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Università di Perugia & INFN Sezione Perugia

06123 Perugia, Italy
∗nucci@unipg.it

Received 16 April 2012
Accepted 26 June 2012

Published 20 September 2012

In this Letter a first-order Lagrangian for the Schrödinger–Newton equations is derived by modifying
a second-order Lagrangian proposed by Christian [Exactly soluble sector of quantum gravity, Phys.
Rev. D 56(8) (1997) 4844–4877]. Then Noether’s theorem is applied to the Lie point symmetries
determined by Robertshaw and Tod [Lie point symmetries and an approximate solution for the
Schrödinger–Newton equations, Nonlinearity 19(7) (2006) 1507–1514] in order to find conservation
laws of the Schrödinger–Newton equations.
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1. Introduction

The Schrödinger–Newton equations consist of a system of partial differential equations
introduced by Penrose [9], and in dimensionless unitsa they areb:

iψt = −∆ψ + φψ, (1.2a)

∆φ = |ψ|2, (1.2b)

where ∆ is the Laplacian in R
3(x, y, z). The Lie point symmetry algebra admitted by the

Schrödinger–Newton equations was determined by Robertshaw and Tod [10]. We rewrite

aFor more details see Harrison [4].
bIncluding the equation satisfied by the complex conjugate ψ∗ of the wave function ψ, i.e.

− iψ∗
t = −∆ψ∗ + φψ∗. (1.1)
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the Schrödinger–Newton equations as follows:

iut = −∆u+ uw, (1.3a)

−ivt = −∆v + vw, (1.3b)

∆w = uv. (1.3c)

With ψ = u, ψ∗ = v and φ = w. The Lie point symmetries found in [10] are:

• scaling:

v1 = 2t∂t + x∂x + y∂y + z∂z − 2u∂u − 2v∂v − 2w∂w, (1.4)

• spatial rotations:

v2 = y∂x − x∂y, (1.5a)

v3 = z∂x − x∂z, (1.5b)

v4 = z∂y − y∂z, (1.5c)

• translation in time and in all spatial directions:

v5 = ∂t, (1.6a)

v6 = ∂x, (1.6b)

v7 = ∂y, (1.6c)

v8 = ∂z, (1.6d)

• phase change in the wave function:

v9(Ω) = iΩ(t)(u∂u − v∂v) − Ω′(t)∂w, (1.7)

• generalized Galilean group:

v10(a1) = a1(t)∂x +
i
2
a′1(t)(u∂u − v∂v) − 1

2
a′′1(t)∂w, (1.8a)

v11(a2) = a2(t)∂y +
i
2
a′2(t)(u∂u − v∂v) − 1

2
a′′2(t)∂w, (1.8b)

v12(a3) = a3(t)∂z +
i
2
a′3(t)(u∂u − v∂v) − 1

2
a′′3(t)∂w. (1.8c)

2. First-Order Variational Formulation

Several variational formulations were proposed for the Schrödinger–Newton equations. At
first they were recovered in the frame of the field theory by Kibble and Randjbar-Daemi [5]
using an Hamiltonian formalism. Other variational formulations were given by Christian [2]
and Diósi [3]. In his Ph.D. thesis Harrison [4], following Tod [11], proposed to derive the
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Schrödinger–Newton equations (1.3) by means of the functional:

S1[u, v] =
∫ +∞

t0

∫∫∫
R3

[
(grad u, grad v) +

1
2
wuv +

i
2
(uvt − vut)

]
d3xdt, (2.1)

with the condition ∆w = uv implied. Following Tod [11] he later proposed to solve the
equation for w with the usual method of the Green function in R

3:

w(x, t) =
−1
4π

∫∫∫
R3

u(y, t)v(y, t)
|x − y| d3y. (2.2)

However this leads to the functional:

S2[u, v] =
∫ +∞

t0

∫∫∫
R3

[
(grad u, grad v) − uv

1
8π

∫∫∫
R3

u(y, t)v(y, t)
|x − y| d3y

]
d3xdt

+
∫ +∞

t0

∫∫∫
R3

[
i
2
(uvt − vut)

]
d3xdt, (2.3)

that is nonlocal, and therefore the usual rules of Calculus of Variation do not hold [1].
Instead we take into consideration a paper by Christian [2] where the Schrödinger–

Newton equations were derived from the following variational principle:

Ŝ[u, v, w] =
∫ +∞

t0

∫∫∫
R3

[
1
2
w∆w − (grad u, grad v) − i

2
(uvt − utv) − wuv

]
d3xdt. (2.4)

It was obtained by matching the Newton–Cartan theory and Quantum Mechanics. The
functional (2.4) is not a first-order functional, but we note that using the general formula:

f∆g = Div(f grad g) − (grad f, grad g), f, g ∈ C2(R3,R) (2.5)

we may write:

w∆w = Div(w grad w) − |grad w|2, (2.6)

and apply Gauss theorem to the integral of the first term in (2.6) in order to get:∫∫∫
R3

Div(w grad w)d3x = lim
R→∞

∫∫
S2(R)

(w grad w,nS2(R))d
2q, (2.7)

with S2(R) = {x ∈ R
3 | |x| = R}. This integral may be put equal to zero by assuming that

the function w behaves like 1/r in a neighborhood of infinity if the usual boundary condition
for the Poisson equation holds.

Thus we obtainc the following first-order variational principle:

S[u, v, w] =
∫ +∞

t0

∫∫∫
R3

[
1
2
|grad w|2 + wuv

]
d3xdt

+
∫ +∞

t0

∫∫∫
R3

[
(grad u, grad v) +

i
2
(uvt − utv)

]
d3xdt. (2.8)

It is easy to verify that (2.8) indeed yields the Schrödinger–Newton equations (1.3).

cUp to a multiplicative minus sign that does not effect the Euler–Lagrange equations.
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3. Conservation Laws

Given a first-order variational principle in p independent variables x = (x1, . . . , xp) and q

dependent variables u = (u1, . . . , uq) in some functional space of functions defined over a
connected set A with smooth boundary:

S[u] =
∫

· · ·
∫

A
L(x,u(1))dpx (3.1)

a transformation group with infinitesimal generator given by a vector field v

leaves the variational principle unchanged iff we can find a p-tuple B(x,u(1)) =
(B1(x,u(1)), . . . , Bp(x,u(1))) such that [8, Chap. 4]:

pr(1)v(L) + LDivξ = DivB. (3.2)

Where ξ = (ξ1, . . . , ξp). In that case we call v a variational symmetryd for the variational
principle (3.1).

We look for variational symmetries among the Lie point symmetries of the corresponding
Euler–Lagrange equations.

A conservation law for a system of differential equations Θ(x,u(n)) = 0 is a divergence
expression vanishing identically along the solutions of the system:

DivP = 0. (3.3)

The Schrödinger–Newton equations are a dynamical system such that their conservation
laws can be put in the form [8]:

DtT + DivK = 0 (3.4)

along the solution of the system. The scalar T (x, t,u(1)) is the conserved density and the
vector K(x, t,u(1)) the associated flux.

A general theorem contained in Olver’s book [8] tells us that if K(x, t,u(x)(n)) → 0 for
x → ∂A then ∫

· · ·
∫

A
T (x, t,u(x)(n))dpx = constant. (3.5)

A corollary to Noether’s theorem to be found in her famous 1918-paper [6] states that given
a variational symmetry v there is an explicit formula for the vector P in (3.3), i.e.:

Pi =
q∑

α=1

ηα
∂L

∂uα
i

+ ξiL−Bi −
q∑

α=1

p∑
j=1

ξjuα
j

∂L

∂uα
i

. (3.6)

We wrote an ad hoc REDUCE interactive program that is based upon that by Nucci for
finding Lie symmetries [7]. It verifies the condition (3.2) and then returns the conserved
density and the associated flux given by Eq. (3.6). We found out that with respect to the

dIn [8] Olver calls a vector field v a variational symmetry if B ≡ 0 and a divergence variational symmetry
if B �= 0. Since variational symmetries are a particular class of divergence variational symmetries we prefer
to call the latter just variational symmetries.
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functional (2.8) all the Lie point symmetries of the Schrödinger–Newton equations, except
v1 as expected, are variational symmetries.

Introducing the shorthand notation:

E = uvw + (grad u, grad v) +
1
2
|grad w|2, (3.7a)

Πi =
i
2
(uiv − uvi), i = x, y, z, t, (3.7b)

Φij = uivj + ujvi + wiwj, i, j = x, y, z, t, (3.7c)

Λij = xjΠi − xiΠj , i, j = x, y, z, (3.7d)

εi = E − 2uivi − w2
i , i = x, y, z, (3.7e)

we find that:

• v1 is not a variational symmetry because the condition (3.2) is not satisfied,
• v2 is a variational symmetry with B2 = 0 and

T2 = Λxy, (3.8a)

K2 = (y(−Πt + εx) + xΦxy, x(Πt − εy) − yΦxy, xΦyz − yΦxz), (3.8b)

• v3 is a variational symmetry with B3 = 0 and

T3 = Λxz, (3.9a)

K3 = (z(εx − Πt) + xΦxz, xΦyz − zΦxy, x(Πt − εz) − zΦxz), (3.9b)

• v4 is a variational symmetry with B4 = 0 and

T4 = Λzy, (3.10a)

K4 = (yΦxz − zΦxy, z(εy − Πt) + yΦxy, y(Πt − εz) − zΦyz), (3.10b)

• v5 is a variational symmetry with B5 = 0 and

T5 = E , (3.11a)

K5 = (−Φtx,−Φty,−Φtz), (3.11b)

• v6 is a variational symmetry with B6 = 0 and

T6 = Πx, (3.12a)

K6 = (εx − Πt,−Φxy,−Φxz), (3.12b)

• v7 is a variational symmetry with B7 = 0 and

T7 = Πy, (3.13a)

K7 = (−Φxy, εy − Πt,−Φyz), (3.13b)
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• v8 is a variational symmetry with B8 = 0 and

T8 = Πz, (3.14a)

K8 = (−Φxz,−Φyz, εz − Πt), (3.14b)

• v9 is a variational symmetry with B9 = 0 and

T9 = Ω(t)uv, (3.15a)

K9 =




2Ω(t)Πx − Ω′(t)wx

2Ω(t)Πy − Ω′(t)wy

2Ω(t)Πz − Ω′(t)wz




t

, (3.15b)

• v10 is a variational symmetry with B10 = (0,−a′′1(t)w/2, 0, 0) and

T10 = a1(t)Πx +
1
2
a′1(t)uvx, (3.16a)

K10 =




a1(t)(εx − Πt) − a′1(t)xΠx +
1
2
a′′1(t)(w − wxx)

−a1(t)Φxy − a′1(t)xΠy − 1
2
a′′1(t)wyx

−a1(t)Φxz − a′1(t)xΠ
z − 1

2
a′′1(t)wzx




t

, (3.16b)

• v11 is a variational symmetry with B11 = (0, 0,−a′′2(t)w/2, 0) and

T11 = a2(t)Πy +
1
2
a′2(t)uvy, (3.17a)

K11 =




−a2(t)Φxy − a′2(t)yΠx − 1
2
a′′2(t)wxy

a2(t)(εy − Πt) − a′2(t)yΠy +
1
2
a′′2(t)(w − wyy)

−a2(t)Φyz − a′2(t)yΠ
z − 1

2
a′′1(t)wzy




t

, (3.17b)

• v12 is a variational symmetry with B12 = (0, 0, 0,−a′′3(t)w/2) and

T12 = a3(t)Πz +
1
2
a′3(t)uvz, (3.18a)

K12 =




−a3(t)Φxz − a′3(t)zΠx − 1
2
a′′3(t)wxz,

−a3(t)Φyz − a′3(t)yΠy − 1
2
a′′3(t)wyz,

a3(t)(εz − Πt) − a′3(t)zΠ
z +

1
2
a′′3(t)(w − wzz)




t

. (3.18b)
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Assuming the boundary conditions u, v, w
|x|→∞−−−−→ 0 then Eq. (3.5) yields the following

conserved quantities of the Schrödinger–Newton equations:

• energy:

E =
∫∫∫

R3

Ed3x, (3.19)

• angular momenta:

Lij =
∫∫∫

R3

Λij d3x, i, j = x, y, z, (3.20)

• linear momenta:

pi =
∫∫∫

R3

Πid3x, i = x, y, z, (3.21)

• generalized probability:

Pg(Ω(t)) =
∫∫∫

R3

Ω(t)uvd3x (3.22)

that becomes the usual probability if Ω(t) = 1, i.e.

P =
∫∫∫

R3

uvd3x, (3.23)

• generalized linear momenta:

hi(ai(t)) =
∫∫∫

R3

(
ai(t)Πi +

1
2
a′i(t)uvx

i

)
d3x, i = x, y, z. (3.24)

The conservation of energye (3.19), the angular (3.20) and linear momenta (3.21) and
the usual probability (3.23) were recovered by Harrison [4] but without any consideration
of symmetries. As far as we know the generalized probability (3.22) and generalized linear
momenta (3.24) are new conserved quantities of the Schrödinger–Newton equations.
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