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In this paper we investigate compatible overdetermined systems of PDEs on the plane with one
common characteristic. Lie’s theorem states that its integration is equivalent to a system of ODEs,
and we give a new proof by relating it to the geometry of rank 2 distributions. We find a criterion
for integration in quadratures and in closed form, and discuss nonlinear Laplace transformations
and symmetric PDE models.
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0. Introduction

Consider a nonlinear system E of partial differential equations of orders ≤ k, which we treat
geometrically as a submanifold in k-jets. We will study its integration micro-locally near a
regular point (in a neighborhood U ⊂ E).

0.1. Formulation of the problem

We assume the system E is overdetermined and compatible (formally integrable).
Whenever the above assumptions on E are fulfilled we can evaluate algebraically formal

dimension and rank of the system, namely we can determine on how many functions of how
many variables a general solution formally depends.

For a particular case, when E is an (over)determined scalar system on the plane the
complex characteristic variety consists of a finite number of points (characteristics). In
general the complex characteristic variety can have positive dimension, but in this paper
we assume it is discrete. Let ω be the total number of points counted with multiplicity.

If ω = 0, i.e. the system E has finite type, its local solution space is finite-dimensional.
Then integration of E can be reduced to a system of ODEs; we call such systems Frobenius.
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If ω > 0, then additional assumptions must be imposed to guarantee existence of solu-
tions. Counting of solutions can still be carried on the formal level and the general stratum
of the solution space of E is parametrized by ω functions of one variable. Sophus Lie called
the number ω class of the system; for Ellie Cartan this is the character s1 (provided the
Cartan number is 1: si = 0 for i > 1).

We adapt here this definition of ω based on the Cartan test [6] (and omit discussion
of the formal definition via characteristics, see [16, 17, 23] for details). Alternatively this
number ω can be described so: Since the characteristic variety is discrete, the symbol gk of
the system E stabilizes and ω = limk→∞ dim gk (more details are in Sec. 1.1).

In this paper we restrict to the case ω = 1, which is the next simplest after the finite
type case ω = 0.

0.2. Main results

For ω = 1 Sophus Lie obtained in 1893 a theorem, which states that this case can be reduced
to ODEs as well.

Theorem A. A compatible regular overdetermined system E of class ω = 1 can be locally
integrated via ODEs.

The proof in [20] is rather sketchy. The result was later obtained in [8] without reference
to Lie. We will demonstrate the claim via geometry of rank 2 distributions and relate it to
other important results.a

Two remarks are of order. First is that we have changed formal integrability to local
smooth integrability (this is indeed missing in the classical papers). Generally it is wrong
due to Levi and similar examples. The essential feature is regularity of the characteristic
variety and peculiarity of ω = 1 (i.e. for ω > 1 the passage from formal integrability to local
integrability is not generally correct).

Second, and more important, is that the reduction procedure can be made explicit and
this allows not only to claim the reduction theoretically, but also to develop a practical
algorithm for integrability.

In this paper we discuss the geometry behind integrability and concentrate on the prob-
lem of effective solution of PDE systems. So we are especially interested in quadrature and
integration in closed form (an ideal case of Darboux integrability [2, 7, 13]).

Recall that closed form means possibility to represent the general solution parametri-
cally through arbitrary functions, their derivatives, free parameters and constants (but no
quadratures). For a PDE systems of class ω = 1 on scalar function u = u(x, y) this writes as

(x, y, u) = Ψ(ς, f(τ), f ′(τ), . . . , f (q)(τ), c1, . . . , cm). (1)

For an underdetermined ODE on u = u(x) we shall remove independent variable y to the
left and the free variable ς to the right.

aLet us mention that paper [27] discusses another reduction to ODEs for the involutive PDE systems of the
2nd order. This family meets ours by class ω = 1 systems of type 2E2 in terminology of Sec. 2.1, which were
studied by Cartan in [4].
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Theorem B. (i) A system E of class ω = 1 is integrable in quadratures if it has a transitive
solvable Lie group of internal symmetries.b

(ii) A system E of class ω = 1 is integrable in closed form if and only if it is linearizable by
an internal transformation.

Of course, one is interested in algorithmic integration, so that an effective linearization is
important. Then a sequence of generalized Laplace transformations (these are the external
transformations introduced for class ω = 1 in [16]) finishes the job.

As we shall explain, determining both linearization and quadrature is related to inves-
tigation of the rank 2 distributions internally related to the system E . Linearizable systems
correspond to Goursat distributions, i.e. canonical Cartan distributions on the jet spaces for
ODEs (in general nonlinear situation the growth vector is unrestricted). Rank 2 distribu-
tions for the systems integrable in quadratures have the structure of integrable extensions,
which can be decoded starting from its Tanaka algebra.

Thus we can model types of reduction, based on the normal forms of rank 2 distributions.
In particular, the simplest among exactly solvable (i.e. closed form with a quadrature)
class ω = 1 compatible nonlinearizable PDE systems will be those that can be reduced to
Hilbert–Cartan equation (the algebra of its non-characteristic symmetries coincides with
the exceptional Lie group G2), see Sec. 3.5. More complicated examples will be presented
at the end of the paper.

0.3. Structure of the paper

We will exploit the geometric theory of PDE, jet-geometry and the basics of Spencer formal
theory. We will also use the geometry of vector distributions. The reader is invited to consult
[14, 23, 26] for details.

Notations are different from source to source, and we adapt those of [17]. Since this
paper is a continuation of [16], an acquaintance with the latter will be useful (but not
mandatory).

The paper is organized as follows.
In Sec. 1 we recast the class ω = 1 systems into the language of the geometry of

differential equations and provide a new modern proof of Theorem A. Reduction to rank 2
distributions is the crucial ingredient. We then discuss an algorithmic method to integrate
such systems and prove part (i) of Theorem B.

In Sec. 2 we discuss another more general method of integration of PDEs via integrable
extensions (coverings), and relate this to the generalized symmetries. Notice that integrable
extensions for rank 2 distributions were classified in [3], so their description in the symmetric
cases reduces to purely algebraic questions.

In Sec. 3 we formulate the main invariants of compatible systems E of class ω = 1, and
we discuss transformations of such systems in linear and nonlinear cases. We investigate
linear system from the viewpoint of internal geometry (complimentary to the external point
of view in [16]), obtain the linearization criterion and finish the proof of Theorem B.

bInternal symmetries are transformations of the equation E considered as a manifold preserving the induced
Cartan distribution. They are more general than the classical Lie symmetries, but can differ from the higher
(Lie–Bäcklund) symmetries.
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Depending on the type of the system and its reduced rank 2 distribution we can describe
the structure of the general solution and a method of its integration. To be specific in this
section we restrict to the case of two independent and one dependent variables, though the
case of more independent variables makes no fundamental difference (non-scalar systems
can be treated similarly or can be re-written via Drah’s trick [24]).

Section 4 is devoted to various examples of compatible PDE systems of class ω = 1.
We will perform integration via the method of integrable extensions, generalized nonlinear
Laplace transformations and discuss their relation to Darboux integrability. Explicit reduc-
tion of overdetermined PDEs to underdetermined Monge equations will be shown. Some
of the most symmetric examples are coverings of the overdetermined involutive system of
order 2 on the plane investigated by Cartan.

1. Around Sophus Lie Theorems

In this section we give a modern proof of Theorem A. Sophus Lie’s original approach is
indirect and hard to implement. We present a geometric method, which is the base of our
approach to integration of class ω = 1 systems. Furthermore we will elaborate this theorem
to get the constructive Theorem B.

1.1. The geometric setup

Consider the space of jets Jk(W,N), where W = R
n is the space of independent variables

x = (xi), N = R
m is the space of dependent variables u = (uj). These coordinates on

J0(W,N) = W ×N induce the canonical coordinates uj
σ on the space of jets, σ = (i1, . . . , il)

being multi-indices, l ≤ k, 1 ≤ is ≤ n, 1 ≤ j ≤ m, as follows: For the k-jet of a map
h :W → N at the point a, ak = [h]ka, we let uj

σ(ak) = ∂lhj

∂xi1 ···∂xil
(a). Let πk : Jk → W ,

πk,k−1 :Jk → Jk−1 denote the natural projections.
This jet-space is equipped with the canonical Cartan distribution C = Ann(θj

σ : |σ| <
k) ⊂ TJk, where θj

σ = duj
σ − ∑

uj
σ+1i

dxi in canonical coordinates. The total derivatives
Dxi = ∂xi +

∑
uj

σ+1i
∂

uj
σ

are vector fields on J∞, but being truncated they can be considered
as sections of the Cartan distribution.

The fiber π−1
k,k−1(·) has standard identification with SkT ∗W ⊗TN [14]. It is a subbundle

of C, and together with the truncated total derivatives it spans the Cartan distribution.
Consider a compatible overdetermined system of PDEs as a submanifold in the space of

jets E ⊂ Jk(W,N) (assuming E to be of pure order k is not crucial), which is regular with
respect to all projections. Its symbol is the subbundle gk = Ker(dπk,k−1 :TE → TJk−1) ⊂
SkT ∗W ⊗ TN .

Prolongations of the equation Es ⊂ Js, s > k, are defined as the zero loci of the differen-
tial corollaries of the PDEs defining E , and we assume the projection maps πs,s−1 : Es → Es−1

are regular and submersive (this involves vanishing of the compatibility conditions, and
so constitutes the formal integrability assumption). Its symbol gs = Ker(dπs,s−1 :TEs →
TEs−1) can be calculated algebraically as gs = (gk ⊗ Ss−kW ∗) ∩ (SsW ∗ ⊗N).

As mentioned in the Introduction, the condition ω = 1 translates to dim gs = 1 for large
s ≥ k. This happens from the level E becomes involutive (see the discussion about relation
of this with compatibility in [16, 17]), and without loss of generality we will assume in this
section that this is true for s = k.
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Then by the standard arguments from formal theory of differential equations [23], we
conclude that the symbol gk is generated by pk⊗v for the (unique up to scale) characteristic
covector p ∈ T ∗W and some v ∈ TN (if the characteristic variety consists of one covector
it is automatically real, so we can skip the traditional complexification).

The induced Cartan distribution on the equation CE = C ∩ TE has rank n + 1. Indeed,
it is generated by the vertical vector pk ⊗ v and n total derivatives Dxi restricted to the
equation, which are defined mod gk. Denoting the (non-canonical) horizontal space by H

we get

CE = H ⊕ gk.

Lemma 1.1. Let p ∈ PT ∗W be the (unique) characteristic covector. There is a unique
(n − 1)-dimensional subdistribution Π ⊂ CE such that dπk(Π) = p⊥ ⊂ TW and Π consists
of Cauchy characteristics of CE .
Proof. Let H be some choice of horizontal space, Π ⊂ H the lift of p⊥ and η a vertical
vector field (section of gk).

The Lie bracket of sections of CE induces the pointwise bracket on the vectors from CE
with values in the normal bundle. Its restriction to the horizontal and vertical vectors is
the map H ⊗ gk → TE/CE .

With identification H 	 TW this latter is the restriction of the natural pairing TW ⊗
SkT ∗W ⊗ TN → Sk−1T ∗W ⊗ TN , see [17]. Thus the bracket-map is H ⊗ gk → νk−1 =
〈pk−1 ⊗ v〉 ⊂ Sk−1T ∗W ⊗ TN , and it follows that [ξ, η] = 0 for all ξ ∈ Π.

Next consider the restriction of the bracket to two horizontal fields Λ2H → νk−1. Since
the total derivative operators commute, and the sections of H can be taken as truncated
total derivatives modulo gk, then two vector fields from Γ(Π) commute modulo CE . This
implies that [ξ, ξ′] = 0 ∀ ξ, ξ′ ∈ Π.

It remains to choose an additional vector ζ ∈ H\Π and consider the induced bracket
τ : 〈ζ〉 ⊗ Π → νk−1. It can be nontrivial since H is defined up to gk and (ζ, pk ⊗ θ) 
→
k pk−1p(ζ) ⊗ θ �= 0.

Let us change H = 〈ζ〉 ⊕ Π by modifying Π as the graph of the map −τ(ζ, ·) ∈
Π∗ ⊗ νk−1 	 Π∗ ⊗ gk, where we use identification [ζ, ·] : gk

∼→ νk−1. Then the new space Π
is still involutive with respect to the induced bracket and it commutes with both ζ and η

mod CE . This means that the sections of Π are Cauchy characteristics.
Uniqueness of Π follows from the fact that the above (bracket) pairing 〈ζ〉 ⊗ gk → νk−1

is nonzero.

Remark 1.2. For n = 2 characteristic vectors are dual to characteristic covectors. It is
not however true that the former can be lifted to Cauchy characteristics of CE . This is
peculiarity of the case ω = 1.

1.2. Reduction to rank 2 distributions

Due to Lemma 1.1 internal geometry of the distribution CE is equivalent to that of the rank
2 distribution CE/Π. This implies Sophus Lie theorem.
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Proof of Theorem A. Consider the pair (E , CE ). Solutions of the system are
n-dimensional integral submanifolds of the distribution, whose projection to the base are
submersive.

It follows from the proof of Lemma 1.1 that an n-dimensional subspace of CE is involutive
with respect to the (bracket) pairing Λ2CE → νk−1 if and only if it contains Π. In other
words, a solution must be tangent to Π, and also it must be transversal to gk (this latter
requirement can be omitted for generalized solutions).

It is the standard fact, that the sub-distribution Π generated by Cauchy characteristics
is integrable and shifts along it are symmetries for CE . Taking the (local) quotient we arrive
to the manifold M = E/Π (quotient by the leaves) equipped with a rank 2 distribution
∆ = CE/Π without characteristics.

Maximal integral manifolds of such a distribution are integral curves (it follows from
the proof of Lemma 1.1 that the distribution CE is not integrable, so ∆ is non-integrable as
well), which can be found by solving underdetermined ODEs.

The space of integral curves of ∆ is locally parametrized by one arbitrary function of
one variable. Indeed, we can add an arbitrary constraint determining the underdetermined
equation for the curves. For instance, this is given by a choice of a curve γ in the image of
any submersion ρ :M → R

2 with fibers transversal to ∆, because dρ−1(Tγ) ∩ ∆ is a line
field in ρ−1(γ).

The inverse of the quotient map E → M sends any of the integral curves of ∆ to an
n-dimensional integral surface, which is a generalized solution of E (and classical solutions
are dense among the local generalized solutions).

Note that this proof, as well as the arguments from the previous subsection, uses inte-
gration of ODE systems twice: first to solve the Frobenius system, corresponding to Cauchy
characteristics Π, and then to find the integral curves of ∆ = CE/Π.

The latter integration can be split in turn into integration of the bracket-closure of the
distribution ∆∞ = ∆ + [∆,∆] + · · · , which is Frobenius and then integrating ∆ in the
leaves.

In the first case the order of the system is dim E − (n− 1) = codim Π. In the second it is
split into an ODE of order equal to the number of first integrals for ∆ in M (= codim ∆∞)
and an ODE of order dim ∆∞ − 2.

Remark 1.3. The shift along Cauchy characteristic is a characteristic symmetry for E (its
flow is trivial on the space of solutions). The quotient of all symmetries by these is the
algebra of non-characteristic symmetries. It is isomorphic to the Lie algebra Sym(M,∆).

1.3. Constructive integration methods

A theorem of Sophus Lie states that ODEs with a transitive solvable Lie group of sym-
metries are integrable in quadratures. This is equivalent to the claim that if a holonomic
distributionc ∆ on a manifold M admits a solvable symmetry Lie group of complimentary
dimension with orbits transversal to it, then the integral leaves of ∆ can be expressed in
quadratures [19].

cThis means it satisfies the Frobenius condition [Γ(∆), Γ(∆)] ⊂ Γ(∆).
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We extend this theorem to non-holonomic distributions ∆. We assume at first the dis-
tributions are completely non-holonomic, i.e. the bracket closure ∆∞ equals TM and so
∆ has no first integrals. Generic such distributions have no integral surfaces, and integral
curves (which always exist) are the maximal integral manifolds.

Theorem 1.4. Let ∆ be a completely non-holonomic distribution of rank r on a manifold
Mm. Suppose a solvable Lie group G of dimension m − r acts by symmetries with orbits
everywhere transversal to ∆. Then local integral curves of ∆ can be found by quadratures.

Proof. Denote by π :M → Lr = M/G the local quotient by the orbits (the space of
G-invariantsd). Notice that π∗ maps ∆ onto TL.

Choose a curve γ ⊂ L and restrict the distribution ∆ to π−1(γ). This is a line field
and G acts transitively by symmetries on π−1(γ). By the classical Sophus Lie theorem the
integral curves of this line field can be found by quadratures. Thus these restricted integral
curves are parametrized by m− r integration constants in π−1(γ), while the curves γ ⊂ L

are parametrized by r − 1 function of 1 variable. The integral curves of ∆ in M are given
through these by quadratures.

In particular, for our case r = 2 we get dependence on one function of one variable.
Thus for general class ω = 1 compatible PDE system we need three solvable Lie groups to
integrate it in quadratures: one group G1 of dimension equal to corank of the characteristic
space Π to perform the reduction (E , CE) → (M,∆), the second group G2 of dimension equal
to corank of ∆∞ in M , and finally the third group G3 of dimension rank(∆∞) − rank(∆)
(all actions should be transversal).

Remark 1.5. A more general result is this: Consider a solvable Lie group G acting as
transversal symmetries of ∆ in M . Denote by ∆̄ in M̄ the quotient distribution. Then
integral curves of ∆ can be found from integral curves of ∆̄ by quadratures. The number
of involved integrals is the dimension of G, while the maximal number of iterated integrals
is equal to the length of the derived series of G.

Let us consider an example from [25] of a Monge equation E on y = y(x), z = z(x) with
three-dimensional solvable symmetry group:

z′ = z2 + ψ(z) + (y′′ + y)2. (2)

The Lie algebra g = Sym(E) is generated by the (prolongations of) vector fields
∂x, cos x ∂y, sinx ∂y on J0(R,R2) = R

3(x, y, z).
If one (naively) substitutes y = h(x), then z(x) satisfies a Riccati equation, and so its

solution cannot be found by quadratures (a similar problem occurs for general ω = 1 class
PDEs, so general reduction to ODEs from Theorem A does not necessarily yield an exact
solution).

The correct approach of Theorem 1.4 is to consider the quotient, i.e. to pass to the space
of G-invariants R

2(z, y′′ + y). A curve in this space is given by an equation y′′ + y = f(z).

dPassage to this space is the only place where we have to use the Lie group action, at others we can relax
the assumption to the Lie algebra action.
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Substituting this back into (2) we find the autonomous first order equation

z′ = z2 + ψ(z) + f(z)2,

which is easily integrable in quadratures, and afterwards the second order equation for y is
integrated in quadratures too.

Remark 1.6. The previous naive argument uncovers as follows. The curve in the plane
L2 = R

2(z, y′′ + y) is specified via a parameter x: y′′ + y = h̃(x) and z(x) is given by
z′ = z2 + ψ(z) + h̃(x)2. Since the last equation cannot be integrated in quadratures, the
initial data (a curve in L2 and 3 integration constants) is not given explicitly, and so the
result ceases to be given via an explicit formula.

2. Integrable Extensions and Generalized Symmetries

Integrable extensions or coverings [15] are mappings of PDEs E → Ē such that solutions of
E are obtained from those of Ē by solving ODEs. For (underdetermined) ODEs a covering
is a submersion π : (M,∆) → (M̄, ∆̄), i.e. dxπ : ∆x → ∆̄π(x) is an isomorphism ∀x ∈M .

We will call passage from (M,∆) to (M̄, ∆̄) integrable extension, and the inverse —
integral deprolongation.

These coverings of systems of ODEs (or distributions) were studied in [3] as they are
useful in solving the system. Indeed a sequence of integrable extensions can decompose a
given system into a sequence of 1st order scalar ODEs.

It is easy to see that quotient by the Cauchy characteristic of class ω = 1 systems, which
is basic for Theorem A, commutes with integral deprolongation (since, by Sec. 3 and [3],
it is deprolongation in the sense of distributions, i.e. quotient by the Cauchy characteristic
for the derived distribution). Thus it is enough to study integrable extensions of rank 2
distributions. We will relate them to the symmetry approach of the previous section.

For instance, we can write the symmetry reduction of Theorem 1.4 and Remark 1.5
via integrable extensions. Let ρ̄ : M̄ → R

2(x) be a submersion giving the independence
condition (as in the proof of Theorem A, Sec. 1.2, the map dāρ̄|∆ is an isomorphism at
any point ā ∈ M̄), i.e. with the coordinate u along fibers of ρ̄ the integral curves of ∆̄
write u = u(x). The equation for these integral curves has the form F [x, u] = 0, where the
latter is an underdetermined ordinary (nonlinear) differential operator and both F and u

are multi-dimensional.
Then provided that the Lie group G of symmetries has derived series G = Gl ⊃ Gl−1 ⊃

· · · ⊃ G0 = 0 with Abelian quotients Gi/Gi+1 = Vi we can choose coordinates vi on Vi and
have the equation for integral curves of ∆ in this form:

F [x, u] = 0, v′1 = H1(x, u), v′2 = H2(x, u, v1), . . . ,

v′l−1 = Hl−1(x, u, v1, . . . , vl−2), v′l = Hl(x, u, v1, . . . , vl−1).
(3)

This is a special integrable extension, related to the symmetry methods. The most general
form of an integrable extension is given by

F [x, u] = 0, v′1 = H1(x, u, v1), v′2 = H2(x, u, v1, v2), . . . ,

v′l−1 = Hl−1(x, u, v1, . . . , vl−1), v′l = Hl(x, u, v1, . . . , vl−1, vl).
(4)
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2.1. Existence of integral deprolongations for (2, 5) distributions

Due to existence of normal forms (2,m) distributions have the structure of integrable exten-
sions for m < 5. This holds true also in the first nontrivial case m = 5, where such distri-
butions have moduli.

Theorem 2.1. A regular 2-distribution ∆ on a manifold M5 admits local submersion onto
a 2-distribution in a four-dimensional manifold (M̄4, ∆̄).

The claim follows from (is equivalent to) a result due to Goursat.

Theorem 2.2 ([12, Sec. 76]). A regular rank 2 distribution in a five-dimensional
manifold can be locally represented as the canonical distribution of the Monge equation
E : v′ = f(x, u, u′, u′′, v).

Indeed, the distribution of this equation E ⊂ J1,2(R,R2) is

∆ = 〈∂x + u1∂u + u2∂u1 + f∂v, ∂u2〉, (5)

which has the structure of integrable extension over J2(R,R), equipped with the canonical
Cartan distribution 〈∂x + u1∂u + u2∂u1 , ∂u2〉; the projection π : E → J2 is (x, u, u1, u2, v) 
→
(x, u, u1, u2).

For completeness we give an alternative proof of Goursat’s theorem (using vector fields
approach instead of EDS methods).

Define the commutator of two distributions [∆,∆′] by the formula: Γ([∆,∆′]) =
[Γ(∆),Γ(∆′)], where Γ(∆) denotes the module of sections of the distribution ∆.

Proof of Theorem 2.2. We consider the general situation when [∆, [∆,∆]] = TM (else-
wise the distributions have normal forms and the statement follows).

Consider the maps Υ : Γ(∆) × Γ(∆) → Γ(Λ4TM) and Θi : Γ(∆) × Γ(∆) → Γ(Λ5TM)
given by

Υ(ζ, η) = ζ ∧ η ∧ [ζ, η] ∧ [ζ, [ζ, η]],

Θ0(ζ, η) = Υ ∧ [η, [ζ, η]], Θ1(ζ, η) = Υ ∧ [ζ, [ζ, [ζ, η]]],

Θ2(ζ, η) = Υ ∧ [ζ, [η, [ζ, η]]], Θ3(ζ, η) = Υ ∧ [η, [η, [ζ, η]]].

A change of frame ζ̃ = aζ + bη, η̃ = cζ + dη induces the changes:

Θ0(ζ̃ , η̃) = δ5Θ0(ζ, η), δ =

∣∣∣∣∣
a b

c d

∣∣∣∣∣
δ−4Θ1(ζ̃ , η̃) = a3 Θ1(ζ, η) + a2b (2Θ2(ζ, η) + Θ3(η, ζ))

+ ab2 (2Θ2(η, ζ) + Θ3(ζ, η)) + b3 Θ1(η, ζ) + σΘ0(η, ζ).

where σ = a · (aη + bζ)(b) − b · (aη + bζ)(a). This implies the existence of a solution a
b ∈

C∞(M,RP 1) to Θ1(ζ, η) = 0.
Let us straighten ζ = ∂u2 in a local chart R

5 ↪→ M , and denote the quotient by R
4 =

R
5/ζ (i.e. u2 = const). Then the distribution becomes a u2-dependent vector field η = ∆/ζ

in R
4. The Lie derivative Lζ corresponds to the derivative by u2, which we denote by the

prime.
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Condition Θ1(ζ, η) = 0 reads η ∧ η′ ∧ η′′ ∧ η′′′ = 0, and we can assume the highest
derivative is resolved:

η′′′ = a2η
′′ + a1η

′ + a0η.

By reparametrization of time u2 and scaling of η we can achieve a0 = a1 = 0 (in contrast
the Laguerre–Forsyth canonical form). Then the equation is η′′′ = a2η

′′, and the solution
is η = ξ0 + u2ξ1 + f∂v, where fu2u2 �= 0, η′′‖∂v and ξ0, ξ1 are u2-independent fields on
R

3 = R
4/∂v .

Now in our general case the distribution 〈ξ0, ξ1〉 in R
3 is contact, so in the Darboux

coordinates ξ0 = ∂x + u1∂u, ξ1 = ∂u1. Thus we obtain local coordinates on M such that ∆
has form (5).

2.2. Non-existence of integral deprolongations for (2, m)
distributions with m > 5

Dimensional count: generic rank 2 distribution in Mm depends on 2(m − 2) −m = m− 4
functions of m variables (quotient of sections of (2,m)-Grassmanian by the pseudogroup of
local diffeomorphisms), while integrable extension depends on one function of m variables
(in both cases: and some number of functions of fewer variables). Thus for m > 5 there are
obstructions to existence of the structure of integrable extension over a lower-dimensional
manifold.

These obstructions are important relative differential invariants of the distribution. For
example, in dimension six there are two relative invariants vanishing of which characterizes
possibility to represent the distribution as the Monge equation v′ = f(x, u, u′, u′′, u′′′, v).

It is interesting to notice that for m = 5 we get seemingly determined system (the same
functional dimension). And indeed, the one-dimensional distribution V has the property of
deprolongation (the vertical distribution of the projection π) if and only if [V,∆] ⊂ V + ∆.
This can be written as four equations on four functions specifying V (these latter can be
taken as the first integrals, but then the system has order 2; it is better to write V via a
generating vector field ∂v + F1∂x + F2∂u + F3∂p + F4∂q and take the components Fi as the
unknowns).

This 4×4 system is not however determined since every covector is characteristic (direct
calculation or this observation: in the normal form from Sec. 2.1 the totality of integrable
deprolongations has functional moduli — the general solution depends on a function of five
variables).

Remark 2.3. It is also interesting to try to deprolong by rank 2 foliation, which indeed
exists as a generic (2,4) distribution has Engel normal form, and so integrally deprolongs
to the contact (2,3) distribution. The conditions for existence of such rank 2 distribution
V are:

[V, V ] ⊂ V, [V,∆] ⊂ V + ∆. (6)

This is a system of four equations on three unknowns (1st integrals of V ), but it is not
overdetermined: again all covectors are characteristic!

Finally notice that even though a generic rank 2 distribution in M = R
5 has locally the

structure of an integrable extension of type (4) (with l = 1, dimV1 = 1) over the Engel
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distribution in M̄ = R
4, it does not have a form of special integrable extension of type (3).

This can be again verified by dimensional calculus.

2.3. Generalized symmetries

A space G of vector fields is a Lie symmetry algebra of ∆ if and only if

[G,G] ⊂ G, [G,∆] ⊂ ∆.

Remark 2.4. Let us recall that a collection of differential operators 〈Fi〉 form a symmetry
algebra for the PDE system E = 〈Hj = 0〉 if and only if

{Fα, Fβ} = 0 mod〈Fi〉, {Fα,Hβ} = 0 mod〈Hj〉,
where {, } is the Jacobi bracket (we write the condition for simplicity in the case of scalar
or square matrix equations), see [14].

If we are interested in compatibility of the systems 〈Fi〉 and 〈Hj〉, then the last condition
changes to more general

{Fα,Hβ} = 0 mod〈Fi,Hj〉,
see [17]. Such F are called generalized symmetries, conditional symmetries or auxiliary
integrals.

Based on this remark we can treat distributions V satisfying condition (6) as generalized
symmetries. It allows the following symmetry reduction: if L ⊂ M is an integral curve of
∆, then in the union of V -leaves meeting L the integral curves of ∆ can be found via lower-
dimensional determined ODE. If, in addition, V is the orbit of a solvable Lie group action,
the solutions can be found in quadratures. The generalized symmetries are more common
than the classical ones.

Example 2.5. Consider the symmetries of the Engel distribution, which is the Cartan
(higher contact) distribution on J2(R,R) = R

4(x, y, y1, y2). In canonical coordinates it is
∆2 = 〈ξ1 = ∂x + y1∂y + y2∂y1 , ξ2 = ∂y2〉.

By Lie–Bäcklund theorem the symmetries are lifts of contact fields on J1(R,R), and so
are defined by one function of three arguments.

The generalized symmetries η = ∂y + λ1∂x + λ2∂y1 + λ3∂y2 (here unlike for symmetries
we can normalize one of the coefficients by scaling) are defined by [ξi, η] = 0 mod∆ + 〈η〉
which is equivalent to

λ2y2 =
y1λ2 − y2

y1λ1 − 1
λ1y2 , λ3 =

y1λ2 − y2

1 − y1λ1
ξ1(λ1) + ξ1(λ2) + λ2

λ2 − y2λ1

1 − y1λ1
.

So the generalized symmetries depend on one function of four arguments λ1.
It is often the case that a system (distribution) has no symmetries, but it admits gen-

eralized symmetries that can (partially) integrate ∆.
In particular, if these generalized symmetries have the structure of special integrable

extension (3) over R
2(x) (i.e. no underlying constraint F [x, u] = 0),e then the integral

eNotice that truncation of the formulae in (3) on the level i yields symmetries ∂vi , but they need not to
extend when we increase i.
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curves of ∆ can be found in quadratures. This is a generalization of Theorem B, part (i),
and in such a form it can be inverted.

Theorem 2.6. If integral curves of ∆ are given in quadratures, then this distribution inte-
grally deprolongs and has the structure of special integrable extension.

Proof. By the assumption the general form of the integral curve in proper coordinates is

xi = ψi(t), u1 =
∫ ∑

Φ1
i (ψ(t))(ψi(t))′dt,

u2 =
∫ ∑

Φ2
i (ψ(t), u1)(ψi(t))′dt, etc.

(linearity in ψ′ under the integral encodes the fact that the family of curves is integral for
a vector distribution).

In other words, the distribution is given through one-forms

ωj = duj −
∑

Φj
i dx

i

over the curve γ ⊂ R
r(x) given by x = ψ(t). Since Φj

i depends only on ψ and u1, . . . , uj−1,
this is equivalent to the claim.

For instance, integral curves of a generic rank 2 distribution in R
5 cannot be found in

quadratures — such ∆ does not have the structure of special integrable extension (3). Some
cases, when the integral curves are given by quadratures, are discussed in [4, 12].

Corollary 2.7. If a system E of class ω = 1 is integrable in quadratures, then it has the
structure of special integrable extension.

The latter can be seen as a multi-dimensional analog of (3), but it is equivalent to the
same property for the reduction along Cauchy characteristics — the rank 2 distribution ∆.

3. Integration of Class ω = 1 Systems

In this section we split the totality of ω = 1 systems into classes, and discuss transformations
between them as a method of integration. r = dimH∗,1(E) will be the total amount of PDEs
in the system.f

3.1. Type and complexity

We introduce the following rule for a choice of generators of the system E of class ω = 1.
Consider the orders of the PDEs in the system: kmin = k1 ≤ · · · ≤ kr = kmax, which are
taken with multiplicities mi = {#j : kj = i} = dimH i−1,1(E).

So the system E is given by mk1 equations F1,1, . . . , F1,m1 of order k1, . . . , mks equations
Fs,1, . . . , Fs,ms of orders ks = kmax (s = r −mkr + 1).

We write E symbolically as
∑r

i=1Eki
=

∑
miEi, and call the latter the type of E . See

[16] for the table of class ω = 1 systems of order kmax ≤ 5 (this table works equally well for
general nonlinear systems).

fStarting from this section we restrict to base dimension n = 2. Familiarity with the Spencer cohomology
Hi,j(E) [23] is not crucial.
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Let gi denote the symbols of E . Starting from some jet-level t the dimensions of these
subspaces stabilize: dim gi = 1 for i ≥ t. This is equivalent to involutivity of the prolongation
E(t−kmax).

Definition 3.1. Complexity of E is the number κ =
∑∞

i=0(dim gi − 1).

This number measures the amount of Cauchy data needed to specify a solution. It gives
a partial order on the totality of class ω = 1 systems. All our reductions will decrease the
order.

By definition all systems of class ω = 0 (for ODEs the relevant complexity is the dimen-
sion of the solutions space) are taken to be of lower complexity than the systems of class
ω = 1.

Lemma 3.2. Denote by Ê the equation prolonged to the jet-level t = min{i : dim gi = 1},
where it is involutive. Then dim Ê = κ + t+ 3.

Proof. Since the base is two-dimensional, we get dim Ê = 2 +
∑t

i=0 dim gi, whence the
claim.

The Cartan distribution CÊ of Ê (by Sec. 1.1) has rank 3. According to Lemma 1.1 it
contains a unique (up to scale) Cauchy characteristic field, the (local) quotient by which we
denote (M,∆). This ∆ is a rank 2 distribution describing the internal geometry of (Ê , CÊ ).
By Lemma 3.2 the manifold M has dimension µ = κ + t+ 2.

3.2. Derived flags of a rank 2 distribution

The strong derived flag of ∆ is defined by ∇1 = ∆, ∇i+1 = [∇i,∇i]. Its growth vector is the
finite sequence (dim∇i)τi=1, where τ is the stabilization level (in the regularity assumptions,
we adopt, all the ranks are constant).

The weak derived flag is given by ∆1 = ∆, ∆i+1 = [∆i,∆]. Notations ∂i−1∆ = ∆i are
also used. The following cases are possible.

I. The growth vector is (2, 3, 4, . . .). In this case by Cartan theorem [3, 5] the system can be
deprolonged,g i.e. there exists another manifold M̄ of dimension µ̄ = µ− 1 equipped with
rank 2 distribution ∆̄ such that ∆ = P(∆̄) is the prolongation.

The symmetries of ∆ are preserved under passage to ∆̄, and the solutions are mapped
forward in such a way that to any solution of ∆̄ there corresponds a one-dimensional family
of integral curves of ∆.

Thus passage to deprolongation is a nice reduction of the system, for which the com-
plexity κ (it exists on both ODE and PDE levels) decreases. For linear class ω = 1 systems
this corresponds to the (generalized) Laplace transformation, see [16] and the next section.

II. The distribution ∆ is not completely non-holonomic, i.e. ∇τ �= TM . In this caseh there
are p = µ− rank∇τ first integrals I1, . . . , Ip that pull-back to first integrals of the system
E . We can fix the values of Ij and reduce the complexity of the system.

gIn [3] the growth vector of the weak derived flag was considered. However, when dim ∆ = 2, this makes no
difference at the first three elements of the sequence (2, 3, x, . . .), where x = dim ∆3 = dim∇3 can be 3, 4, 5.
hAgain here it makes no difference if we consider weak or strong derived flag, only the length τ can change.
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For linear systems existence of such integrals means that the sequence of Laplace trans-
formations does not reduce E to E1 but stops on a finite type (class ω = 0) system [16].
For nonlinear systems the relative invariants that control existence of intermediate integrals
can be calculated as generalized Laplace invariants of the linearization.

III. The general case: the distribution is totally non-holonomic and not deprolongable. Thus
the growth vector is (2, 3, 5, . . . , µ).

To find integral curves of ∆ one can use integrable extension idea of Sec. 2 to decrease
the complexity. Of course, due to Sec. 2.2 a generic rank 2 distribution on a manifold of
dimension > 5 has no integrable extensions, so only general Theorem 1.4 can be applied.
But distributions with symmetries do have such extensions, as the symmetry reduction
gives integral deprolongation. Thus search of integrable extension (generalized symmetries)
is an integration method.

Recall also that one has to prolong the system to the level of involutivity in order to
make quotient by Cauchy characteristic. The following calculation shows importance of this.

Example 3.3. Consider a compatible system E ⊂ J3(M) of type 2E3: uxxx = F, uxyy = G,
with F,G ∈ C∞(J2M)). The system is not involutive on the level of 3rd jets, since it
has nonzero Spencer cohomology H3,2(E) = R and the symbol is not stable: dim g3 = 2,
dim g3+i = 1. Thus if we do not prolong the system, then the growth vector of the weak
derived flag of the Cartan distribution CE is (4, 7, 9, 10). In addition CE has no Cauchy
characteristics, while its derived ∂ CE has three Cauchy characteristics, so that the pattern
is wrong.

The prolonged system E(1) ⊂ J4(M) is involutive and the reduction of Theorem A
works — there is one Cauchy characteristic for the original distribution and one more for
the derived.

Consider for instance the system with F = 1
4u

4
yyy, G = 1

2u
2
yyy. The weak derived flag

of the reduced (by Cauchy characteristic) system has growth (2, 3, 4, 5, 6, 7, 8, 9), while the
strong growth vector is (2, 3, 4, 6, 9). Thus there is one intermediate integral uxxy− 1

3u
3
yyy = c,

and after deprolongation both growth vectors are (2, 3, 5, 8) — the corresponding graded
nilpotent Lie algebra [3, 26] is free truncated.

3.3. Internal geometry of linear systems

Let us briefly summarize the results of [16], where linear compatible PDE systems of class
ω = 1 were studied.

It was shown that such systems E (with dependent variable u) can be integrated via
generalized Laplace transformation, which is a first order differential operator L : u 
→ v =
Xu, with X having the same symbol as the characteristic vector field.

Denote the system we obtain on the variable v by Ẽ . It is also linear and compatible.
Denote the inverse operator by L−1 : v 
→ u. As proven in [16] only three different situations
are possible:

(1) Ẽ has class ω = 1 and L−1 is a differential operator.
(2) Ẽ has class ω = 1 but L−1 is given by a finite type system.
(3) Ẽ has class ω = 0 and L−1 is an integral operator.
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Case (1) is generic. If the itinerary of the transformations for E meets only such equa-
tions, then a sequence of Laplace transformations provides complete integration of the PDE
system E .

Moreover, under generalized Laplace transformation the complexity strictly decreases.
Generically it decreases only by 1: κ 
→ κ − 1.

These results were obtained using the external geometry of E . Let us reformulate them
in the internal language.

Proposition 3.4. A generalized Laplace transformation for ω = 1 linear systems is com-
posed from the following maps in subsequent stages: some number of prolongations, a
diffeomorphism, some number of deprolongations. For an involutive system only two last
steps are required.

Proof. Indeed, from internal viewpoint the rank 2 distribution ∆, obtained from E via
reduction by Cauchy characteristic, is a Goursat distribution (or Goursat in the leaves
of the first integrals if the distribution is not totally non-holonomic). Since the Goursat
distribution has the canonical normal form (see [18, 22], we neglect singularities) the claim
follows.

Let us show how this works. We start with generic linear 3E3 of class ω = 1. Then in
three Laplace transformations it becomes equation of type E1 (we refer to [16] for particular
examples). We indicate the growth vector consisting of ascending by one integers, and
indicate the internal coordinates on the equation: p, q, r, s, t are the classical notations for
the 1st and 2nd derivatives, and � is one of the 3rd derivatives).

E = 3E3 Ẽ = E2 + E3 Ĕ = 2E2 Ē = E1� � �

x, y, u, p, q

r, s, t, �

x, y, u, p

q, r, t, �

x, y, u

p, q, t

x, y

u, q
......................................................................................................... ............ .................................................................................................................................. ............ .............................................................................................................................................................. ............

TE ⊃ ∆ T Ẽ ⊃ ∆̃ T Ĕ ⊃ ∆̆ T Ē ⊃ ∆̄
(3,4,. . . ,9) (3,4,. . . ,8) (3,4,. . . ,6) (3,4)

T Ẽ(1) ⊃ ∆̃(1)

(3,4,. . . ,9)

.................................................................................................................................... ..........
..

........

........

........

........

........

........

........

........

........

........

........

........

.................

............

T Ĕ(2) ⊃ ∆̆(2)

. . .

(3,4,. . . ,8)

.................................................................................................................................... ..........
..

........

........

........

..............

............

........

........

........

..............

............

T Ē(2) ⊃ ∆̄(2)

. . .

(3,4,. . . ,6)

.................................................................................................................................... ..........
..

........

........

........

..............

............

........

........

........

..............

............

The first transformation is a diffeomorphism followed by a deprolongation, the next one
is a diffeomorphism followed by two deprolongations and the third one is of the same kind.

If we choose non-generic 3E3, then the route could be 3E3 � 2E2 � E1, so that the
first stage contains more deprolongations.

Starting with 2E3 one needs to prolong once to follow the scheme.

Remark 3.5. Now we can explain decrease of complexity κ via internal geometry. Since
κ = dim Ê − t−3, where t is the order of involutivity, we see that κ is defined correctly even
if we prolong above the involutivity level (increase dim E and t equally). The diffeomorphism
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in the above proposition does not change the dimension, but it increases the order. Whence
the claim.

3.4. Closed form of the general solution

By the results of Sec. 1.2 E has closed form of the general solution if and only if the same
is true for the reduced underdetermined ODE (encoded by ∆).

For rank 2 distributions the criterion for closed form description of the integral curves
(without constants) is known since Cartan [5, 18]: this is equivalent to ∆ being Goursat,
i.e. the canonical distribution C on the jet-space Jd(R,R), d = µ− 2 = κ + t.

On the other hand we have demonstrated in [16] that systems that are internally equiv-
alent to (Jd(R,R) × R, C × R) are internally linearizable and have no first integrals (∆
completely non-holonomic).

Intermediate integrals correspond to constants in the form of the general solution (1),
and the respective normal form is Goursat–Frobenius, namely (Jd−m(R,R) × R

m × R, C ×
0 × R), where m = codim(∆∞) is the codimension of the bracket-closure of ∆.

Linearizability is not hampered by the additional constants. Thus we get the following
statement equivalent to Theorem B(ii).

Theorem 3.6. General solution of a compatible system E of class ω = 1 and complexity κ

can be expressed in a closed form via a function f, its q ≤ κ derivatives and κ−q constants
if and only if E is linearizable by an internal transformation.

Proof. Possibility to express solutions of a linear compatible systems of class ω = 1 in
closed form is proved in [16], so we need only to demonstrate that q +m = κ, where m is
the amount of the first integrals (constants).

The amount of derivatives to express all internal coordinates uσ, |σ| ≤ t, on E is d−m.
However the derivatives uσ are obtained from (x, y, u) via |σ| differentiations, so u shall be
expressed in d−m− t derivatives of f only, and this number equals to κ −m.

3.5. Transformations of nonlinear systems

Let us discuss some features of the transformations theory in the nonlinear case.

I. Quasi-linear systems allow some deprolongations, but generic pure order k systems (kEk)
have none — after quotient by Cauchy characteristics the growth vector is (2, 3, 5, . . .).
However if E is involutive (t = kmax) with different orders (kmin < kmax), then we claim: The
top equations are quasi-linear, and this implies the existence of at least one deprolongation.

Indeed, provided that the characteristic is ∂x − λ∂y, where λ is a function on the jets
of order kmin, the top derivatives on the level k = kmax must satisfy ui,k−i = λiu0,k (this is
due to the fact that ξ is the characteristic for all PDEs of E). Thus the PDE of order kmax

in E can be chosen linear in top-derivatives.
Consequently Dx−λDy +ρ∂u0,k

is the Cauchy characteristic of CE for some function ρ on
k-jets, and the two other generators of CE are Dy and ∂u0,k

. A straightforward calculation
yields that the latter field is a Cauchy characteristic for the derived distribution ∂ CE , so
the system can be deprolonged.
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II. Re-covering the first integrals is the same as for the linear systems. These restrictions
introduce constants to the form of the general solution of E , similar as deprolongations add
derivatives to the form of the general solution.

III. If E allows the structure of d̄-dimensional integrable extension E → Ē , then its solutions
can be expressed via those of Ē as u = Ld̄(ū), where Ld̄ is the resolution operator of a scalar
ODE of order d̄.

Provided a solvable Lie group of dimension d̄ acts by transversal symmetries, the opera-
tor Ld̄ can be expressed via the d̄-multiple quadrature D−d̄

τ (D−1
τ =

∫
� dτ being quadrature

by the parameter τ).
For instance, if ∆ is maximally symmetric non-Goursat distribution, then its deprolon-

gation is flat in the sense of Tanaka [26], and so has the structure of successive integral
extensions over the rank 2 distribution in R

5 with G2 symmetry [3]. So we get the following
theorem.

Theorem 3.7. If E has reduction ∆, which deprolongs to a Tanaka-flat rank 2 distribution,
then E can be solved in closed form and quadratures.

Indeed, deprolongations can be interpreted as nonlinear Laplace transformations with
differential inverses (this yields a closed form over the solutions of the reduced system ∆̄),
while Tanaka flat rank 2 distributions ∆̄ project via integrable extensions to the Hilbert–
Cartan equation [3] (so its integral curves are given in quadratures).

Thus we get the next easy case (after linearizable systems) of exactly solvable class
ω = 1 systems, which are reduced to symmetric Monge systems (these latter were classified
in [3]).

4. Examples of Symmetric PDEs

4.1. Model reductions to ODEs

Consider the following compatible class ω = 1 systems of the type kEk:

2E2 : uxx = λ, uxy =
λ2

2
, uyy =

λ3

3
;

3E3 : uxxx = λ, uxxy =
λ2

2
, uxyy =

λ3

3
, uyyy =

λ4

4
;

4E4 : uxxxx = λ, uxxxy =
λ2

2
, uxxyy =

λ3

3
, uxyyy =

λ4

4
, uyyyy =

λ5

5
etc.

The reduced growth vectorsi and the generators of the weak derived flags are the following:

(2, 1, 2) : (e1, e′1, e2, e3, e′3),

(2, 1, 2, 3) : (e1, e′1, e2, e3, e′3, e4, e′4, e′′4),

(2, 1, 2, 3, 4) : (e1, e′1, e2, e3, e
′
3, e4, e

′
4, e

′′
4 , e5, e

′
5, e

′′
5 , e

′′′
5 ) etc.

iThese are the ones we have used in [3]: we pass from the usual growth vector (n1, n2, n3, . . .) to (n1, n2 −
n1, n3 − n2, . . .).
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Commutators are given by [e1, e′1] = e2, [e1, e2] = e3, [e′1, e2] = e′3, [e1, e3] = e4, [e1, e′3] =
[e′1, e3] = e′4, [e′1, e

′
3] = e′′4 etc. (the commutators of e2 and e3 and others are zero) — these

yields the structure of graded nilpotent Carnot algebra associated to the weak derived flag
[3, 26].

The corresponding Monge underdetermined systems of ODEs are:

(2, 1, 2) : y′ =
1
2
(z′′)2,

(2, 1, 2, 3) : y′′ =
1
2
(z′′′)2, u′ =

1
3
(z′′′)3,

(2, 1, 2, 3, 4) : y′′′ =
1
2
(ziv)2, u′′ =

1
3
(ziv)3, v′ =

1
4
(ziv)4 etc.

This follows from the explicit form of the generators. Indeed, let us demonstrate this,
for simplicity, in the case 3E3.

e1 = −Dx = −
(
∂x + ux∂u + uxx∂ux + uxy∂uy + λ∂uxx +

λ2

2
∂uxy +

λ3

3
∂uyy

)
,

e′1 = ∂λ, e2 = ∂uxx + λ∂uxy + λ2∂uyy ,

e3 = ∂ux + λ∂uy , e′3 = ∂uxy + 2λ∂uyy ,

e4 = ∂u, e
′
4 = ∂uy , e′′4 = 2∂uyy .

In this list we have omitted the generator of (rank 3) Cartan distribution Dy because the
Cauchy characteristic equals Dy − λDx and we need to quotient by it.

Now to perform the quotient one has either to pass to invariants, or to restrict to the
transversal of the action. We choose the second approach: Change the notations z := u,
z′ := ux, z′′ := uxx, z′′′ := λ = uxxx, y := uy, y′ := uxy, u := uyy and we are done.

Remark 4.1. To recover the solutions of E from the solutions of the ODE system, the first
method must be used. For example, the first of the equations — system 2E2 from [4] —
has the following invariants of shifts along Cauchy characteristic (uxx = λ)

t = −λ, w = −2u+ 2yuy + 2xux − x2λ− xyλ2 − 1
3
y2λ3,

z = uy − uxλ+
1
2
xλ2 +

1
6
yλ3, z1 = ux − xλ− 1

2
yλ2, z2 = x+ yλ.

Thus we can express the general solution parametrically as

x = z′′(t) + st, y = s, u = sz + z′z′′ − 1
2
w − 1

2
t z′′2 − 1

2
t2s z′′ − 1

6
t3s2,

where the two functions z = z(t), w = w(t) are related by the Hilbert–Cartan equation
w′ = (z′′)2.

Another interesting sequence of equations, considered in [10], is provided by

uxy =
2n
x+ y

√
uxuy. (7)

These PDEs are Darboux integrable with intermediate integrals of order (n+ 1), see [1].
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In order to integrate (7) let us linearize it via Goursat substitution [11] p =
√
ux,

q = √
uy, which leads to the system

py =
n

x+ y
q, qx =

n

x+ y
p. (8)

Then Dy-intermediate integral can be found as an ODE on q of the form (Dx-intermediate
integral is obtained similarly via an ODE on p)

L =
n∑

i=0

αi

(x+ y)n−i
qi = 0, (9)

where qi = Di
yq. The condition of intermediate integral, Lx = 0 on (8), is an overdetermined

linear system on constants αi. With normalization αn = 1 its unique solution is given by

αn−i =
n2(n− 1)2 · · · (n− i+ 1)2

i!
.

Consider now the overdetermined compatible system (7)+(9). It has class ω = 1 and
type E2 +Em, m = n+ 1. The Cauchy characteristic is Dy + ϕm∂qm for a properly chosen
function ϕm.

Reduction along Cauchy characteristic (which again can be interpreted as intersection
with the level of the Dx-intermediate integral) yields a rank 2 distribution on a manifold
Ē of dimension (2n+ 3). This system has n deprolongations, and so it reduces to a rank 2
distribution on (n + 3)-dimensional manifold.

The symmetry analysis (done by I. Anderson) coupled together with unique symmetry
model for rank 2 distributions [3, 9] implies that this rank 2 distribution corresponds to the
Cartan distribution of the Monge equation

y′ = (z(n))2.

In particular, we recover the result (known to Goursat) that the solutions of equation (7)n=2

are expressed via the solutions of Hilbert–Cartan equation.

Remark 4.2. Thus we realize two boundary lines from the Zoo of types in [16] — the
bottom and the diagonal — as the most symmetric PDEs in its class (both types of PDE
and the reduction are fixed).

Here we refer to the group of contact symmetries (internal symmetry group of class
ω = 1 systems is infinite-dimensional), which turns out to be isomorphic to the internal
symmetry group of the reduction by Cauchy characteristic in most cases. This Lie–Bäcklund
type theorem will be discussed in details elsewhere.j

4.2. Representation of solutions

Linear class ω = 1 compatible systems E are solvable in Moutard form, when u is expressed
directly as a function of (x, y). In general, the closed form solution force all of the variables
(x, y, u) to be expressed via parameters (ζ, τ), as in (1).

jAdded in proof: arXiv: 1205.2914.
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Quotient by the Cauchy characteristics and integral deprolongations (as well as the
linearization map) usually do not preserve the fibers of the submersion E → R

2(x, y) giving
the independence condition. This is the reason that many exactly solvable systems do not
possess Moutard form. We illustrate this with two 2nd order examples.

Example 4.3. Consider the system (7)+(9)n=1:

uxx = −2
ux

x+ y
, uxy = 2

√
uxuy

x+ y
. (10)

The reduced growth vector is (3, 1, 1, 1), so E is internally linearizable and is solvable via
generalized Laplace transformations [16]. It is however non-Moutard.

To see this let us describe the general solution. Goursat substitution

ux = p2, uy = q2, (11)

linearizes the equation

px = − p

x+ y
, qx =

p

x+ y
, py =

q

x+ y
. (12)

Notice that this has vector growth (3, 1, 1), and so one could suggest it serves as depro-
longation of (10), but it does not. The reason (as shown below) is that it is impossible to
deprolong preserving the base coordinates x, y. In fact, (10) is an integrable extension of
(12) via (11).

The next step is to observe that the last equation of (12) can be used as a definition of
q and the second equation is then the differential corollary of the first. Thus we can restrict
to the equation E1:

px = − p

x+ y
(13)

with the reduced growth vector (3, 1). Inverse transformations are: integrable extension

ux = p2, uy = (x+ y)2p2
y

to the space R
5(x, y, u, ux, uy) and then prolongation to the original equation E =

R
6(x, y, u, ux, uy, uyy).

Let us return to the closed form of the solution. Solving (13) we get p = ψ(y)/(x + y).
Integrating the Frobenius system

ux =
ψ(y)2

(x+ y)2
, uy =

(
ψ′(y) − ψ(y)

x+ y

)2

,

yields the solution

u = φ(y) − ψ(y)2

x+ y
with φ′(y) = ψ′(y)2. (14)

This latter constraint is internally equivalent to the Engel distribution (or to J2(R,R)) and
the equivalence is given explicitly by

y = σ′′(τ), ψ = τσ′′(τ) − σ′(τ), ψ′ = τ, φ = τ2σ′′(τ) − 2τσ′(τ) + 2σ(τ).
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Thus alignment of the equation E (10) to the jet-space J0,3(R,R2) = R
6(x, τ, σ, σ1, σ2, σ3)

is the following:

x = x, y = σ2, u = τ2σ2 − 2τσ1 + 2σ − (τσ2 − σ1)2

x+ σ2
,

ux =
(τσ2 − σ1)2

(x+ σ2)2
, uy =

(τx+ σ1)2

(x+ σ2)2
,

uyy = 2(τx+ σ1)
((x+ σ2)2 − (τx+ σ1)σ3)

(x+ σ2)3σ3
.

This determines a diffeomorphism J0,3(R,R2) → E . The inverse map E → J0,3(R,R2) is
also given in differential-algebraic form

x = x, τ =
√
ux +

√
uy, σ =

1
2
(u− xux + yuy − 2x

√
uxuy),

σ1 = y
√
uy − x

√
ux, σ2 = y, σ3 =

2(x+ y)√uy

2uy + (x+ y)uyy
.

Thus Laplace transformation E = 2E2 
→ E1 = {∂σ
∂τ = 0} has the form

x = x, τ =
√
ux +

√
uy, σ =

1
2
(u− xux + yuy − 2x

√
uxuy)

(σ1 corresponds to σx) and it decomposes internally into the composition of the diffeomor-
phism E → J0,3(R,R2) followed by the double deprolongation (we do not change the original
Cauchy characteristic, which is the direction of the first factor in J0,3(R,R2) = R×J3(R,R)):

J0,3(R,R2) → J0,1(R,R2) = R
4(x, τ, σ, σ1).

Let us explain why 2E2 (10) cannot be transformed to E1 by a Laplace transformation
preserving the (x, y)-base (Moutard type).

We wish to find a relation on x, y, u, ux, uy excluding the above functions φ(y), ψ(y).
But this is impossible since

√
ux =

ψ(y)
x+ y

,
√
uy = ψ′(y) − ψ(y)

x+ y

and so u, ux, uy are algebraically independent.
Another approach is to show that the constraint φ′(y) = ψ′(y)2 in the form (14) is

equivalent to the standard Engel distribution on J2(R,R) internally, but not externally.
Indeed, no point transformation can map the above constraint to the equation φ′(y) = 0,
since their point symmetry groups have dimensions 10 and ∞ respectively.

Example 4.4. Another interesting system, discussed in Sec. 4.1, is the Cartan involutive
2E2 model

uxx = λ, uxy =
1
2
λ2, uyy =

1
3
λ3. (15)

The reduced growth vector of its (five-dimensional) reduction Ē is (2, 1, 2), so Laplace
transformation in the sense of linear theory does not exist. But E has the structure of
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integrable extension over E1, namely over the gas dynamics equation

vy = vvx. (16)

Indeed, this latter is just the compatibility condition on the parameter λ = v along the
Cauchy characteristic. The transformation from (16) to (15) is a composition of a three-
dimensional integrable extension and the deprolongation:

R
6(x, y, u, ux, uy, uyy)

prol��� R
7(x, y, u, ux, uy, uyy, uyyy)

R
ext
��� R

4(x, y, v, vy).

Since (16) is clearly not of Moutard type, this explains that (15) is not of Moutard type.
Its solutions are though expressible via the solutions of Hilbert–Cartan equation.

This makes (15) internally equivalent to deprolongation of the equation (7)+(9)n=2 of
type E2 + E3 considered in Sec. 4.1. Another equation equivalent to (15) is the following
compatible E2 + E3:

wxx = 0, w2
xyy + xwxy − wy = 0.

4.3. Other symmetric models

In [4] Cartan considers also submaximal symmetric systems E :

2E2 : uxx = λ, uxy = λm, uyy =
m2

2m− 1
λ2m−1. (17)

Its contact symmetry algebra has dimension seven, and this is the next possible number
after the maximal finite value 14 for dim Sym(E).

The Cauchy characteristic is ξ = Dy−mλm−1Dx, and the reduced system Ē can be found
by restricting to the transversal y = const to ξ. In other words, the rank 2 distribution of
Ē is given by its generators

∆ = 〈Dx = ∂x + p∂u + r∂p + rm∂q, ∂r〉,
which after a change of coordinates is identical with the Cartan distribution of the Monge
equation (m �= −1, 1

3 ,
2
3 , 2 — the exceptional cases corresponding to dim Sym(∆) = 14;

m �= 0, 1 — the exceptional cases corresponding to dim Sym(∆) = ∞)

w′ = (v′′)m. (18)

The higher analogs of (17) are straightforward:

3E3 : uxxx = α, uxxy = αm, uxyy =
m2

2m− 1
α2m−1, uyyy =

m3

3m− 2
α3m−2.

Dimension of the contact symmetry algebra here is 10 (for generic m; this is readily checked
with the help of Differential Geometry package of Maple), while dimension of the maximal
symmetric nonlinear model (system 3E3 from Sec. 4.1) is 12.

The reduction by Cauchy characteristic is the following underdetermined ODE system:

z′′ = (v′′′)m, w′ =
m2

2m− 1
(v′′′)2m−1.

It is a (three-dimensional) integrable extension of Monge equation (18).
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Similarly we construct equations 4E4 etc. The submaximal symmetric class ω = 1 system
of type nEn is

{
un−i,i =

mi

im− i+ 1
uim−i+1

n,0 : 1 ≤ i ≤ n

}
.

Its contact symmetry algebra has dimension 1
2n(n + 1) + 4 (vs. the maximal dimension

1
2n(n+ 1) + 6 — the details on this calculation will be presented elsewherek).

It is an interesting open problem what are the sub-maximal symmetric PDE systems
of the type E2 + En and what are (sub-)maximal models for the other types from the Zoo
of [16].
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Norm. Sup. (3) 14 (1897) 195–241.

[9] B. Doubrov and I. Zelenko, On local geometry of nonholonomic rank 2 distributions, J. London
Math. Soc. 80 (2009) 545–566.
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