y), w22 = e2y, z2 = e(x+y). (3.32)

w13 = e−2y, w23 = te(x−y), z3 = e(x−y). (3.33)

Besides the above, by interchanging the dependent and independent variables in the expres-
sions given in Sec. 3.1.5 and through their linear combinations (Sec. 3.1.6) one can obtain
more sets of linearizing transformations additionally for Eq. (3.23).
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3.2. Sundman and generalized linearizing transformations

of type-I (GST-I and GLT-I)

In Sec. 2 we noted that GST-I differs from GLT-I only in the independent variable part. As
a consequence the method of identifying the linearizing transformations from the integrals
for both the types can be grouped together.

3.2.1. First pair of transformation

The first pair of linearizing transformations for both the cases can be readily identified by
writing the first and second integrals in the form I1 = 1

dz
dt

dF1
dt = dw1

dz and I2 = 1
dz
dt

dF2
dt = dw2

dz .

The resultant transformation reads

GST : w1 = F1(x, y, t), w2 = F2(x, y, t), dz = G(t, x, y)dt,

GLT : w1 = F1(x, y, t), w2 = F2(x, y, t), dz = G(t, x, y, ẋ, ẏ)dt,
(3.34)

respectively.

3.2.2. Second and third pairs

To derive the additional pair of linearizing transformations we recall the expression w1 =
I1z + C, where C is a constant, (which is obtained by integrating the first of the linearized
equation in (2.6)) and use the observation that I1

I2
is a perfect derivative, that is (since

G1 = G2)

I1

I2
=

1
dF2
dt

dF1

dt
=

dw1

dw2
. (3.35)

From the above we can fix the third integral I3 in the form

dw1 =
I1

I2
dw2 ⇒ w1 =

I1

I2
w2 + I3. (3.36)

Once an expression for the third integral is obtained the latter can be rewritten suitably
in order to yield the second set of linearizing transformations for the given equation. In the
following we illustrate this procedure.

Rewriting (3.36) in the form

I3 = w1 − I1

I2
w2 = w1 − dw1

dw2
w2 (3.37)

and replacing w1, w2 and dw1
dw2

in terms of F1 and F2, we get

I3 = F1 − 1
dF2
dt

dF1

dt
F2,

=
1
Ḟ2

(F1Ḟ2 − Ḟ1F2). (3.38)

Eq. (3.38) can be recast in the form

I3 = − 1
d
dt(

1
F2

)
d

dt

(
F1

F2

)
. (3.39)
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We can immediately identify the new variables as

w1 =
F1

F2
, w2 =

1
F2

, dz =
G

F 2
2

dt, (3.40)

which in turn constitutes the second set of linearizing transformations.
On the other hand starting from w2 = I2z and the identity I2

I1
= dw2

dw1
one can get

w2 = I2
I1

w1 + Î3. Following the procedure given above one can identify the third set of
linearizing transformations in the form

w1 =
1
F1

, w2 =
F2

F1
, dz =

G

F 2
1

dt. (3.41)

The result reveals the fact that for both the type-I GST (G is a function of t, x, y) and
GLT (whenever G is a function of t, x, y, ẋ, ẏ) one can identify three sets of linearizing
transformations from the integrals. We note here that unlike the scalar case we do not have
the privilege of having infinite sets of linearizing transformations. This can be illustrated
as follows: As we did in the scalar case let us rewrite the integral I1 as

I1 =
Fn

1 (F1t + ẋF1x + ẏF1y)
Fn

1 G(t, x)
. (3.42)

With this choice one can get

w1 =
1

(n + 1)
Fn+1

1 (x, t), dz = Fn
1 (x, t)G(t, x)dt, (3.43)

where n is an arbitrary integer. However, to obtain the same independent variable one
should multiply the second integral I2 by the same factor, that is

I2 =
Fn

1 (F2t + ẋF2x + ẏF2y)
Fn

1 G(t, x)
, (3.44)

which in turn fixes w2 to be in a nonlocal form which contradicts the type-I category. Thus
we conclude that there is no possibility of getting type-I GST/GLT in infinite sets.

In the following we illustrate the theory with a suitable example.

3.2.3. Example 2: GST type-I

To begin with we demonstrate the method of identifying GST of type-I from the integral
by considering the two-dimensional Mathews and Lakshmanan oscillator system [5],

ẍ =
λ(ẋ2 + ẏ2 + λ(xẏ − yẋ)2)x

(1 + λr2)
,

ÿ =
λ(ẋ2 + ẏ2 + λ(xẏ − yẋ)2)y

(1 + λr2)
,

(3.45)

where r =
√

x2 + y2 and λ is an arbitrary parameter. Equation (3.45) admits the following
two integrals, namely

I1 =
(1 + λy2)ẋ − λxyẏ√

1 + λr2
, I2 =

(1 + λx2)ẏ − λxyẋ√
1 + λr2

. (3.46)
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The integrals (3.46) can be rewritten in the form

I1 = (1 + λr2)
d

dt

(
x√

1 + λr2

)
=

dw1

dz1
, (3.47)

I2 = (1 + λr2)
d

dt

(
y√

1 + λr2

)
=

dw1

dz2
, (3.48)

from which we identify the new dependent and independent variables as

w1 =
x√

1 + λr2
, w2 =

y√
1 + λr2

, z =
∫

dt

(1 + λr2)
. (3.49)

In terms of these new variables Eq. (3.45) can be brought to the form d2wi
dz2 = 0, i = 1, 2.

The other two sets can be easily identified by using the expressions (3.40) and (3.41),
that is

w1 =
x

y
, w2 =

√
1 + λr2

y
, z =

∫
1
y2

dt (3.50)

and

w1 =
√

1 + λr2

x
, w2 =

y

x
, z =

∫
1
x2

dt. (3.51)

Here also one can check that these new variables modify Eq. (3.45) into free particle equa-
tions. In this example, the new independent variable besides being nonlocal, depends only
on t, x and y.

3.2.4. Example 3: GLT type-I

To illustrate this case let us consider a four-dimensional generalized Lotka–Volterra equa-
tions of the form [2, 13, 10]

u̇ = u2v + uv, v̇ = v2 + uv2, ẋ = u, ẏ = yv. (3.52)

The second-order version of Eq. (3.52) may be written in the form

ẍ =
ẏẋ2 + ẋẏ

y
, ÿ =

ẋẏ2 + 2ẏ2

y
. (3.53)

Hereafter we focus our attention only on the second-order version (3.53).
The first two integrals can be easily identified in the form

I1 =
y

ẋ
+ y and I2 = − ẏ

yẋ
. (3.54)

Rewriting these two first integrals in the form

I1 =
y

ẋ

d

dt
(x + t) =

dw1

dz1
, I2 =

y

ẋ

d

dt

(
1
y

)
=

dw2

dz2
, (3.55)
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we identify the following form of linearizing transformations for Eq. (3.53), namely

w1 = (x + t), w2 =
1
y
, z =

∫
ẋ

y
dt. (3.56)

The remaining two pairs of GLTs are

(i) w1 = y(x + t), w2 = y, z =
∫

yẋdt, (3.57)

(ii) w1 =
1

(x + t)
, w2 =

1
y(x + t)

, z =
∫

ẋ

y(x + t)2
dt. (3.58)

The transformations (3.56), (3.57) and (3.58) exhaust the possible generalized linearizing
transformations for Eq. (3.53).

In this section we focused our attention only on the case in which the new dependent
variables in the linearized equations are the same. Hereafter we will investigate the situation
in which z1 �= z2.

4. Type-II Linearizing Transformations (z1 �= z2)

Type-II linearizing transformations emerge by allowing the independent variables which
appear in the linearized equations to be different, that is d2w1

dz2
1

= 0 and d2w2

dz2
2

= 0. Since the
linearized equations are different from each other the situation is similar to the case of a
scalar ODE with the only difference here being that the number of equations to be derived
is two (of course the integrals at hand are also two).

To capture all the transformations one can list out the linearizing transformations that
can be obtained from the first integral (which in turn provides the first linearized equation)
and from the second integral (which in turn provides the second linearized equation). Now
one can pick up any pair (w1, z1) obtained through the first integral and combine with
any pair (w2, z2) obtained through the second integral which in turn form the linearizing
transformation (w1, w2, z1, z2) for the given two coupled second-order nonlinear ODE. This
freedom of combination allows us to obtain more number of linearizing transformations in
each category as we see below.

Let us start our analysis by considering invertible point transformations.

4.1. Point transformations of type-II

The method of linearizing two coupled second-order nonlinear ODEs into two distinct free
particle equations can be treated as linearizing a scalar ODE. The only difference is that the
number of equations to handle is now two. Once this procedure is realized, the remaining
part will be in identifying linearizing point transformations from the given two integrals.
However, this procedure has already been worked out in Part-I (for the scalar case) [8]. The
result reveals that one can identify the following three pairs of point transformations from
a given integral, namely

(1a) w1 = F1, z1 = G1, (1b) w1 =
F1

G1
, z1 =

1
G1

and

(1c) w1 =
1
F1

, z1 =
G1

F1
.

(4.1)
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Since we have one more integral at hand the same methodology can be adopted to derive
three more linearizing point transformations, namely

(2a) w2 = F2, z2 = G2, (2b) w2 =
F2

G2
, z2 =

1
G2

and

(2c) w2 =
1
F2

, z2 =
G2

F2
.

(4.2)

Interestingly we can pick up any one of the pairs from the first set and any one of the
pairs from the second set and linearize the ODE. Obviously this freedom allows one to
tabulate the existence of nine pairs of linearizing point transformations of type-II. They are
as follows:

(i) w1 = F1, z1 = G1; w2 = F2, z2 = G2,

(ii) w1 = F1, z1 = G1; w2 =
F2

G2
, z2 =

1
G2

,

(iii) w1 = F1, z1 = G1; w2 =
1
F2

, z2 =
G2

F2
,

(iv) w1 =
F1

G1
, z1 =

1
G1

; w2 = F2, z2 = G2,

(v) w1 =
F1

G1
, z1 =

1
G1

; w2 =
F2

G2
, z2 =

1
G2

,

(vi) w1 =
F1

G1
, z1 =

1
G1

; w2 =
1
F2

, z2 =
G2

F2
,

(vii) w1 =
1
F1

, z1 =
G1

F1
; w2 = F2, z2 = G2,

(viii) w1 =
1
F1

, z1 =
G1

F1
; w2 =

F2

G2
, z2 =

1
G2

and

(ix) w1 =
1
F1

, z1 = G1
F1

; w2 =
1
F2

, z2 =
G2

F2
.

(4.3)

We mention here that since the linearizing transformations are of invertible point type
each one of the dependent variable may be replaced by an independent variable and vice
verse which in turn also yields a linearizing transformation. For example in (4.1) one can
alternatively fix the transformation as

(1d) w1 = G1, z1 = F1, (1e) w1 =
1

G1
, z1 =

F1

G1
and

(1f) w1 =
G1

F1
, z1 =

1
F1

.
(4.4)

This argument is also applicable to the other set (4.2), that is

(2d) w2 = G2, z2 = F2, (2e) w2 =
1

G2
, z2 =

F2

G2
and

(2f) w2 =
G2

F2
, z2 =

1
F2

.
(4.5)

Combining (4.4) and (4.5) suitably one can get the complementary set of invertible point
transformations.
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4.1.1. Example 4: Point transformation

Let us consider the two-dimensional modified Emden type equation of the form (Carinena
et al. [4])

ẍ + 3k1xẋ + k2
1x

3 + λ1x = 0,

ÿ + 3k2yẏ + k2
2y

3 + λ2y = 0. (4.6)

Carinena et al. [4] have proved that Eq. (4.6) is a super-integrable one for λ1 = λ2, that
is, it admits three functionally independent integrals so that the solution requires only one
quadrature.

To derive the linearizing transformation let us concentrate on the first and second inte-
grals, namely

I1 = e−2
√−λ1t

(
ẋ + k1x

2 +
√−λ1x

ẋ + k1x2 −√−λ1x

)
,

I2 = e−2
√−λ2t

(
ẏ + k2y

2 +
√−λ2y

ẏ + k2y2 −√−λ2y

)
. (4.7)

Rewriting (4.7) in the form

I1 = − e−
√−λ1tk1x

2

ẋ + k1x2 −√−λ1x

[
d

dt

((
1

k1x
+

1√−λ1

)
e−

√−λ1t

)]
=

dw1

dz1
, (4.8)

I2 = − e−
√−λ2tk2y

2

ẏ + k2y2 −√−λ2y

[
d

dt

((
1

k2y
+

1√−λ2

)
e−

√−λ2t

)]
=

dw2

dz2
, (4.9)

and identifying the new dependent and independent variables,

w1 = F1 =
(

1
k1x

+
1√−λ1

)
e−

√−λ1t, z1 = G1 =
(

1
k1x

− 1√−λ1

)
e
√−λ1t,

w2 = F2 =
(

1
k2y

+
1√−λ2

)
e−

√−λ2t, z2 = G2 =
(

1
k2y

− 1√−λ2

)
e
√−λ2t,

(4.10)

one can linearize Eq. (4.6) as two free particle equations. Substituting the functions F1,
F2, G1 and G2 in (4.3) one can readily obtain the remaining eight sets of linearizing point
transformations for Eq. (4.6). The complementary set of linearizing transformations can
also be tabulated from the expressions given in (4.10).

4.2. Point-Sundman transformation (PST) and Point-Generalized

linearizing transformation (PGT)

In the previous subsection we considered the case where both the new independent vari-
ables are of point type. Let us now fix one of the independent variables to be of point
type and other to be nonlocal. Then the resultant transformation should become either a
point-Sundman transformation (in the case where the independent variables do not contain
derivative terms) or point-generalized linearizing transformation (when the independent
variables do contain derivative terms besides being nonlocal). Since PST differs from PGT
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only in the independent variable part we consider the method of identifying them from the
integral as a single category.

In the present case we have to list out all the linearizing point transformations that can
be obtained from an integral and the ST/GLT that can be obtained from the other integral.
Now combining a pair of PT with a pair of ST/GLT one can obtain PST/PGLT for a given
equation.

We have seen in Part-I [8] that one can derive three sets of point transformations and
infinite number of ST/GLT from a given integral. Similar results hold good here also. The
respective forms are

PT: (1a) w1 = F1(x, y, t), z1 = G1(t, x, y),

(1b) w1 =
F1

G1
, z1 =

1
G1

,

(1c) w1 =
G1

F1
, z1 =

1
F1

,

ST: w2 = Fn+1
2 , dz2 = Fn

2 G2dt,

GLT: w2 = Fn+1
2 , dz2 = Fn

2 G2dt,

(4.11)

where n is an arbitrary constant. From the above, we can formulate the possible linearizing
transformations as

(i) w1 = F1, z1 = G1, w2 = Fn+1
2 , dz2 = Fn

2 G2dt,

(ii) w1 =
F1

G1
, z1 =

1
G1

, w2 = Fn+1
2 , dz2 = Fn

2 G2dt,

(iii) w1 =
1
F1

, z1 =
G1

F1
, w2 = Fn+1

2 , dz2 = Fn
2 G2dt.

(4.12)

Depending upon the nature of G2, the resultant transformation becomes either PST
(G2 = G2(t, x, y)) or PGLT (G2 = G2(t, x, y, ẋ, ẏ)). In the following we illustrate the above
procedure by considering an example for each category.

4.2.1. Example 5: Point-Sundman transformation (PST)

Let us consider the four-dimensional Lotka–Volterra competing population equation of the
form [2, 10, 3, 18]

x′
1 = αx1 + βx1x2, x′

2 = αx2 + γx1x2,

x′
3 = αx3 − 1

γ
x1x3, x′

4 = αx4 − 1
β

x2x4,
(4.13)

where prime denotes differentiation with respect to τ and α, β and γ are arbitrary param-
eters. Using the transformation x̂i = xie

−ατ , i = 1, . . . , 4, and t = eατ Eq. (4.13) can be
transformed to the form

˙̂x1 = βx1x2, ˙̂x2 = γx1x2, ˙̂x3 =
1
γ

x1x3, ˙̂x4 =
1
β

x2x4. (4.14)
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For the present purpose let us rewrite Eq. (4.14) as a system of two coupled second-order
nonlinear ODEs of the form

ẍ =
ẋ2

x
+

ẋẏ

y
, ÿ =

ẏ2

y
+

ẋẏ

x
, (4.15)

where x = x̂3 and y = x̂4. Equation (4.15) possesses two integrals I1 = ẋ
ẏ and I2 = ẏ

xy . The
point transformation that can be extracted from I1 is

w1 = x, z1 = y. (4.16)

The ST that can be extracted from I2 is

w2 = log(y), z2 =
∫

xdt. (4.17)

Now utilizing the expressions given in (4.12) one can enlist the linearizing transformations
for (4.15) which in turn read as

(i) w1 = x, z1 = y, w2 = log(y)n+1, dz2 = x log(y)ndt,

(ii) w1 =
x

y
, z1 =

1
y
, w2 = log(y)n+1, dz2 = x log(y)ndt,

(iii) w1 =
1
x

, z1 =
y

x
, w2 = log(y)n+1, dz2 = x log(y)ndt.

(4.18)

In the above example the second independent variable, z2, is only a function t, x and y.
Now we consider an example in which the second variable is a function of t, x, y, ẋ and ẏ.

4.2.2. Example 6: Point-generalized linearizing transformation

To demonstrate this category we consider a variant of the two-dimensional Mathews and
Lakshmanan equation of the form

ẍ =
λ(ẋ2 + ẏ2 + 2λ(ẏ − ẋ)2) − α2

(1 + 2λ(x + y))
,

ÿ =
λ(ẋ2 + ẏ2 + 2λ(ẏ − ẋ)2) − α2

(1 + 2λ(x + y))
,

(4.19)

which admits two constants of motion, namely

I1 = ẋ − ẏ, I2 =
α2 − λ((1 + 2λ)(ẏ − ẋ)2 + 2ẋẏ)

(1 + 2λ(x + y))
. (4.20)

From I1 and I2 we identify the following transformation,

w1 = (x − y), w2 = log(1 + 2λ(x + y)),

z1 = t, z2 =
∫

2λ(ẋ + ẏ)
α2 − λ((1 + 2λ)(ẏ − ẋ)2 + 2ẋẏ)

dt.
(4.21)
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Equation (4.12) allows us to obtain the following linearizing transformations for (4.19) as

(i) w1 = (x − y), z1 = t, w2 = log(1 + 2λ(x + y))n+1,

dz2 =
2λ(ẋ + ẏ) log(1 + 2λ(x + y))n

h(x)
dt,

(ii) w1 =
(x − y)

t
, z1 =

1
t
, w2 = log(1 + 2λ(x + y))n+1,

dz2 =
2λ(ẋ + ẏ) log(1 + 2λ(x + y))n

h(x)
dt and

(iii) w1 =
t

(x − y)
, z1 =

t

(x − y)
, w2 = log(1 + 2λ(x + y))n+1,

dz2 =
2λ(ẋ + ẏ) log(1 + 2λ(x + y))n

h(x)
dt,

(4.22)

where h(x) = α2 − λ((1 + 2λ)(ẏ − ẋ)2 + 2ẋẏ). One may note that in all the above transfor-
mations the second independent variable is a function of t, x, y, ẋ and ẏ.

4.3. Sundman transformation of type-II (ST-II), Sundman-generalized

linearizing transformation (SGLT) and generalized linearizing

transformation of type-II (GLT-II)

Finally we group the cases in which both the independent variables are in nonlocal form.
The possible forms entering into this category are (i) ST type-II (both the independent
variables are only functions of t, x and y alone) (ii) GLT type-II (both the independent
variables are functions of t, x, y, ẋ and ẏ) (iii) SGLT (only one of the independent variables
contains derivative terms). Since one can identify infinite number of GLT/ST’s from a given
integral the above types of linearizing transformations notably will be larger in number than
the rest.

The possible forms of linearizing transformations are

w1 = Fm+1
1 , dz1 = Fm

1 G1dt, m �= −1,

w2 = Fn+1
2 , dz2 = Fn

2 G2dt, n �= −1
(4.23)

and

w1 = log F1, dz1 =
G1

F1
dt, m = −1,

w2 = log F2, dz2 =
G2

F2
dt, n = −1,

(4.24)

where m and n are some arbitrary numbers.

4.3.1. Example 7: Sundman transformation of type-II (ST-II)

To begin with let us consider an example for ST-II. To illustrate the ST-II we consider the
same equation, (4.15), which we considered to illustrate the PST type. However, for the
present analysis we take the integrals in the form I1 = ẋ

xy and I2 = ẏ
xy . Rewriting these two
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integrals as

I1 =
1
y

d

dt
(log(x)) =

dw1

dz1
and I2 =

1
xy

d

dt
(y) =

dw2

dz2
, (4.25)

we identify the linearizing transformations in a more general form

w1 = log(x), w2 = y, z1 =
∫

ydt, z2 =
∫

xydt. (4.26)

Other transformations are (vide Eq. (4.23))

w1 = (log(x))m+1, dz1 = (log(x))mydt, m �= −1,

w2 = yn+1, dz2 = ynxdt, n �= −1
(4.27)

and

w1 = log(log(x)), dz1 =
y

log(x)
dt, m = −1,

w2 = log y, dz2 = xdt, n = −1,
(4.28)

where m and n are arbitrary constants.

4.3.2. Example 8: Sundman-Generalized linearizing transformation

To illustrate this type of linearizing transformations let us consider an equation which is
similar to Example 1, that is,

ẍ + ẋ2 + ẋẏ = 0, ÿ − ẋẏ = 0, (4.29)

which admits the first integrals in the form I1 = ẋe(x+y) and I2 = ẋẏey. Rewriting the first
integrals as I1 = ey d

dt(e
x) and I2 = ẋ d

dt(e
y) we identify the linearizing transformations of

the form

w1 = ex, w2 = ey, z1 =
∫

e−ydt, z2 =
∫

1
ẋ

dt. (4.30)

Other transformations are

w1 = e(m+1)x, dz1 = −e(mx−y)dt, m = −1,

w2 = e(n+1)y , dz2 =
eny

ẋ
dt, n �= −1

(4.31)

and

w1 = x, dz1 = e−(x+y)dt, m = −1,

w2 = y, dz2 =
1
ẋ

e−xdt, n = −1,
(4.32)

where m and n are arbitrary constants.
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4.3.3. Example 9: Generalized linearizing transformation of type-II

To understand the generalized linearizing transformations let us start with the following
system of four coupled first-order ODEs of the form [2, 10, 3, 18, 12, 20]

ẋ1 = α1x
2
1 + α2x1x2, ẋ2 = β1x

2
2 + β2x1x2,

ẋ3 = γ1x1x3 + γ2x2x3, ẋ4 = δ1x1x4 + δ2x2x4,
(4.33)

where αi, βi, γi and δi, i = 1, 2, are arbitrary parameters. Introducing the new variables

x̂3 = x
γ1
ω1
3 x

− γ2
ω2

4 and x̂4 = x
− δ1

ω1
3 x

δ2
ω2
4 , where ωi’s, i = 1, 2, are arbitrary parameters [20] in

Eq. (4.33) we get

ẋ1 = α1x
2
1 + α2x1x2, ẋ2 = β1x

2
2 + β2x1x2, ˙̂x3 = γ̂1x1x̂3, ˙̂x4 = δ̂1x2x̂4, (4.34)

where γ̂1 = (γ1δ2−γ2δ1)
ω2

and δ̂1 = (γ1δ2−γ2δ1)
ω1

. Equation (4.34) may be written as a set of
coupled second-order ODES of the form

ẍ =
(

1 − α1

γ̂1

)
ẋ2

x
− α2

δ̂1

ẋẏ

y
, ÿ =

(
1 − β1

δ̂1

)
ẏ2

y
− β2

γ̂1

ẋẏ

x
, (4.35)

where x = x̂3 and y = x̂4. One may note that Eqs. (4.35) and (4.15) coincide under the
parametric restrictions α1 = 0, β1 = 0, γ̂1 = 1

β2
and δ̂1 = 1

α2
. However, for the present illus-

tration we consider another linearizable equation in this class by restricting the parameters
to γ̂1 = 3

2α1 = 3β2 and δ̂1 = 3α2 = 3
5β1. Under this choice, Eq. (4.35) assumes the form

ẍ =
ẋ2

3x
− ẋẏ

3y
, ÿ = −2ẏ2

3y
− ẋẏ

3x
. (4.36)

The associated first integrals turn out to be

I1 =
ẋ2

xẏ
, I2 = 2yẏẋ. (4.37)

Rewriting (4.37) in the form I1 = − ẋ
ẏ

d
dt(log(x)) and I2 = ẋ d

dty
2 and identifying the new

variables we get

w1 = log(x), w2 = y2, z1 =
∫

ẏ

ẋ
dt, z2 =

∫
1
ẋ

dt. (4.38)

Other transformations are

w1 = log(x)m+1, dz1 =
ẏ

ẋ
log(x)mdt, m �= −1,

w2 = y2(n+1), dz2 =
y2n

ẋ
dt, n �= −1

(4.39)

and

w1 = log [log(x)], dz1 =
ẏ

ẋ log(x)
dt, m = −1,

w2 = log y2, dz2 =
1

ẋy2
dt, n = −1,

(4.40)

where m and n are arbitrary constants.
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5. Conclusion

In this paper, we have extended the method of deriving the maximal number of lineariz-
ing transformations from a knowledge of the integrals for the two coupled second-order
nonlinear ODEs. The procedure proposed here is simple and straightforward and yields
not only the expected point, Sundman and generalized linearizing transformations but also
gives hybrid ones, including point-Sundman, point-GLT and ST-GLT. Interestingly we have
demonstrated that whatever be the form or type of transformations they can be extracted
in maximum from the integrals admitted by the equation. We have proved the applica-
bility of the algorithm by considering a number of examples. To our knowledge no single
algorithm has been shown to yield this much variety of linearizing transformations. In that
sense, we believe that we have established a standalone method to derive LTs in the theory
of linearization of nonlinear ODEs.
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