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OF A 1D SCHRÖDINGER PROBLEM

JOE WATKINS

SMSAS, University of Kent
Canterbury, Kent, CT2 7NF, UK

jw352@kent.ac.uk

Received 3 April 2012
Accepted 1 June 2012

Published 20 September 2012

We study the spectral zeta functions associated to the radial Schrödinger problem with potential
V (x) = x2M + αxM−1 + (λ2 − 1/4)/x2. After directly computing some of the zeta functions, we
use the quantum Wronskian equation to give sum rules between them, allowing for instances where
the explicit form of the zeta functions can be simplified. An immediate application of this work
is to derive functional relations and identities involving hypergeometric series, allowing for known
identities to be found as instances of more general results. Our work is then extended to a class of
related PT -symmetric eigenvalue problems. Using the fused quantum Wronskian, we give a simple
method for indirectly calculating the associated spectral zeta functions. This method is then applied
to calculate the nonlocal integrals of motion Gn which appear in an associated integrable quantum
field theory.
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1. Introduction

A common set of models to be studied in quantum mechanics are the anharmonic oscillators
defined by the Schrödinger equation

−ψ′′ + x2Mψ = Eψ. (1.1)

Any eigenfunction must obey the requirement that ψ → 0 as x→ +∞ and additionally
satisfy either the Dirichlet or Neumann conditions at the origin. The anharmonic oscillators
include the two exactly-solvable cases of the harmonic oscillator (M = 1) and infinite square
well (M = ∞). For these two models the eigenvalues can be found in closed form, whereas for
general M numerical methods must be used. The Dirichlet eigenvalues {E−

k } and Neumann
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eigenvalues {E+
k } are associated to the spectral zeta function

Z∓(s,M) ≡
∞∑

k=0

1
(E∓

k )s
. (1.2)

WKB estimates show that E∓
k ∝ k

2M
M+1 as k → ∞ and hence Z∓(s) converges for

�(s) > (M + 1)/2M . In the two exactly-solvable cases Z∓(s) can be given in terms of the
Riemann zeta function. However Z∓(s) can also be calculated for s ∈ N, the most concise
example being given bya

Z∓(1) =
σ2−2σΓ(σ(1 ± 1

2 ))Γ(σ)Γ(1
2 − σ)

√
πΓ(1 − σ(1 ∓ 1

2))
, (1.3)

where M > 1 and

σ ≡ 1
M + 1

. (1.4)

The zeta functions Z∓(2) can also be calculated [32], although these functions involve
a 5F4 hypergeometric series and no example of a closed form expression has been given.

There has been much study related to these particular spectral zeta functions [16, 31–34],
with one significant result being the determination of “sum rules” which relate together dif-
ferent Z∓(s) when s ∈ N [32]. An elegant example of this is found for the quartic anharmonic
oscillator, the first few sum rules being

Z+(1) = 2Z−(1),

2Z+(2) = Z−(2) + 3Z−(1)2,

2Z+(3) = 9Z−(1)3 − Z−(1)2 − Z−(3).

The techniques for obtaining the sum rules, which will be covered later, are the con-
sequence of a wider study known as exact quantization, a review of many such problems
being found in [35]. For a review of the physical applications of spectral zeta functions in
general, we direct the reader toward [22].

We will consider a generalization of (1.1) given by the Schrödinger equation

−ψ′′ +

(
x2M + αxM−1 +

λ2 − 1
4

x2

)
ψ = Eψ (1.5)

with boundary conditions on the half-line. The eigenfunction criteria is that ψ → 0 as
x → +∞, with the wavefunction having either of the behaviors ψ− ∼ x

1
2
+λ or ψ+ ∼ x

1
2
−λ

as x→ 0. Such eigenvalue problems have a long and rich history and have been investigated
in many contexts such as quasi-exact solvability [14, 30], integrable models [9, 21, 23] and
PT -symmetry [12, 13, 17, 18].

The two boundary behaviors ψ− and ψ+ respectively define two sets of spectra {E−
k } and

{E+
k }, which we say are the eigenvalues of the “regular” and “irregular” radial problem [27].

To these spectra we associate the zeta functions Z∓(s), which for λ = 1/2 are the functions

aCalculations for two related zeta functions were originally given in [16, 32].
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defined in (1.2). However for general λ the regular and irregular problem are related by the
analytic continuation λ→ −λ [21], giving the zeta-function identity

Z+(s, λ) = Z−(s,−λ). (1.6)

Throughout λ will be restricted from taking the values

λ = ±1
2
((2m1 + 1)(M + 1) + α) and λ = ±

(
m2 +

m3

2
(M + 1)

)
(1.7)

where m1,m2,m3 ∈ Z+, although when α = 0 the condition becomes 2m3 ∈ Z+ [21].
The first restriction excludes the possibility that any E∓

k could be equal to zero and the
second restriction is to ensure linear independence of the ψ− and ψ+ [21], a condition
which is necessary for later work. Finally, as the eigenvalues are known to have large-k
behavior E∓

k ∝ k
2M

M+1 , the associated spectral zeta functions Z∓(s) will converge when
�(s) > (M + 1)/2M . As we will be studying Z∓(s) for s ≥ 1, we also restrict M > 1
throughout.

This paper will be divided into two sections and will investigate the radial eigenvalue
problems (1.5). In Sec. 2 we use the well-known method involving Green’s functions to
calculate Z∓(s) when s ∈ N. Then we will use the quantum Wronskian equation to derive
appropriate sum rules and give examples where Z+(2) can be written in closed form, includ-
ing examples involving the anharmonic oscillators. Similar techniques are then used to derive
functional relations for two different hypergeometric series which appear in the expressions
for Z∓(1) and Z∓(2). These functional relations can recover many specific, known properties
of hypergeometric series, as well as providing new identities. In Sec. 3 we will extend our
work to a class of eigenvalue problems commonly investigated in PT -symmetric quantum
mechanics. The zeta functions ZK(s) of these problems are studied for s ∈ N and found to
be constructible by sum rules involving Z∓(s). These expressions for ZK(s) are then used in
conjunction with the ODE/IM correspondence [8, 19, 21] to calculate the vacuum nonlocal
integrals of motion Gn which appear in a related quantum integrable field theory [4, 5].

2. Radial Schrödinger Problems

Given that the eigenvalues {E∓
k } have no known closed form for general M , naively we might

expect that associated spectral zeta functions Z∓(s) cannot be given explicitly, except in
the exactly-solvable cases. However when s ∈ N the zeta functions are computed using
the process given in [32]. Although Z∓(s) can be defined by analytic continuation when
s ∈ Z− [33], generally there is no known method to calculate their explicit forms when
s takes general values. Therefore we elect to consider Z∓(s) only when s ∈ N, which we
notate Z∓(n).

For a Hermitian eigenvalue problem the eigenfunctions are complete and the Green’s
function is written as

R(E;x, x′) =
∞∑

k=0

ψk(x)ψ∗
k(x′)

E−
k − E

, (2.1)

where {E−
k } are the associated eigenvalues. As the irregular problem is generally non-

Hermitian, the eigenfunctions are not guaranteed to be complete and consequently the
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Green’s function cannot be written as in (2.1). Instead Z+(n) is defined by analytic contin-
uation as in (1.6), which is valid except for λ as in (1.7).

As the eigenfunctions in the Hermitian case are necessarily orthonormal, the zeta func-
tions are calculated by

Z−(n) =
∫

R+

R(0;x1, x2)R(0;x2, x3) · · ·R(0;xn, x1)dx,

where R+ denotes the integration over all positive space in n dimensions. To evaluate this
repeated integral, R(0;x, x′) is decomposed as a combination of ψL and ψR, two linearly-
independent wavefunctions which solve the Schrödinger equation when E = 0. For a radial
problem the two wavefunctions have specific asymptotic behaviors; ψL must obey the bound-
ary conditions at the origin and we require that ψR → 0 as x→ +∞. The Green’s function
is written as

R(0;x, x′) =
1
WψL(x<)ψR(x>),

where x< ≡ min(x, x′), x> ≡ max(x, x′) and W ≡ ψRψ
′
L −ψ′

RψL, the Wronskian of the two
solutions. Thus

Z−(n) =
n!
Wn

∫
0<x1<x2<···<xn<∞

ψL(x1)ψR(xn)
n−1∏
i=1

ψL(xi)ψR(xi+1)dx1dx2 · · · dxn. (2.2)

Now we specialize to the regular radial problem (1.5), which is solved for E = 0 by

ψL = x
σ−1
2σ M−σα

2
,σλ(2σx

1
σ ) and ψR = x

σ−1
2σ W−σα

2
,−σλ(2σx

1
σ ).

Here M and W are the Whittaker functions [25] and the Wronskian of the two solutions is
given by

W[ψR, ψL] =
2Γ(1 + 2σλ)

Γ(1
2 + σα

2 + σλ)
.

After making the change of variables p = 2σx
1
σ
1 and q = 2σx

1
σ
2 , we find that

Z−(1) =
σ2−2σΓ(1

2 + σα
2 + σλ)

4σΓ(1 + 2σλ)

∫ ∞

0
p2σ−2W−σα

2
,−λσ(p)M−σα

2
,λσ(p)dp (2.3a)

and

Z−(2) =
2σ4−4σΓ2(1

2 + σα
2 + σλ)

16σΓ2(1 + 2σλ)

∫ ∞

0
q2σ−2W 2

−σα
2

,−λσ(q)
∫ q

0
p2σ−2M2

−σα
2

,λσ(p)dpdq.

(2.3b)

The evaluation of these integrals requires known identities from [25, (7.625)]. The inte-
gral (2.3a) can be calculated immediately and found to converge for σ > 1/2, reproducing
the restriction M > 1 which was imposed earlier. Completing the integration in (2.3b) is
more complicated and can be handled in a similar way to the calculation for the anharmonic
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operators as given in [32]. Completing the integrations gives the first two zeta functions

Z−(1) =
σ2−2σΓ(1

2 + σα
2 + σλ)Γ(2σ(1 + λ))Γ(2σ)

4σΓ(1 + 2σλ)Γ(1
2 + σα

2 + σ(2 + λ)) 3F2

(
1
2 + σα

2 + σλ, 2σ(1 + λ), 2σ

1 + 2σλ, 1
2 + σα

2 + σ(2 + λ)

)

(2.4a)

and

Z−(2) =
σ4−4σ

16σ

∞∑
l,m,n=0

Γ(1
2 + σα

2 + λσ +m)Γ(1
2 + σα

2 + λσ + n)
Γ(1 + 2σλ+m)Γ(1 + 2σλ+ n)m!n!

1
(m+ n+ l + 2σ(1 + λ))l+1

×G22
33

(
1
2 − σλ, 1

2 + σλ, l +m+ n+ σα
2 + 2σ(2 + λ)

l +m+ n+ σ(4 + λ) − 1
2 , l +m+ n+ σ(4 + 3λ) − 1

2 ,−
σα
2

)
, (2.4b)

where (a)b is the Pochhammer symbol, pFq is the generalized hypergeometric series and G
is the Meijer-G function [25]. The latter two functions are both evaluated at x = 1.

By setting α = 0, the Whittaker functions in (2.3a) and (2.3b) are replaced by Bessel
functions and the integration techniques directly follow those in [32]. The zeta functions
then take on the neater forms

Z−(1, α = 0) =
σ2−2σΓ(σ(1 + λ))Γ(σ)Γ(1

2 − σ)
4
√
πΓ(1 − σ(1 − λ))

(2.5a)

and

Z−(2, α = 0) =
√
πσ3−4σ

41+σλ(1 + λ)
Γ(2σ(1 + λ))Γ(σ(2 + λ))Γ(2σ)

Γ2(1 + σλ)Γ(1
2 + σ(2 + λ))

× 5F4

(
1
2 + σλ, 2σ(1 + λ), σ(2 + λ), 2σ, σ(1 + λ)

1 + σλ, 1 + 2σλ, 1
2 + σ(2 + λ), 1 + σ(1 + λ)

)
. (2.5b)

Setting α = 0 in (2.4a) also recovers (2.5a) directly by Dixon’s theorem.

2.1. Radial sum rules and simplifications (α = 0)

For M > 1 the growth rate of the eigenvalues is sufficient to ensure the convergence of the
spectral determinants

D−(E,M,α, λ) ≡ D−(0)
∞∏

k=0

(
1 − E

E−
k

)
. (2.6)

Here D−(0) is a regularizing prefactor designed to vanish when some E−
k = 0. By analytic

continuation we define D+(E,λ) ≡ D−(E,−λ) except for the values of λ given in (1.7).
In addition to the analytic continuation relating D−(E) and D+(E), there is the quan-

tum Wronskian equation

2λω
α
2 = ωλD−(ωE,−iα)D+(ωE, iα) − ωλD−(ωE, iα)D+(ωE,−iα), (2.7)

where

ω ≡ exp(iπσ). (2.8)
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The sets of eigenvalues {E−
k } and {E+

k }, having no relationship except at (1.7), are thus
related to each other by a simple expression involving their associated spectral determinants.

Two clarifications need to be made regarding the quantum Wronskian equation. First
is to note that when α �= 0 the spectral determinants in (2.7) refer to differential equa-
tions with imaginary coupling constants on the xM−1 term, a problem which is remedied
in [35]. Secondly, for general α, the quantum Wronskian links together four different spec-
tral determinants, whereas setting α = 0 reduces this number to two. For this latter case
the subsequent results are much less complicated and so α = 0 is fixed for the remainder of
this section.

Using (2.7), we can derive sum rules relating together different Z∓(n). For small E the
spectral determinants can be written in terms of their zeta functions [33] as

D∓(E) = D∓(0) exp

(
−

∞∑
n=1

Z∓(n)
n

En

)
. (2.9)

Using the technique of [32], (2.9) is substituted into (2.7) and the coefficients of the powers
of E are compared to obtain the radial sum rules. The first few of these are

0 = N1Z−(1) +N−1Z+(1), (2.10a)

0 = N2Z−(2) +N−2Z+(2) + (N2
1 −N2)(Z+(1) − Z−(1))2, (2.10b)

0 = N3Z−(3) +N−3Z+(3) − 3
2
(N3 −N2N1)(Z+(2) − Z−(2))(Z+(1) − Z−(1))

− 1
2
(
N3 − 3N2N1 + 2N3

1

)
(Z+(1) − Z−(1))3, (2.10c)

where

Na ≡ sin(πσ(λ + a)) csc(πσλ).

Under certain parameter choices, (2.10) allows for Z+(n) to be given in terms of spectral
zeta functions with a simpler form. As an example, the choice σ(λ + 2) = m ∈ N implies
that N2 = 0. At such a point (2.10b) does not include Z−(2) and hence, for m ∈ N, we find

Z+

(
2, σ =

m

(λ+ 2)

)
= − σ4−4σΓ4(σ)Γ2(1 − 2σ) sin3(2πσ) csc2(3πσ)

24−4σΓ2(1 − 3σ +m)Γ2(1 + σ −m) sin(4πσ)
. (2.11)

This expression is much less complicated than the general form for Z∓(2) given in (2.5b),
reducing the 5F4 hypergeometric series to a product of gamma and trigonometric functions.

Example 2.1. The anharmonic cubic oscillator has the zeta values

Z+(2) =
8(
√

5 − 1)π4

5
17
5 Γ4(4

5)Γ2(3
5)

and

Z−(3) =
2

14
5 3π

9
2 Γ( 7

10 )

5
23
5 Γ5(4

5 )Γ2( 9
10 )

− 32π6

5
51
10 Γ6(4

5 )Γ3(3
5 )

− 2π
√

5 − 2
√

5

5
21
10 Γ(3

5)
× 4F3

(
3
5 ,

7
10 ,

4
5 , 1

7
5 ,

3
2 ,

8
5

)
.

(2.12)
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In addition to finding closed form expressions for Z∓(n), there is a reason to investigate the
composite zeta functions

Z(s) ≡ Z+(s) + Z−(s) and Z̃(s) ≡ Z+(s) − Z−(s). (2.13)

For the potential V (x) = |x|2M with eigenfunction condition ψ ∈ L2(R) and eigenvalues
{Ek}, Z(s) and Z̃(s) are respectively the “full” and “skew” zeta functions, defined as

Z(s) ≡
∞∑

k=0

1
(Ek)s

and Z̃(s) ≡
∞∑

k=0

(−1)k

(Ek)s
.

For the anharmonic oscillators, these definitions correspond to (2.13) as the spectrum {Ek}
is the interlacing union of {E−

k } and {E+
k }. For general α and λ this cannot be guaranteed.

Although generally used as a convenient notation, simplifications in the explicit forms
of Z(n) and Z̃(n) will be of use later. The radial sum rules are used to find reduced forms
for Z(2) and Z̃(2) by realizing points where N2 = ±N−2. For m ∈ Z+ we find

Z

(
2, σ =

(2m− 1)
2λ

)
= − π4σ4−4σΓ2(1 − 2σ) sec2(πσ) sec(2πσ)

41−2σΓ4(1 − σ)Γ2(3
2 − σ −m)Γ2(1

2 − σ +m)
(2.14)

and

Z̃(2, σ = 1/4) =
π5 sec2(πλ

2 ) tan(πλ
4 )

64Γ4(3
4 )Γ2(3+λ

4 )Γ2(3−λ
4 )

. (2.15)

There are no simplifications for Z(2, λ = 1/2) and no general simplifications for Z̃(2), as λ
would conflict with (1.7).

Example 2.2. The anharmonic sextic oscillator has the zeta value

Z̃(2) =
(
√

2 − 1)π5

32Γ4(3
4)Γ2(7

8)Γ2(5
8 )
.

2.2. Functional relations between hypergeometric series (α = 0)

While the radial sum rules in (2.10) are useful for determining properties of Z∓(n), they
can also be used to determine properties of the special functions appearing in the explicit
forms for Z∓(n), as in (2.5). There are two principle reasons that such derivations can be
made. First is the analytic continuation (1.6) and the second is that the radial sum rules
can be written as

Z+(1) = − N1

N−1
Z−(1), (2.16a)

Z+(2) = − N2

N−2
Z−(2) +

(
N2

N−2
− 2N1

N−1N−2
+

N2
1

N2−1

)
Z−(1)2. (2.16b)

These identities implicitly specify functional relations for the special functions appearing
in (2.5). By substituting (2.5a) into (2.16a) and using (1.6), we recover the identity

Γ(σ(1 − λ))
Γ(1 − σ(1 + λ))

=
Γ(σ(1 + λ)) sin(πσ(1 + λ))

Γ(1 − σ(1 − λ)) sin(πσ(1 − λ))
,

which is effectively two copies of the Euler reflection formula for the gamma function.
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The next application is to the zeta functions Z∓(2), the explicit forms involving a 5F4

hypergeometric series as in (2.5b). Therefore we expect to derive properties of the function

F(λ) ≡ 5F4

(
1
2 + σλ, 2σ(1 + λ), σ(2 + λ), 2σ, σ(1 + λ)

1 + σλ, 1 + 2σλ, 1
2 + σ(2 + λ), 1 + σ(1 + λ)

)
. (2.17)

Substituting Z−(1) and Z∓(2) into (2.16b) gives the functional relation

sin(πσ(λ + 2))4−σλΓ(2σ(1 + λ))Γ(σ(2 + λ))
sin(πσ(λ− 2))(1 + λ)Γ2(1 + σλ)Γ(1

2 + σ(2 + λ))
F(λ)

=
4σλΓ(2σ(1 − λ))Γ(σ(2 − λ))

(λ− 1)Γ2(1 − σλ)Γ(1
2 + σ(2 − λ))

F(−λ)

+
42σ−1σπ

3
2 Γ2(1 − 2σ)Γ2(σ(1 + λ))

Γ4(1 − σ)Γ2(1 − σ(1 − λ))Γ(2σ) sin2(πσ)

×
(

sin2(πσ(1 + λ))
sin2(πσ(1 − λ))

− sin(πσ(2 + λ))
sin(πσ(2 − λ))

− 2 sin(πσ(1 + λ)) sin(πσλ)
sin(πσ(1 − λ)) sin(πσ(2 − λ))

)
.

(2.18)

Furthermore, numerical testing indicates that this identity appears to hold when 0 <
�(σ) < 3/4, although our result only applies when σ ∈ R.

By choosing σ and λ to take special values — precisely those which give simple forms
for Z+(2) — we recover further properties of F . For example the simplification (2.11) gives,
for m ∈ N, the identity

F
(

2 −m

σ

)

=
(m− 3σ)Γ4(σ)Γ2(1 + 2σ −m)Γ2(1 − 2σ)Γ(1

2 + 4σ −m) sin3(2πσ) csc2(3πσ)√
π4m+1−4σΓ2(1 − 3σ +m)Γ2(1 + σ −m)Γ(2σ)Γ(6σ − 2m)Γ(4σ −m) sin(4πσ)

.

When m = 1 this identity is verified by Dixon’s theorem but we have been unable to find
any known identities accounting for general m ∈ N. While F can be rewritten in terms
of 4F3 hypergeometric series [32], this appears to provide no extra information and the
functional identity (2.18) is not apparent.

The exact form of Z−(3) is known to contain Appell series [32], functional relations for
which being obtained by the above methods. We would then expect relationships between
two different Appell series in terms of 5F4 hypergeometric series.

2.3. Functional relations between hypergeometric series (α �= 0)

The techniques used in Sec. 2.2 also apply when α �= 0. In this situation the sum rules found
from (2.7) are more complicated, featuring four separate zeta functions. Substituting (2.9)
into (2.7), the coefficient of E in the subsequent expansion gives, after the transformation
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α→ iα,

D−(0, α)D+(0,−α)
(
ω1−λZ+(1,−α) + ω−(1+λ)Z−(1, α)

)
= D−(0,−α)D+(0, α)(ωλ−1Z+(1, α) + ω1+λZ−(1,−α)), (2.19)

where D∓(0) is given in [18] as

D−(0, α) ∝ (2σ)
ασ
2
−σλ−1/2 Γ(1 + 2σλ)

Γ(1
2 + ασ

2 + σλ)
. (2.20)

The explicit form for Z−(1) features a 3F2 hypergeometric series as in (2.4a). Therefore
(2.19) is implicitly a four-term functional relation involving this function. Splitting into real
and imaginary parts, (2.19) is actually two independent functional relations satisfied by the
3F2 hypergeometric series. We define the function

G(α, λ) ≡ 1
Γ(1

2 + 2σ + σα
2 + σλ)Γ(1

2 − σα
2 − σλ)3F2

(
1
2 + σα

2 + σλ, 2σ(1 + λ), 2σ

1 + 2σλ, 1
2 + σα

2 + σ(2 + λ)

)
,

(2.21)

where the hypergeometric series converges for �(σ) < 1/2. Substituting (2.4a) and (2.20)
into (2.19) gives, after taking real and imaginary parts, the pair of four-term relations

G(α, λ) + G(−α, λ)

=
sin(πσ(1 − λ))Γ(1 + 2σλ)Γ(2σ(1 − λ))
sin(πσ(1 + λ))Γ(1 − 2σλ)Γ(2σ(1 + λ))

(G(α,−λ) + G(−α,−λ)) (2.22a)

and

G(α, λ) − G(−α, λ)

=
cos(πσ(1 − λ))Γ(1 + 2σλ)Γ(2σ(1 − λ))
cos(πσ(1 + λ))Γ(1 − 2σλ)Γ(2σ(1 + λ))

(G(α,−λ) − G(−α,−λ)). (2.22b)

This pair of equations allows for the derivation of three-term equations featuring G(α, λ).
One such example is given by

G(α, λ) =
Γ(1 + 2σλ)Γ(2σ(1 − λ))Γ(1 − 2σ(1 + λ))

πΓ(1 − 2σλ)

× (sin(2πσ)G(α,−λ) − sin(2πσλ)G(−α,−λ)). (2.23)

Now G(α, λ) has been shown to satisfy a particular three term functional relation.
From (2.23), specific parameter choices allow for identities which only feature G(α, λ) twice.
One example is given by λ = 1 − 1/2σ. When this is the case G(α, λ) simplifies to a 2F1

hypergeometric series, which is in-turn expressed in terms of gamma functions by Gauss’
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theorem. The subsequent relation is that

Γ2(1 − 2σ)Γ(2 − 2σ)
Γ(2σ)Γ(1 − σ(1 + δ))Γ(1 − σ(1 − δ))Γ(2 − 4σ)

= G
(

2δ, 1 − 1
2σ

)
+ G

(
−2δ, 1 − 1

2σ

)
. (2.24)

Similar such reductions can be found by any simplification of the 3F2 hypergeometric series
in (2.21) being substituted into the three-term relation in (2.23).

3. PT -Symmetric Schrödinger Problems

Now we consider a class of non-Hermitian eigenvalue problems related to the radial problems
of Sec. 2, given for K ∈ N by the Schrödinger equation

−φ′′ +
(

(−1)K(ix)2M − α(ix)M−1 +
λ2 − 1

4

x2

)
φ = Eφ. (3.1)

The boundary conditions are that φ ∈ L2(C(x)) where C(x) is a quantization contour that
asymptotes towards the anti-Stokes rays with complex arguments −π/2±π(K+1)/(2M+2).
These anti-Stokes rays are shown in Fig. 1. Such a contour must also avoid the branch cut
along the positive imaginary axis, employed to ensure that the potential is single-valued for
general M .

Surprisingly these Schrödinger problems, with complex potentials and boundary con-
ditions defined in the complex plane, can have an entirely real spectrum [12, 13, 18, 28].
The suggested reason for the possibility of spectral reality lies in the PT -symmetry of the
problem, meaning that (3.1) and the boundary conditions are invariant under a reflection
in the imaginary axis. Specifically the spectrum is known to be real if the PT -symmetry
is unbroken, meaning that the eigenfunctions are invariant under the combined PT opera-
tion [13]. The revelation of a non-Hermitian problem exhibiting real eigenvalues has since
spawned a huge research effort with hundreds of papers. Recent review papers of the subject
are also available [10, 19].

Fig. 1. (Color online) Stokes rays for M = 2.7 and K = 1, 2, 3 are given by the solid (blue) lines. The dashed
(red) lines are the relevant anti-Stokes rays and we choose the quantization contour to asymptotically tend
towards these, while avoiding the branch cut along the imaginary axis. The different boundary conditions
thus define separate spectra.
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Rather than investigating spectral reality, our interest will be in the relationships
between the radial problems in Sec. 2 and the PT -symmetric of this section. For fixed M ,
different choices of K will result in quantization contours which asymptotically lie within
different pairs of Stokes sectors. Generally these different problems are then expected to
have unique spectra for fixedM,α, λ, as was demonstrated in [13]. To these separate spectra
we associate the eigenvalues {EK

k } and the spectral functions

CK(E) ≡ CK(0)
∞∏

k=0

(
1 − E

EK
k

)
and ZK(s) ≡

∞∑
k=0

1
(EK

k )s
. (3.2)

Despite the different spectra appearing to have no obvious analytic relationship, in
[21, 29] a number of results are given which link together different CK(E) and hence the
associated eigenvalues. Following work in [21], using the normalizations in [17], one such
result is the “fused” quantum Wronskian equation

2λω
α
2
(1+(−1)KK)CK(−E,α)

= ω(K+1)λD−(ωK+1E, (−i)K+1α)D+(ωK+1E, iK+1α)

−ω(K+1)λD−(ωK+1E, iK+1α)D+(ωK+1E, (−i)K+1α), (3.3)

where M > 1 and λ is again restricted to exclude the values in (1.7).
The fused quantum Wronskian is essentially a simple extension of (2.7), which can be

verified by setting K = 0 and C0(E) ≡ 1 in (3.3). The function C0(E) is understood to
be a constant as the choice K = 0 dictates that the quantization contour of the eigen-
value problem asymptotically lies within two adjacent Stokes sectors, meaning an empty
spectrum [21]. Therefore any sum rules derived from (3.3) must reproduce those derived
from (2.7) by setting K = 0 and defining Z0(s) ≡ 0.

In contrast to (2.7), the fused quantum Wronskian will feature only two spectral deter-
minants on the right-hand side when α �= 0 and K is odd. At such values of K the sum
rules must be of similar form to those in (2.10).

3.1. Fused sum rules and simplifications

Calculating ZK(n) directly can be handled by the Green’s function method used previously.
This was first implemented in [15, 26] for the anharmonic (α = 0, λ = 1/2) oscillators, where
the results were used to verify conjectures on the spectral reality of the PT -symmetric
problems. However there is an easier method than direct calculation, using sum rules and
the exact forms for Z∓(n) calculated in (2.4) and (2.5). To determine sum rules between
ZK(n) and Z∓(n), CK(−E) is expanded near the origin as

CK(−E) = CK(0) exp

(
−

∞∑
n=1

ZK(n)
n

(−E)n
)
. (3.4)

The fused sum rules are calculated by substituting (2.9) and (3.4) into (3.3) and com-
paring coefficients of the powers of E. Temporarily suppressing the dependence on K when
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α �= 0, the first few fused sum rules are

ZK(1) = −L1Z−(1) − L−1Z+(1), (3.5a)

ZK(2) = L2Z−(2) + L−2Z+(2) + (L2
1 − L2)Z̃(1)2, (3.5b)

ZK(3) = −L3Z−(3) − L−3Z+(3) +
3
2
(L3 − L2L1)Z̃(2)Z̃(1)

+
1
2
(
L3 − 3L2L1 + 2L3

1

)
Z̃(1)3, (3.5c)

where

La ≡ sin(πσ(K + 1)(λ+ a)) csc(πσ(K + 1)λ).

For α = 0 the fused sum rules apply for all K, whereas for α �= 0 this is only true when
K is odd. In the latter situation ZK(n,α) is given in terms of Z∓(n,−α) for K = 4n − 3
and in terms of Z∓(n,α) for K = 4n− 1.

To calculate ZK(n) it is now only necessary to calculate Z−(n), . . . , Z−(1), determine
Z+(n, λ) from (1.6) and then substitute these into the appropriate fused sum rule. This
method implies that ZK(n) is always real-valued, despite no guarantee that the eigenvalues
will be real. The explanation is that all PT -symmetric systems have a real characteristic
equation, implying that the eigenvalues are either real or appear in complex conjugate
pairs [11].

Given the fundamentally differences between the radial problems and the PT -symmetric
problems, there is a priori no reason to expect such simple connections between the differing
sets of spectra. Specific examples of the fused sum rules can be written in many ways,
depending on the relationships between Z−(n) and Z+(n) as determined by the radial sum
rules (2.10).

Example 3.1. The anharmonic quartic oscillator has the sum rules

Z1(1) = 2Z−(1),

Z1(2) = Z−(1)2 − Z−(2),

2Z1(3) = 3Z−(2)Z−(1) + Z−(1)3.

As with the radial sum rules, the fused sum rules are also useful for deriving simplifica-
tions of ZK(n). For example, comparing (2.10b) and (3.5b) shows for m ∈ N that

ZK

(
2, σ =

m

(λ+ 2)
, α = 0

)

=
π4σ4−4σΓ2(1 − 2σ) csc2(πσ)

161−σΓ2(1 + σ −m)Γ2(1 − 3σ +m)Γ4(1 − σ)

×
(

(csc(3πσ) + csc(πσ))2

csc2(πσ(K + 1)) sin2(2πσ(K + 1))
− sin(4πσ(K + 1))(1 + sec(2πσ))

(1 + 2 cos(2πσ))2sin2(πσ)sin(2πσ(K + 1))

)
.

(3.6)
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Example 3.2. The anharmonic cubic oscillator has the zeta value

Z1(2) =
(

1 − 2√
5

)
Z+(1)2 =

16(
√

5 − 2)π4

5
29
10 Γ4(4

5 )Γ2(3
5 )
.

Certain choices of M and K reduce the quantum Wronskian to the form CK(−E) ∝
D+(±E)D−(±E) and hence give the zeta function identity ZK(n) = (∓1)nZ(n). Addition-
ally (3.5) will allow for the form ZK(n) = Z̃(n)+f(Z∓(n−1), . . . , Z∓(1)) under appropriate
parameter choices. Therefore the simplifications for Z(2) and Z̃(2), as in (2.14) and (2.15),
apply to ZK(2). Two examples of these are:

Example 3.3. The quartic oscillator has the zeta value

Z2

(
2, α = 0, λ =

3
2

)
=
(

3
2

) 1
3

Γ2

(
2
3

)
.

Example 3.4. The anharmonic sextic oscillator has the zeta value

Z2(2) =
(3 − 2

√
2)π5

16Γ4(3
4 )Γ2(7

8 )Γ2(5
8 )
.

3.2. Nonlocal integrals of motion

An application for the fused sum rules in (3.5) is within the “ODE/IM Correspondence”
[8, 9, 20, 21] which links the eigenvalue problems in this paper to a class of integrable
models. The correspondence, which was established by functional relations such as the
quantum Wronskian, is summarized in-depth in the review paper [19].

Two essential components for realizing the correspondence are the continuum analogues
of the T- and Q-operators which appear in the study of integrable systems such as the six-
vertex model. These analogues were introduced in [4, 5] to study the integrable structure of
conformal field theory. When M > 1 and α = 0 the vacuum eigenvalues of these analogues,
denoted T (s) andQ(s), are related simply to the spectral determinants of the radial and PT -
symmetric problems. This remarkable connection was shown in [8, 21] and is summarized
by the relations

T (s) = C1(−νs2) (3.7)

and

Q(s) =
1

D−(0)
D−(νs2) (3.8)

under the parameter identifications

β2 = σ, p =
σλ

2
and ν ≡

(
σ

2

)2σ−2

Γ2(1 − σ). (3.9)

Considering (3.8), direct relations are given in [5] between the nonlocal integrals of
motion (IMs) Hn, used in a power series expansion for Q(s), and the zeta functions Z−(n).
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Additionally conjectured in [5] were analytic continuations for Z−((2n − 1)/(2σ − 2)) in
terms of local IMs I2n−1 and for Z−(−n/σ) in terms of nonlocal IMs H̃n. Therefore there
appear to be good reasons to consider the spectral zeta functions in relation to the nonlocal
IMs. Specifically we will work with Gn, which were given in [4] to be nonlocal IMs appearing
in the power series expansion

T (s) = T (0) +
∞∑

n=1

Gns
2n. (3.10)

These functions are found directly from the integral

Gn ≡ 2
∫ 2π

0
du1

∫ u1

0
dv1

∫ v1

0
du2

∫ u2

0
dv2 · · ·

×
∫ vn−1

0
dun

∫ un

0
dvn cos

(
2p

(
π +

n∑
i=1

vi − ui

))

×
n∏

j>i

[
4 sin

(
ui − uj

2

)
sin
(
vi − vj

2

)]2β2

×
n∏

j>i

[
2 sin

(
vi − uj

2

)]−2β2 n∏
j≥i

[
2 sin

(
ui − vj

2

)]−2β2

, (3.11)

with the first of these being given simply as

G1 =
4π2Γ(1 − 2β2)

Γ(1 − β2 − 2p)Γ(1 − β2 + 2p)
. (3.12)

The nested integration required to calculate Gn is reminiscent of the nested integration
required to compute Z−(n) as in Sec. 2. The difference is that while Z−(2) can be written
exactly, no general form for G2 is known, although alternative approaches have been used
in [6, 7, 24]. To calculate Gn, (3.7) is expanded on both sides as a power series by using
(3.4) and (3.10). Comparing powers of s and using T (0) = C1(0) = 2 cos(πσλ) [4, 21], the
first few Gn are found:

G1 = 2
(
σ

2

)2σ−2

Γ2(1 − σ) cos(πσλ)Z1(1), (3.13a)

G2 =
(
σ

2

)4σ−4

Γ4(1 − σ) cos(πσλ)(Z1(1)2 −Z1(2)), (3.13b)

G3 =
1
6

(
σ

2

)6σ−6

Γ4(1 − σ) cos(πσλ)(Z1(1)3 + 2Z1(3) − 3Z1(2)Z1(1)). (3.13c)

Now that Gn are expressed in terms of the zeta functions Z1(n), they can be written
in terms of Z∓(n) by (2.10). This circumvents the need to calculate Gn directly, expressing
them instead in terms of zeta functions which can be calculated from work in Sec. 2. Given
that Z−(n) becomes more complicated as n increases, identities for Gn are expected to
reflect this property. However the integral expression for Z−(n) in (2.2) can always be given
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in terms of some infinite power series. This provides a computational advantage over (3.11),
which has not been directly evaluated for n ≥ 2.

The validity of (3.13) can be checked by first substituting (2.5a) into (3.5a). The general
identity for Z1(1) is then substituted into (3.13a) and, after the variable changes in (3.9),
found to agree with (3.12) exactly. The process is simply extended to Gn and the higher
nonlocal IMs giving, as an example, that

G2 =
4π4Γ2(1 − 2σ) sec(πσλ)

Γ2(1 − σ(1 − λ))Γ2(1 − σ(1 + λ))

(
1 − cos4(πσ)

sin2(πσ(1 − λ)) sin2(πσ(1 + λ))

)

+
(
σ

2

)4σ−4

Γ4(1 − σ) cos(πσλ)
(

sin(2πσ(2 − λ))
sin(2πσλ)

Z+(2) − sin(2πσ(2 + λ))
sin(2πσλ)

Z−(2)
)
,

(3.14)

where the identifications in (3.9) must be taken into account.
This expression for G2 can be checked to agree with some special cases given in [6].

Practically (3.14) provides little extra information over the methods given in [6, 7, 24]
due to the lack of known analytic properties of the 5F4 hypergeometric terms appearing
in (2.5b). However the simplifications for ZK(2), for example (3.6), allow for concise special
values of G2 to be found, in some cases being as simple as the general formula for G1.

Example 3.5. For β2 = 2/5 and p = 11/10 the second nonlocal IM is given by

G2 =
32(5 +

√
5)π4Γ2(3

5)
45Γ4(4

5 )
.

The above methods can be extended to compute G3 and higher nonlocal IMs. Simplifications
available by the sum rules would mean that, for specific parameter choices, G3 can be given
without having to calculate a general form for Z−(3) directly as in Sec. 2.

4. Summary and Future Work

We have calculated the spectral zeta functions Z∓(1) and Z∓(2) pertaining to the radial
problems in (1.5). Using the quantum Wronskian, sum rules were established which give rela-
tionships between the different Z∓(n). As well as illustrating the deep connections between
the two problems, these sum rules allow for the simplification of Z∓(2) with many examples
found in the anharmonic oscillators. The physical reasons for such simplifications, if any, is
not yet understood.

Our methods were then applied to determine special properties of the gamma function
and specific hypergeometric series. We have not found another way to obtain the functional
relations between these hypergeometric series and a separate derivation would be of interest.
This technique could be applied in general to any Schrödinger problems where sum rules can
be established between the zeta functions. Furthermore the functional relations established
encodes many known, closed-form identities for specific hypergeometric series. A full study
of this topic may therefore prove interesting in the future.

In Sec. 3 the zeta functions ZK(n) of a related, PT -symmetric problem were calculated
not directly but using the fused sum rules relating them to Z∓(n). This requires fewer
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calculations than the direct method and serves to highlight the deep connections between the
real-line and monodromy problems. After calculating ZK(n), we showed how the ODE/IM
correspondence can be used to calculate the vacuum nonlocal IMs Gn. This was restricted to
α = 0, although we expect our work will be useful in testing the correspondence postulated
in [1, 2, 9], where this restriction is not imposed.

We deliberately excluded the possibility of a zero-energy eigenvalue. However our initial
investigations show that this need not be the case. In particular we have found that spectral
zeta functions can be used to detect the presence (and classify the order) of zero-energy
exceptional points in non-Hermitian eigenvalue problems. A natural application of this
method is to the PT -symmetric problems specified in (3.1), where the fused sum rules are
used. We hope to work more on this in the future.
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