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The Taub-NUT four-dimensional space-time can be obtained from Euclidean eight-dimensional
one through a momentum map construction; the HKLR theorem [9] guarantees the hyperkähler
structure of R8 descends to a hyperkähler structure in the Taub-NUT space. Here we present a
detailed and fully explicit construction of the hyperkähler structure of a space-time with a Taub-
NUT metric.
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1. Introduction

Hyperkähler manifolds have received in recent years increasing attention both from mathe-
maticians and physicists [1, 6, 16]; their physical relevance is in particular related to super-
symmetry and instanton solutions of nonlinear field theories [2–5, 7, 8, 10, 11, 18].

Simple examples of hyperkähler manifolds are provided by Euclidean spaces R4n, which
naturally carry a quaternionic structure. It was shown by Hitchin, Karlhede, Lindström and
Roček (HKLR) [9] that one can build new hyperkähler manifolds from old ones through
a momentum map construction; the reduction of the hyperkähler structure in the source
manifold will provide a hyperkähler structure on the reduced manifold.

A specially interesting example of nontrivial hyperkähler manifold is provided by Taub-
NUT (Newman, Unti, and Tamburino) space-time [12–14, 17]; this is physically relevant,
and of the minimal dimension (four) for hyperkähler manifolds. It provides an explicit
example of nontrivial hyperkähler manifold, which can also be used as a test case in the
study of hyperhamiltonian dynamics [6] outside of the standard Euclidean cases.
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The HKLR theorem mentioned above guarantees the hyperkähler structure can be
obtained from the one in R8 through the HKLR momentum map reduction procedure.
It appears this general theorem is not accompanied, in the literature, by many examples
for which the hyperkähler structure in the reduced manifold is explicitly provided. In par-
ticular, we have not been able to locate an explicit expression for the hyperkähler structure
of the Taub-NUT space-times (see [15] for a different approach to this problem).

In this note we will provide such an explicit expression through a direct computation.

2. The Taub-NUT Metric

We will shortly discuss in this section the construction of the Tab-NUT metric (see for
instance the details in [19]. We borrow most of our notation from this reference). Let E
be a complex line bundle, with fiber C, and base the interval [0, �]. The coordinates in the
bundle are (z, x), where z ∈ C and x ∈ [0, �].

We define a connection:

d
dx

− it0, (2.1)

where t0 is a Hermitian endomorphism of C, depending on x ∈ [0, �], (in fact, a real number
for each x ∈ [0, �]) and three more Hermitian endomorphisms of C, t1(x), t2(x), t3(x).
Finally, let us consider two linear maps from the fiber at x = 0 to the fiber at x = �

(b0) and viceversa (b�) (all this information can be encoded in a bow diagram [3]).
We consider the action of a local U(1) as a gauge group, in the following way (we skip

the details since they are very well known): if g(x) ∈ U(1)

t0(x) → g−1t0g + ig−1 dg(x)
dx

,

ti(x) → g−1tig (i = 1, 2, 3),

b0 → g−1(0)b0g(�),

b� → g−1(�)b�g(0),

(2.2)

where (we consider a nontrivial action at the end points and a linear interpolating function
for the interior of the interval):

g(x) = eif(x) ∈ U(1), f(x) =
1
�
((�− x)φ0 + xφ�), g(0) = eiφ0, g(�) = eiφ� . (2.3)

Since the linear maps b0 and b� are complex, we will write:

b0 = q0 + iq1, b� = q2 + iq3 (2.4)

and if θ = φ� − φ0, we get the following action (all the coordinates are real):

t0 → t0 − θ

�
,

ti → ti, i = 1, 2, 3,

q0 → q0 cos θ − q1 sin θ,
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q1 → q0 sin θ + q1 cos θ,

q2 → q2 cos θ + q3 sin θ,

q3 → −q2 sin θ + q3 cos θ. (2.5)

Using the momentum map associated to this action we can consider the coordinates ti,
i = 0, 1, 2, 3 as constants (that is, not depending on x). The Euclidean metric is:

ds2 =
∫ �

0
(dt20 + dt21 + dt22 + dt23)dx+ dq20 + dq21 + dq22 + dq23

= �(dt20 + dt21 + dt22 + dt23) + dq20 + dq21 + dq22 + dq23. (2.6)

We can consider this space as the sum of two copies of R4. In the second copy, with
coordinates qi, we introduce quaternionic coordinates, and change the variables, first to a
polar form (with angle ψ/2) and second to the coordinates ri, i = 1, 2, 3 and ψ given by

q0 = −
√
r + r1

2
sin

ψ

2
,

q1 =

√
r + r1

2
cos

ψ

2
,

q2 =
1√

2(r + r1)

(
r2 cos

ψ

2
+ r3 sin

ψ

2

)
,

q3 =
1√

2(r + r1)

(
−r2 sin

ψ

2
+ r3 cos

ψ

2

)
,

(2.7)

where

r =
√
r21 + r22 + r23. (2.8)

It is a simple task to write the metric in these coordinates

ds2 = �(dt 2
0 + d�t 2) +

1
4

[
1
r
d�r 2 + r(dψ + �σ · d�r )2], (2.9)

where

�t = (t1, t2, t3), �r = (r1, r2, r3), �σ = (σ1, σ2, σ3) =
(

0,
r3

r(r + r1)
,− r2

r(r + r1)

)
. (2.10)

Since we will use them in the forthcoming sections, we will write explicitly the matrix of
the metric (in the second copy of R4) in the coordinates (r1, r2, r3, ψ):

G(1) =
r

4




1
r2 0 0 0

0 1
r2 + σ2

2 σ2σ3 σ2

0 σ2σ3
1
r2 + σ2

3 σ3

0 σ2 σ3 1


 (2.11)
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and the Jacobian matrix (∂q/∂(�r, ψ)) of the change of coordinates:

Λ =
1
2

√
r + r1

2

(
Λ1 cos

ψ

2
+ Λ2 sin

ψ

2

)
, (2.12)

Λ1 =




0 0 0 −1
1
r −σ3 σ2 0

σ3
1
r + rσ2

2 rσ2σ3 rσ2

−σ2 rσ2σ3
1
r + rσ2

3 rσ3


, (2.13)

Λ2 =




−1
r σ3 −σ2 0

0 0 0 −1

−σ2 rσ2σ3
1
r + rσ2

3 rσ3

−σ3 −1
r − rσ2

2 −rσ2σ3 −rσ2


. (2.14)

The relation between the matrices G(1) and Λ is the usual one (since the matrix of the
metric in the cartesian coordinates for the Euclidean space is the identity):

G(1) = ΛT Λ. (2.15)

We pass to a quotient space where the Taub-NUT metric is the reduction of the
Euclidean metric described in the above paragraphs, using the momentum map (associated
to the action of the group U(1)). The inverse image of zero under this map is a submanifold
of R8 given by

�t = −1
2
�r (2.16)

and the metric, with coordinates (t0, r1, r2, r3, ψ) is

ds2 = �dt20 +
1
4

[(
1
r

+ �

)
d�r 2 + r(dψ + �σ · d�r )2

]
. (2.17)

The action of the gauge group (2.5) on this manifold is:

t0 → t0 − θ

�
,

ri → ri, i = 1, 2, 3,

ψ → ψ + 2θ,

(2.18)

with an invariant given by

τ = 2�t0 + ψ, dψ = dτ − 2�dt0, (2.19)

which yields the following expression for the metric (in the coordinates (t0, r1, r2, r3, τ)):

ds2 = �dt20 +
1
4

[(
1
r

+ �

)
d�r 2 + r(dτ − 2�dt0 + �σ · d�r )2

]
. (2.20)
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Finally, to remove t0 (which is not invariant under the group action) we take:

dt0 =
r

2(1 + �r)
(dτ + �σ · d�r) (2.21)

and we get the Taub-NUT metric

ds2 =
1
4

[(
1
r

+ �

)
d�r2 +

1
1
r + �

(dτ + �σ · d�r )2
]
. (2.22)

We will write the matrix associated to the Taub-NUT metric (in the coordinates
(r1, r2, r3, τ)) which will be used in the following sections:

GTNUT =
1

4(�+ 1
r )




(�+ 1
r )2 0 0 0

0 (�+ 1
r )2 + σ2

2 σ2σ3 σ2

0 σ2σ3 (�+ 1
r )2 + σ2

3 σ3

0 σ2 σ3 1


. (2.23)

3. Quotient Hyperkähler Structures

We will discuss in the following sections how to construct a hyperkhäler structure in a four-
dimensional manifold with a Taub-NUT metric. This is an example of the construction of
hyperkähler spaces as quotients.

Let M be a manifold with a metric g and assume we have three complex structures Jα

satisfying the quaternionic relations (sum over repeated indices):

JαJβ = εαβγJγ − δαβI. (3.1)

Using Jα and the metric, we can define three symplectic forms in the usual way

ωα = g(Jα·, ·), α = 1, 2, 3. (3.2)

Our goal is to construct explicitly the complex structures and the symplectic forms
when the metric is the Taub-NUT metric written in the coordinates we used in Sec. 2. As
in that approach, our starting point will be a standard hyperkhäler structure in R8. In the
following we will refer to standard hyperkähler structures in R4n which are obtained from
standard structures in R4 (endowed with an Euclidean metric).

There are two such standard structures, differing for their orientation. The positively-
oriented standard hyperkähler structure is given by

Y1 =




0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0


, Y2 =




0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0


, Y3 =




0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0


, (3.3)

with corresponding symplectic structures (3.2)

ω1 = dx1 ∧ dx2 + dx3 ∧ dx4,

ω2 = dx1 ∧ dx4 + dx2 ∧ dx3,

ω3 = dx1 ∧ dx3 + dx4 ∧ dx2.

(3.4)
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In matrix form, these symplectic forms read as:

K(0)
α = Yα, α = 1, 2, 3 (3.5)

since the matrix of the Euclidean metric is the identity (in the cartesian coordinates we
are using). Note that, in the general case, if G is the matrix of the metric, Jα the matrices
of the hyperkähler structures and Kα the matrices of the symplectic forms, the following
relations hold:

Jα = G−1Kα, α = 1, 2, 3. (3.6)

The negatively-oriented standard hyperkähler structure is given by

Ŷ1 =




0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0


, Ŷ2 =




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


, Ŷ3 =




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


, (3.7)

with corresponding symplectic structures,

ω̂1 = dx1 ∧ dx3 + dx2 ∧ dx4,

ω̂2 = dx4 ∧ dx1 + dx2 ∧ dx3,

ω̂3 = dx2 ∧ dx1 + dx3 ∧ dx4.

(3.8)

When we change the coordinate system, as we did in Sec. 2 passing from the Cartesian
coordinates (q0, q1, q2, q3) to the coordinates (r1, r2, r3, ψ), the corresponding matrices of
the metric, symplectic forms and quaternionic structure change, and we get

G(1) = ΛT I4Λ = ΛT Λ, K(1)
α = ΛTK(0)

α Λ = ΛTYαΛ, J (1)
α = Λ−1YαΛ (3.9)

and the general relation still holds

J (1)
α = (G(1))−1K(1)

α , α = 1, 2, 3. (3.10)

The symplectic form matrices K(1)
α are

K
(1)
1 =

1
4




0 σ2 σ3 1

−σ2 0 1
r 0

−σ3 −1
r 0 0

−1 0 0 0


, K

(1)
2 =

1
4




0 1
r 0 0

−1
r 0 −σ2 0

0 σ2 0 1

0 0 −1 0


,

K
(1)
3 =

1
4




0 0 −1
r 0

0 0 σ3 1
1
r −σ3 0 0

0 −1 0 0




(3.11)

1250014-6 231



July 2, 2012 8:47 WSPC/1402-9251 259-JNMP 1250014

Hyperkähler Structure of the Taub-NUT Metric

and that of the quaternionic matrices J (1)
α ,

J
(1)
1 =




0 rσ2 rσ3 r

0 0 1 0

0 −1 0 0

−1
r σ3 −σ2 0


, J

(1)
2 =




0 1 0 0

−1 0 0 0

0 rσ2 rσ3 r

σ2 −rσ2σ3 −1
r − rσ2

3 −rσ3


,

J
(1)
3 =




0 0 −1 0

0 rσ2 rσ3 r

1 0 0 0

−σ3 −1
r − rσ2

2 −rσ2σ3 −rσ2




(3.12)

and they satisfy the quaternionic relations (3.1).
Since we have two copies of R4 in our original space R8 (2.6) we could consider several

combinations of positive or negative oriented hyperkähler structures. However, the proce-
dure will be essentially the same and we will restrict to the case of two positive oriented
hyperkähler structures. Hence, in the original R8 and cartesian coordinates, these matrices
are (I4 is the identity matrix in four dimensions):

G(0) =

(
�I4 0

0 I4

)
, K

(0)
α =

(
�Yα 0

0 Yα

)
,

J
(0)
α = (G(0))−1K

(0)
α =

(
Yα 0

0 Yα

)
, α = 1, 2, 3.

(3.13)

After changing the coordinates in the second copy of R4 we get the following set of
matrices:

G(1) =

(
�I4 0

0 G(1)

)
, K

(1)
α =

(
�Yα 0

0 K
(1)
α

)
,

J
(1)
α = (G(1))−1K

(1)
α =

(
Yα 0

0 J
(1)
α

)
, α = 1, 2, 3.

(3.14)

4. Hyperkähler Structure and the Taub-NUT Metric

In the construction of the Taub-NUT metric we reduce an eight-dimensional manifold to
a four-dimensional one. Our aim is to study the reduction of the quaternionic structure.
A direct approach to this problem is to write the metric and the symplectic forms in the
new coordinates. We have solved the problem with the metric, but not with the symplectic
forms and we do not have an explicit form for the quotient under the action of the gauge
group. But we know explicitly the relation between the forms which provides the quotient
space (see Eqs. (2.16), (2.19) and (2.21))

d�t = −1
2
d�r, dψ = dτ − 2�dt0, dt0 =

r

2(1 + �r)
(dτ + �σ · d�r) (4.1)
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and that is the only fact we need to construct the symplectic forms. In an explicit form

dt0 =
r

2(1 + �r)
dτ +

r

2(1 + �r)
�σ · d�r,

dtα = −1
2
drα, α = 1, 2, 3,

dψ =
1

1 + �r
dτ − �r

1 + �r
�σ · d�r.

(4.2)

Before the reduction, the symplectic forms are (corresponding to the matrices
K

(1)
α , (3.14)):

ω1 = �dt0 ∧ dt1 + �dt2 ∧ dt3 +
1
4
σ2dr1 ∧ dr2 +

1
4
σ3dr1 ∧ dr3

+
1
4r

dr2 ∧ dr3 +
1
4
dr1 ∧ dψ,

ω2 = �dt0 ∧ dt3 + �dt1 ∧ dt2 +
1
4r

dr1 ∧ dr2 − 1
4
σ2dr2 ∧ dr3 +

1
4
dr3 ∧ dψ,

ω3 = �dt0 ∧ dt2 + �dt3 ∧ dt1 − 1
4r

dr1 ∧ dr3 +
1
4
σ3dr2 ∧ dr3 +

1
4
dr2 ∧ dψ

(4.3)

and in the quotient space, after substituting (4.2)

ω1 =
1
4
dr1 ∧ dτ +

1
4
σ2dr1 ∧ dr2 +

1
4
σ3dr1 ∧ dr3 +

1
4

(
�+

1
r

)
dr2 ∧ dr3,

ω2 =
1
4
dr3 ∧ dτ − 1

4
σ2dr2 ∧ dr3 +

1
4

(
�+

1
r

)
dr1 ∧ dr2,

ω3 =
1
4
dr2 ∧ dτ +

1
4
σ3dr2 ∧ dr3 − 1

4

(
�+

1
r

)
dr1 ∧ dr3,

(4.4)

with matrices

KTNUT
1 =

1
4




0 σ2 σ3 1

−σ2 0 �+ 1
r 0

−σ3 −�− 1
r 0 0

−1 0 0 0


, KTNUT

2 =
1
4




0 �+ 1
r 0 0

−1 − 1
r 0 −σ2 0

0 σ2 0 1

0 0 −1 0


,

KTNUT
3 =

1
4




0 0 −�− 1
r 0

0 0 σ3 1

�+ 1
r −σ3 0 0

0 −1 0 0


.

(4.5)
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Since we know the matrix of the metric (2.23), we can compute the matrices of the
quaternionic structure (Y TNUT

α = (GTNUT)−1KTNUT
α ):

JTNUT
1 =




0 σ2(�+ 1
r )−1 σ3(�+ 1

r )−1 (�+ 1
r )−1

0 0 1 0

0 −1 0 0

−1
r − � σ3 −σ2 0


,

JTNUT
2 =




0 1 0 0

−1 0 0 0

0 σ2(�+ 1
r )−1 σ3(�+ 1

r )−1 (�+ 1
r )−1

σ2 −σ2σ3(�+ 1
r )−1 −�− 1

r − σ2
3(�+ 1

r )−1 −σ3(�+ 1
r )−1


,

JTNUT
3 =




0 0 −1 0

0 σ2(�+ 1
r )−1 σ3(�+ 1

r )−1 (�+ 1
r )−1

1 0 0 0

−σ3 −�− 1
r − σ2

2(�+ 1
r )−1 −σ2σ3(�+ 1

r )−1 −σ2(�+ 1
r )−1


,

(4.6)

which satisfy the quaternionic relations (3.1). It can also be checked that they are covariantly
constant under the Levi-Civita connection associated to the Taub-NUT metric.

We have thus explicitly computed the hyperkähler structures, thus implementing the
abstract HKLR theorem [9] in the concrete case of Taub-NUT. Note that all these structures
reproduce the flat case when r → 0.

Had we chosen as starting point a standard hyperkähler structure in R8 = R4 ⊕ R4

with different orientations, we would have obtained similar results. In fact, working with a
negative orientation we can easily choose a different set of coordinates (2.7) and obtain the
same expressions for the hyperkähler and quaternionic structures.
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