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The µ-Camassa–Holm (µCH) equation is a nonlinear integrable partial differential equation closely
related to the Camassa–Holm and the Hunter–Saxton equations. This equation admits quadratic
pseudo-potentials which allow us to compute some first-order nonlocal symmetries. The found
symmetries preserve the mean of solutions. Finally, we discuss also the associated µCH equation.
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1. Introduction

In this paper, we study the µCH equation, which was derived recently in [12, 16] as

µ(ut) − utxx = −2µ(u)ux + 2uxuxx + uuxxx, (1.1)

where u(x, t) is a spatially periodic real-valued function of time variable t and space variable
x ∈ S1 = [0, 1), µ(u) =

∫ 1
0 udx denotes its mean. The µCH equation describes the propaga-

tion of weakly nonlinear orientation waves in a massive liquid crystal with external magnetic
field and self-interaction. In this form the µCH equation appears as the geodesic equation
on the diffeomorphism group of the circle corresponding to a natural right invariant Sobolev
metric.

By introducing m = Au = µ(u) − uxx, where A := µ − ∂2 is the inertia operator (∂
stands for ∂

∂x), Eq. (1.1) becomes

mt = −umx − 2mux, m = µ(u) − uxx. (1.2)
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The µCH equation is closely related to the Camassa–Holm (CH) equation [1, 6] with
A = 1 − ∂2

ut − utxx + 3uux = 2uxuxx + uuxxx (1.3)

and to the Hunter–Saxton (HS) equation [11] with A = −∂2

−utxx = 2uxuxx + uuxxx. (1.4)

Similar to its relatives (1.3), (1.4) the µCH equation is a model for wave breaking, that
is, it admits smooth solutions which break in finite time in such a way that the wave remains
bounded while its slope becomes unbounded [12]. The µCH equation also admits peaked
solutions (peakons): for any c ∈ R, the peakon u(x, t) = cϕ(x− ct), where

ϕ(x) =
1
26

(12x2 + 23), for x ∈ [−1/2, 1/2] (1.5)

and ϕ is extended periodically to the real line, is a solution to (1.1). It is proven in [2] that
the periodic peakons of the µCH equation are orbitally stable in H1(S1).

The µCH equation is also well-posed (see [12]). This equation enjoys other geometric
descriptions [7], for example, it is geometrically integrable. Moreover, its Kuperschmidt
deformation is also geometrically integrable [4].

The µCH equation is formally integrable (see Sec. 2) and bi-Hamiltonian. Let us define
the Hamiltonians

H1 =
1
2

∫
umdx, H2 =

∫ (
µ(u)u2 +

1
2
uu2

x

)
dx. (1.6)

Then, Eq. (1.2) can be presented as

mt = −B1 δH2

δm
= −B2 δH1

δm
, (1.7)

where B1 = ∂A = −∂3,B2 = m∂ + ∂m are the two compatible Hamiltonian operators.
In fact, there exists an infinite sequence of conservation laws Hn[m], n = 0,±1,±2, . . . ,

such that

B1 δHn

δm
= B2 δHn−1

δm
,

the first few of them in the hierarchy are H2,H1 given above and

H0 =
∫
mdx, H−1 =

∫ √
mdx, H−2 = − 1

16

∫
m2

x

m5/2
dx. (1.8)

Note that

H0 =
∫
mdx =

∫
(µ(u) − uxx)dx = µ(u). (1.9)

Then µ(ut) = 0 on solutions to the µCH equation — this fact can be seen also if we integrate
both sides of Eq. (1.1) over the circle and use the periodicity. This implies that the mean
of any solution u is a constant in time and hence is completely determined by the initial
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condition [12]. This fact is crucial for the calculations in Secs. 3 and 4. Then, Eq. (1.1) can
be written in the form:

−utxx = −2µ(u)ux + 2uxuxx + uuxxx (1.10)

just as it is introduced in [12] under the name µHS equation.
There is a lot of activity in extending the CH, HS and µCH equations to multi-component

ones recently. In [22] the authors consider the geometric integrability of two-component CH
and HS systems. They also obtain a class of nonlocal symmetries for these systems. In
[26] the author proposes a two-component generalization of the µCH equation. Then he
shows that this generalization is a bi-hamiltonian Euler equation and can be viewed as a
bi-variational equation. In [13] the author studies the periodic µ−b equation which contains
the µCH equation for b = 2 and µ Degasperis–Procesi equation for b = 3, respectively. Then
the author shows that the µ − b equation can be realized as a metric Euler equation on
Diff∞(S1) if and only if b = 2 i.e. for the µCH equation.

Let us mention also the paper [24] where the authors introduce the multi-component
Hunter–Saxton and µCH systems. They show that these multi-component systems are geo-
metrically integrable. For the three-component CH and HS systems they find nonlocal
symmetries depending on the pseudo-potentials.

The paper is organized as follows. Section 2 contains some facts around the notion of a
scalar partial differential equation describing pseudo-spherical surface. Then the pseudo-
spherical character of the µCH equation is recalled. A quadratic pseudo-differential is
presented. In Sec. 3, we first review the theory of nonlocal symmetries of partial differ-
ential equations. We follow mainly [10]. The more detailed description can be found in
Krasil’shchik and Vinogradov [14, 15] (see also [19]). Another point of view can be seen
in [5] where higher degree potential symmetries are introduced which lead to nonlocal
conservation laws and nonlocal transformations for the equations. Then we give nonlocal
symmetries for the µCH equation. We consider only symmetries which preserve the mean
of solutions, because they are found in a simple way. In the general case, one has to solve an
integro-differential equation for the characteristic of the symmetry. The general approach
for finding symmetries of nonlocal equations is given by Zawistowski [25]. In his approach
there is no need in introducing nonlocal variables, so it is different from the approach taken
in this paper. The Zawistowski’s approach naturally leads to the solving of a system of
integro-differential equations for the coefficient determining the generator of the symmetry.

In Sec. 4, we first discuss the existence of other symmetries, different from those found
in Sec. 3. Then the associated µCH (AµCH) equation is introduced by analogy. The Lie
algebra of nonlocal symmetries for AµCH is presented and an one-parameter family of
solutions is given.

2. The µCH Equation and Pseudo-Spherical Surfaces

In this section we recall some definitions and facts about the equations of pseudo-spherical
type. They are introduced by Chern and Tenenblat [3]. One can consult, for example [18, 20]
for more details.

Definition 2.1. A scalar differential equation Ξ(x, t, u, ux, . . . , uxntm) = 0 in two inde-
pendent variables x, t, where uxntm = ∂n+mu/(∂xn∂tn), is of pseudo-spherical type (or, it
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describes pseudo-spherical surfaces) if there exist one-forms ωα �= 0

ωα = fα1(x, t, u, . . . , uxrtp)dx+ fα2(x, t, u, . . . , uxstq )dt, α = 1, 2, 3, (2.1)

whose coefficients fαβ are smooth functions which depend on x, t and finite number of
derivatives of u, such that the 1-forms ω̄α = ωα(u(x, t)) satisfy the structure equations

dω̄1 = ω̄3 ∧ ω̄2, dω̄2 = ω̄1 ∧ ω̄3, dω̄3 = ω̄1 ∧ ω̄2, (2.2)

whenever u = u(x, t) is a solution of Ξ = 0.

Equations (2.2) can be interpreted as follows. The graphs of local solutions of equations
of pseudo-spherical type can be equipped with structure of pseudo-spherical surface (see
[3, 18, 20]): if ω̄1 ∧ ω̄2 �= 0 the tensor ω̄1 ⊗ ω̄1 + ω̄2 ⊗ ω̄2 defines a Riemannian metric of
constant Gaussian curvature -1 on the graph of solution u(x, t) and ω̄3 is the corresponding
metric connection one-form.

An equation of pseudo-spherical type is the integrability condition for a sl(2,R)-valued
problem

dψ = Ωψ,

where Ω is the matrix-valued one-form

Ω = Xdx + Tdt =
1
2

(
ω2 ω1 − ω3

ω1 + ω3 −ω2

)
. (2.3)

Definition 2.2. An equation Ξ = 0 is geometrically integrable if it describes a nontrivial
one-parameter family of pseudo-spherical surfaces.

Here, by a nontrivial one-parameter family of pseudo-spherical surfaces we mean that it
is not a constant and further, the parameter cannot be removed via transformations which
preserve the Riemannian structure of the pseudo-spherical surface (see [8] for a discussion).

Hence, if Ξ = 0 is geometrically integrable, it is the integrability condition of one-
parameter family of linear problems ψx = Xψ,ψt = Tψ. In fact, this is equivalent to the
zero curvature equation

Xt − Tx + [X,T ] = 0, (2.4)

which is an essential ingredient of integrable equations.
Another important property of equations of pseudo-spherical type is that they admit

quadratic pseudo-potentials. Pseudo-potentials are a generalization of conservation laws.

Proposition 2.3 [18]. Let Ξ = 0 be a differential equation describing pseudo-spherical
surfaces with associated one-forms ωα. The following two Pfaffian systems are completely
integrable whenever u(x, t) is a solution of Ξ = 0:

−2dΓ = ω3 + ω2 − 2Γω1 + Γ2(ω3 − ω2) (2.5)
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and

2dγ = ω3 − ω2 − 2γω1 + γ2(ω3 + ω2). (2.6)

Moreover, the one-forms

Θ = ω1 − Γ(ω3 − ω2) and Θ̂ = −ω1 + γ(ω3 + ω2) (2.7)

are closed whenever u(x, t) is a solution of Ξ = 0 and Γ (respectively γ) is a solution of
(2.5) (respectively (2.6)).

Geometrically, the Pfaffian systems (2.5) and (2.6) determine geodesic coordinates on
the pseudo-spherical surfaces associated with the equation Ξ = 0 [3, 18].

Now consider the µCH equation (1.2).

Proposition 2.4. The µCH equation (1.2) describes pseudo-spherical surfaces, and hence,
is geometrically integrable.

For validation of the Proposition 2.4 we give the associated with (1.2) 1-forms (see for
example [4, 7]). Note that µ(ux) = µ(ut) = 0 is used since the structure equations are valid
on the solutions to the µCH equation

ω1 =
1
2

(
ηm− η2

2
+ 2
)
dx+

1
2

[
η2

2
u− η

(
ux + um+

1
2

)
+ µ(u) − 2u+

2
η

]
dt,

ω2 = ηdx+ (1 − ηu+ ux) dt, (2.8)

ω3 =
1
2

(
ηm− η2

2
− 2
)
dx+

1
2

[
η2

2
u− η

(
ux + um+

1
2

)
+ µ(u) + 2u− 2

η

]
dt.

For the matrices X and T in (2.4) we get

X =
1
2

(
η 2

ηm− η2

2 −η

)
, T =

1
2

(
T11 T12

T21 −T11

)
, (2.9)

where

T11 = 1 − ηu+ ux, T12 = 2
(
−u+

1
η

)
, T21 =

η2

2
u− η

(
ux + um+

1
2

)
+ µ(u).

(2.10)

Hence, we have a zero curvature representation Xt − Tx + [X,T ] = 0 for the system (1.2).
From (2.9) it is straightforward to obtain the corresponding scalar linear problem

ψxx =
(η

2
m
)
ψ,

ψt =
(
−u− ηw +

1
η

)
ψx +

ux + ηwx

2
ψ,

(2.11)

which coincides with those in [12] upon setting λ = η/2.
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In order to find pseudo-potentials for the µCH equation we denote

ω1
new = ω2, ω2

new = −ω1, ω3
new = ω3.

With these forms the Pfaffian system (2.6) becomes

2γx = −2γ2 − 2ηγ + ηm− η2

2
, (2.12)

2γt = −2γ2

η
+ 2γ2u− 2γ(1 − ηu+ ux) +

[
η2

2
u− η

(
ux +m+

1
2

)
+ µ(u)

]
. (2.13)

After some manipulations the above system obtains the form:

2γx = −2γ2 − 2ηγ + ηm− η2

2
,

2γt = −2
η
γ2 − [(2γ + η)u]x + µ(u) − 2γ − η

2
.

Applying the transform γ �→ γ − η/2 we get

γx = −γ2 +
η

2
m, (2.14)

γt = −γ
2

η
− (γu)x +

µ(u)
2

. (2.15)

Multiplying the first Eq. (2.14) by −1/η and then adding the result to the second Eq. (2.15)
we get the following result denoting λ = η/2.

Proposition 2.5 [4]. The µCH equation (1.2) admits a quadratic pseudo-potential γ,
defined by the equations

m =
γ2

λ
+
γx

λ
, (2.16)

γt = −2γ2

λ
− (γu)x +

µ(u)
2

, (2.17)

where λ �= 0,m = µ(u) − uxx. Moreover, Eq. (1.2) possesses the parameter dependent
conservation law

γt =
1

2λ
(γ + λux − 2λuγ)x. (2.18)

As an application we use pseudo-potential γ to obtain some conserved densities for the
µCH equation. One possible expansion of γ is

γ = λ1/2γ1 + γ0 +
∞∑

n=1

λ−n/2γ−n. (2.19)

Substituting this into (2.14) gives

γ1 =
√
m, γ0 = −mx

4m
, γ−1 =

1
32

m2
x

m5/2
+

1
8

( mx

m3/2

)
x

1250025-6 416
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and the other γ−n are obtained recurrently by

γ−(n+1) = − 1
2γ1


(γ−n)x +

n∑
j=0

γ−jγj−n


 , n ≥ 2.

In this way, we can obtain local functionals H−1,H−2 (1.8) and so forth, see also [12].

3. Nonlocal Symmetries for the µCH Equation

Nonlocal symmetries have been studied rigorously by Krasil’schik and Vinogradov [14, 15].
Here we give a brief description of the accompanying notions and facts. Note that there
is a substantial geometry which we do not even present here. We follow mainly [9, 10].
Before starting we recall some usual conventions. The independent variables are denoted
by xi, i = 1, . . . , n and dependent variables by uα, α = 1, . . . ,m. Partial derivatives with
respect to xi are indicated with sub-indices. The total derivative with respect xi is denoted
by

Di =
∂

∂xi
+

n∑
α=1

∑
#J≥0

uα
Ji

∂

∂uα
J

, (3.1)

where the unordered k-tuple J = (j1, . . . , jk), 0 ≤ j1, j2, . . . , jk ≤ n indicates a multi-index
of order #J = k, uα

Ji = ∂uα
J

∂xi and DJ = Dj1Dj2 · · ·Djk
.

Definition 3.1. Let N be a nonzero integer or N = ∞. An N -dimensional covering π of a
(system of) partial differential equation(s) Ξa = 0, a = 1, . . . , k, is a triplet

({γb, b = 1, . . . , N}; {Xib, b = 1, . . . , N, i = 1, . . . , n}; {D̃i, i = 1, . . . , n}) (3.2)

of variables γb-“nonlocal variables”, smooth functions Xib depending on xi, uα, γb and finite
number of partial derivatives of uα, and linear operators

D̃i = Di +
N∑

b=1

Xib
∂

∂γb
(3.3)

such that the equations

D̃i(Xjb) = D̃j(Xib), i, j = 1, . . . , n, b = 1, . . . , N (3.4)

hold whenever uα(xi) is a solution to Ξa = 0.

The operators D̃i satisfy D̃i(γb) = Xib and these equations are compatible due to (3.4).
Since we expect that on solutions to the system Ξa = 0 the total derivatives D̃i become
usual partial derivatives, the equations

∂γb

∂xi
= Xib (3.5)

have to be satisfied on the solutions uα(xi) of Ξa = 0. These compatible equations give the
relations between uα and new dependent variables γb. Conversely, a set of equations of the
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form (3.5) which are compatible on solutions to the system Ξa = 0, determines a covering
π = (γb,Xib, D̃i) where the differential operators are defined as in (3.3).

We define the nonlocal symmetries as follows

Definition 3.2. Let Ξa = 0, a = 1, . . . , k be a system of partial differential equations,
π = (γb,Xib, D̃i) be a covering of Ξa = 0. A nonlocal π-symmetry of Ξa = 0 is a generalized
symmetry

X =
∑

i

ξi ∂

∂xi
+
∑
α

φα ∂

∂uα
+
∑

b

ϕb ∂

∂γb

of the augmented system

Ξa = 0,
∂γb

∂xi
= Xib. (3.6)

Hence, in order to find nonlocal symmetries, we can proceed as in the local case consid-
ered, for example, in Olver [17] We need to check the conditions [15, 17]

prX(Ξa) = 0, and prX

(
∂γb

∂xi
−Xib

)
= 0 (3.7)

in which

prX = X +
∑
α,J

φα
J

∂

∂uα
J

+
∑
b,J

ϕb
J

∂

∂γb
J

and

φα
J = DJ

(
φα −

∑
i

ξiuα
i

)
+
∑

i

ξiuα
Ji, ϕb

J = DJ

(
ϕb −

∑
i

ξiγb
i

)
+
∑

i

ξiγb
Ji.

As elaborated in [17, Chap. 5], it is enough to consider “evolutionary” vector fields X of
the form:

X =
m∑

α=1

Gα ∂

∂uα
+

N∑
b=1

Hb ∂

∂γb
. (3.8)

Using this form of the vector field X the symmetry conditions (3.7) can be transformed
further (see [9, 10]). Note that the nonlocal symmetries send solutions to the system Ξa = 0
into the solutions of the same system.

We now examine the nonlocal symmetries of the µCH equation (1.10) considered as
a system of equations for the variables m and u, namely (1.2). We search the nonlocal
symmetries that preserve the mean of solutions, that is, the integral µ(u) =

∫
udx remains

the same constant after the action of any symmetry on a solution.
We have already found a pseudo-potential γ in (2.16) and (2.17), given by

γx = λm− γ2, γt =
(ux

2
+

γ

2λ
− uγ

)
x
. (3.9)

1250025-8 418
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Let δ be the potential defined via compatible system of equations

δx = γ, δt =
ux

2
+

γ

2λ
− uγ. (3.10)

Proposition 3.3. The evolutionary vector field

V = G1 ∂

∂u
+G2 ∂

∂m
= γe2δ ∂

∂u
− λ(mx + 4mγ)e2δ ∂

∂m
. (3.11)

is a nonlocal symmetry for the µCH equation (1.2).

For the proof of this proposition we need to explore only the first part in the symmetry
conditions (3.7). Then a long, but straightforward computations give the result.

Following [9, 10, 18], we note that Proposition 3.3 simply says that the infinitesimal
variations of u and m along the flow of the vector field V are given by

uτ = γe2δ, mτ = −λ(mx + 4mγ)e2δ , (3.12)

where τ is the parameter along the flow and for each solution u(x, t),m(x, t) of the µCH
equation (1.2), the deformed u(x, t) + τuτ (x, t) and m(x, t) + τmτ (x, t) satisfy (1.2) to first-
order in τ . Note that as u and m move along the flow of V , so do γ and δ. Hence, in order
to find the flow of V we need to find their variations with respect to V .

Let us consider the potential β determined by the compatible system of equations

βx = me2δ , βt =
(
γ2

2λ2
− um

)
e2δ . (3.13)

The system of Eqs. (3.9), (3.10) and (3.13) allow us to define a three-dimensional covering
π of the µCH equation (1.2) with the nonlocal variables γ, δ and β.

Theorem 3.4. The following vector fields are the first-order generalized symmetries for
the augmented µCH system (1.2), (3.9), (3.10) and (3.13), which preserve the mean of the
solutions to the µCH equation (1.2)

W1 = −ut
∂

∂u
+ (mxu+ 2mux)

∂

∂m
−
[
µ(u)

2
+ γ2

(
u− 1

2λ

)
− γux − λum

]
∂

∂γ

−
(ux

2
+

γ

2λ
− uγ

) ∂

∂δ
−
(
γ2

2λ2
− um

)
e2δ ∂

∂β
, (3.14)

W2 = ux
∂

∂u
+mx

∂

∂m
+ (λm− γ2)

∂

∂γ
+ γ

∂

∂δ
+me2δ ∂

∂β
, (3.15)

W3 =
∂

∂δ
+ 2β

∂

∂β
, (3.16)

W4 =
∂

∂β
, (3.17)

1250025-9 419
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W5 = γe2δ ∂

∂u
− λ(mx + 4mγ)e2δ ∂

∂m
− λ2me2δ ∂

∂γ

−λ2β
∂

∂δ
− (λme4δ + λ2β2)

∂

∂β
. (3.18)

Consequently, these vector fields are nonlocal symmetries of the µCH equation (1.2).

Again, the proof of Theorem 3.4 is a straightforward computation (see a comment on
the availability of other symmetries at the beginning of the next section).

Corollary 3.5. The five nonlocal symmetries (3.14)–(3.18) generate a Lie algebra L and
their commutators are presented in Table 1.

Remark 3.6. If we introduce the vector fields h := −W3, e := 1
λW4, f := − 1

λW5, we
find that the commutators [h, e] = 2e, [h, f ] = −2f, [e, f ] = h, i.e. e, f, h generate a copy
of sl(2,R). Therefore, L is isomorphic to the direct sum of sl(2,R) and the Abelian Lie
algebra, generated by W1 and W2.

Remark 3.7. Note that W1 and W2 are merely the generators of the shifts with respect
to the independent variables — they are ∂

∂t and − ∂
∂x , respectively.

Next we study the flow of the vector field (3.18). We take it because the others are
simpler — W1 and W2 correspond to translations with respect to t and x, respectively, and
W3 and W4 do not involve the main variables u and m. Let again τ be a parameter along
the flow, so the governing equations are

∂u

∂τ
= γe2δ , (3.19)

∂m

∂τ
= −λ

(
∂m

∂x
+ 4mγ

)
e2δ, (3.20)

∂γ

∂τ
= −λ2me2δ , (3.21)

∂δ

∂τ
= −λ2β, (3.22)

∂β

∂τ
= −λme4δ − λ2β2, (3.23)

Table 1. The commutation table of µCH nonlocal
symmetry algebra.

W1 W2 W3 W4 W5

W1 0 0 0 0 0
W2 0 0 0 0 0
W3 0 0 0 −2W4 2W5

W4 0 0 2W4 0 −λ2W3

W5 0 0 −2W5 λ2W3 0

1250025-10 420
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with initial conditions

u(x, t, 0) = u0, m(x, t, 0) = m0, γ(x, t, 0) = γ0, δ(x, t, 0) = δ0, β(x, t, 0) = β0

(3.24)

in which u0(x, t),m0(x, t), γ0(x, t), δ0(x, t) and β0(x, t) are particular solutions to (1.2), (3.9),
(3.10) and (3.13).

We can obtain from the general theorems on existence, uniqueness, and regularity of
solutions to symmetric hyperbolic quasi-linear systems such as (3.19)–(3.23) (see Taylor
[23, Chap. 16]) that if we start with initial data

u0(x, t), m0(x, t), γ0(x, t), δ0(x, t), β0(x, t) (3.25)

belonging to the Sobolev spaceHk(S1), with k > 3/2, then the system (3.19)–(3.23) with the
initial conditions (3.24) has solutions u(x, t, τ),m(x, t, τ), γ(x, t, τ), δ(x, t, τ) and β(x, t, τ)
on an interval I, τ = 0 ∈ I, belonging to L∞(I,Hk(S1))

⋂
Lip(I,Hk−1(S1)). The local

solutions u(x, t, τ),m(x, t, τ), γ(x, t, τ), δ(x, t, τ) and β(x, t, τ) are smooth provided that the
initial data are smooth. Moreover, if we start with smooth initial conditions (3.25), globally
defined for x ∈ S1, we can find (at least for small values of τ) families of solutions to the
µCH equation also globally defined for x ∈ S1.

Our aim is to obtain explicit formulas for the functions u(x, t, τ),m(x, t, τ),
γ(x, t, τ), δ(x, t, τ) and β(x, t, τ). Similarly to the case of the CH equation [9, 10, 18], we
have the following proposition.

Proposition 3.8. If the variables m and u are related by (1.2), the functions γ, δ, β are
defined by the Eqs. (3.9), (3.10), (3.13) and m,γ, δ, β satisfy Eqs. (3.20)–(3.23), then u

satisfies (3.19).

Proof. We compute the derivative βt,τ using (3.13), βτ,t using (3.23) and simplify the
obtained expressions using (3.9), (3.10), (3.13) and (3.20)–(3.23). The result is intuitively
clear since the operator A = µ− ∂2 is invertible [12].

Therefore, we can restrict ourselves to the projection of (3.18) on the space of m,γ, δ
and β.

Wpr = −λ(mx + 4mγ)e2δ ∂

∂m
− λ2me2δ ∂

∂γ
− λ2β

∂

∂δ
− (λme4δ + λ2β2)

∂

∂β
(3.26)

or we study the Eqs. (3.20)–(3.23) with initial conditions

m(x, t, 0) = m0, γ(x, t, 0) = γ0, δ(x, t, 0) = δ0, β(x, t, 0) = β0. (3.27)

As in [10] we change the independent variables τ, x with the variables ξ = τ, η = η(τ, x),
subjected to the conditions

η(τ = 0, x) = x, ητ = −ληxe
2δ. (3.28)

Then after simplifying the resulting equations with the expressions for γx, δx, βx from (3.9)
(3.10) and (3.13), we get

∂m

∂τ
= −4λm(τ, η)γ(τ, η)e2δ(τ,η) , (3.29)
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∂γ

∂τ
= −λγ(τ, η)2e2δ(τ,η), (3.30)

∂δ

∂τ
= λγ(τ, η)e2δ(τ,η) − λ2β(τ, η), (3.31)

∂β

∂τ
= −λ2β(τ, η)2, (3.32)

together with (3.28), which is equivalent to

∂x

∂τ
= λe2δ(τ,η). (3.33)

The following Proposition provides the explicit solution of the above system (note that η
appears here as a parameter).

Proposition 3.9. The initial value problem (3.29)–(3.33), with initial conditions m0 =
m(0, η), γ0 = γ(0, η), δ0 = δ(0, η), β0 = β(0, η) and x0 = x(0, η) = η, has the solution

m =
[

1 + τ(λ2β0 − λγ0e
2δ0)

1 + λ2β0τ

]4

m0, (3.34)

γ = γ0 − λγ2
0e

2δ0 τ

1 + λ2β0τ
, (3.35)

δ = δ0 − ln(1 + τλ2β0 − τλγ0e
2δ0), (3.36)

β =
β0

1 + λ2β0τ
, (3.37)

x = η +
τλe2δ0

1 + τλ2β0 − τλγ0e2δ0
. (3.38)

Corollary 3.10. Let u0(x, t) be a solution of the µCH equation. Then the solution u(x, t, τ)
to the initial problem

∂u

∂τ
= γ(x, τ)e2δ(x,τ), u(x, t, 0) = u0(x, t), (3.39)

in which γ(x, t, τ) and δ(x, t, τ) are determined by (3.35), (3.36) and (3.38), is a one-
parameter family of solutions to the µCH equation (1.2).

Remark 3.11. The formulas of the above type are used in [10] and [19] for computation
of explicit particular solutions to the CH equation and the Kaup–Kupershmidt equation,
respectively. Let us recall that the solutions of the µCH equation are periodic by its defini-
tion. The trivial solution and the constant solution do not give much. The next in order of
complexity smooth periodic solutions are the traveling waves [12]. They are expressed via
elliptic functions. This makes the calculations in applying the above formulas and Corol-
lary 3.10 very difficult. Anyway, the derivation of the formulas (3.33)–(3.37) is not in vain.
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They can be used to construct a Darboux-like transformation for the µCH equation. The
construction is completely similar to the one appearing in [9, 10], so we omit it.

4. Discussion

In this paper, we use the approach from [10] to compute some first-order nonlocal sym-
metries for the µCH equation. Only symmetries that preserve the mean of solutions are
considered. It is needed to point out that we do not find all nonlocal symmetries, since they
depend essentially on the possibility to construct nonlocal variables and the corresponding
equations. There exist other symmetries for certain. Here is an example of a symmetry
which do not preserve µ(u) (kindly provided by the referee)

x �→ x, t �→ t

τ
, u �→ τu,

where τ is a parameter. Then the µCH equation is invariant. However, this symmetry cannot
be extended to a symmetry for the augmented µCH system (1.2), (3.9), (3.10) and (3.13).

It may be interesting to see another object connected with the µCH equation. Recall
that the so called associated Camassa–Holm (ACH) equation is introduced by Schiff [21].
Let us give by analogy the associated µ-Camassa–Holm (AµCH) equation. Define

p =
√
m, dy = pdx− pudt, dT = dt (4.1)

and replace in Eq. (1.2). Note that this change of variables is justified since if m(0) is
positive, then m(x) > 0 as long as u(x, t) exists (see [12] for the proof). One finds

pT = −p2uy, −p
(
pT

p

)
y

+
p2

2
= µ(u). (4.2)

This is the analogue of the ACH equation — the associated µ-Camassa–Holm (AµCH)
equation. It is not clear yet whether this equation is of use. Nevertheless, our aim is to
study nonlocal symmetries of the AµCH equation. First of all, we transform the equations
for γ, δ and β (3.9), (3.10) and (3.13) using (4.1).

Proposition 4.1. The AµCH equation (4.2) admits a pseudo-potential γ and potentials
δ, β determined by the compatible equations, respectively

γy =
λp

2
− γ2

p
, γT =

µ(u)
2

− γ2

2λ
− pγuy, (4.3)

δy =
γ

p
, δT =

puy

2
+

γ

2λ
, (4.4)

βy =
p

2
e2δ , βT =

γ2

2λ2
e2δ. (4.5)

As in the previous section, we consider symmetry vector fields which preserve µ(u).

W = G1 ∂

∂u
+G2 ∂

∂p
+H1 ∂

∂γ
+H2 ∂

∂δ
+H3 ∂

∂β
, (4.6)

where Ga,Hb are functions of the variables y, T, u, p, γ, δ, β and py, uy, uT .
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Theorem 4.2. The following vector fields are first-order generalized symmetries for the
augmented AµCH system (4.2)–(4.5)

W1 = uT
∂

∂u
− p2uy

∂

∂p
+
(
µ(u)

2
− γ2

2λ
− pγuy

)
∂

∂γ

+
(puy

2
+

γ

2λ

) ∂

∂δ
+

γ2

2λ2
e2δ ∂

∂β
, (4.7)

W2 = uy
∂

∂u
+ py

∂

∂p
+
(
λp

2
− γ2

p

)
∂

∂γ
+
γ

p

∂

∂δ
+
p

2
e2δ ∂

∂β
, (4.8)

W3 =
1
2
∂

∂δ
+ β

∂

∂β
, (4.9)

W4 =
∂

∂β
, (4.10)

W5 = −(γ + λpuy)e2δ ∂

∂u
+ 2λpγe2δ ∂

∂p
+ λγ2e2δ ∂

∂γ

+ (λ2β − λγe2δ)
∂

∂δ
+ λ2β2 ∂

∂β
. (4.11)

Therefore, these vector fields are nonlocal symmetries for the AµCH equation (4.2).

Corollary 4.3. The five nonlocal symmetries (4.7)–(4.11) generate a Lie algebra L and
their commutators are presented in the Table 2.

Note that L is again isomorphic to a direct sum of sl(2,R) and Abelian algebra generated
by W1 and W2, which are equivalent to − ∂

∂T ,− ∂
∂y , respectively.

One can find a Darboux transform for the AµCH equation just in a way described in
[10, 21]). Instead taking this direction, we conclude the section by obtaining solutions to
the AµCH equation using the nonlocal symmetries. We consider solutions generated by the
flow of the vector field (4.11). The flow of (4.11) is governed by the system of equations

∂u

∂τ
= −(γ + λpuy)e2δ , (4.12)

∂p

∂τ
= 2λpγe2δ , (4.13)

Table 2. The commutation table of AµCH
nonlocal symmetry algebra.

W1 W2 W3 W4 W5

W1 0 0 0 0 0
W2 0 0 0 0 0
W3 0 0 0 −W4 W5

W4 0 0 W4 0 −2λ2W3

W5 0 0 −W5 2λ2W3 0
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∂γ

∂τ
= λγ2e2δ , (4.14)

∂δ

∂τ
= −λγe2δ + λ2β, (4.15)

∂β

∂τ
= λ2β2, (4.16)

with initial conditions u(y, T, 0) = u0, p(y, T, 0) = p0, γ(y, T, 0) = γ0, δ(y, T, 0) =
δ0, β(y, T, 0) = β0. Easy calculations produce

γ(τ) = γ0

(
1 +

τλγ0e
2δ0

1 − τλ2β0

)
, δ(τ) = δ0 − ln(1 − τλ2β0 + τλγ0e

2δ0), (4.17)

p(τ) = p0

(
1 +

τλγ0e
2δ0

1 − τλ2β0

)2

, β(τ) =
β0

1 − τλ2β0
. (4.18)

It remains to obtain u(τ) from (4.12). Note that in contrast to the ACH equation, here
it is not possible to get u(τ) directly from (4.2). To find u(τ) we need to solve the initial
value problem

∂u

∂τ
= −

(
γ(y, T, τ) + λp(y, T, τ)

∂u

∂y

)
e2δ(y,T,τ), u(y, T, 0) = u0(y, T ), (4.19)

where u0(y, T ) is a particular solution to the AµCH equation. Solving this initial value
problem, we will find one-parameter family of solutions to the AµCH equation.

Example 4.4. As we mentioned above µ(u) is a constant on solutions. Let us suppose that
µ(u) = λ > 0. It is not difficult to be verified that the system (4.2)–(4.5) has a particular
solution

β0 =
z

λ2(2 − z)
, γ0 = λ

(
2 + z

2 − z

)
, δ0 =

1
2

(
√

2λy + T ) − ln
2 + z

2
, (4.20)

p0 =
√

2λ
(

2 + z

2 − z

)2

, u0 = − 4
λ

z

(2 + z)2
, (4.21)

where z := λ2 exp (
√

2λy + T ). Then using (4.17) and (4.18) we find

β(y, T, τ) =
z

λ2[2 − z(τ + 1)]
, (4.22)

γ(y, T, τ) = λ

(
2 + z(τ + 1)
2 − z(τ + 1)

)
, (4.23)

δ(y, T, τ) =
1
2

ln
4z

λ2[2 + z(τ + 1)]
, (4.24)

p(y, T, τ) =
√

2λ
(

2 + z(τ + 1)
2 − z(τ + 1)

)2

. (4.25)
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Now with these γ(y, T, τ), δ(y, T, τ), p(y, T, τ) we solve the initial value problem (4.19),
where u0(y, T ) = u0 = − 4

λ
z

(2+z)2
. Some computations produce

u(y, T, τ) = − 4
λ

z(τ + 1)
[2 + z(τ + 1)]2

. (4.26)

Therefore, the functions p(y, T, τ), u(y, T, τ) from (4.25) and (4.26) provide one parametric
family of solution to the AµCH equation (4.2).
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[16] J. Lenells, G. Misio�lek and F. Tiğlay, Integrable evolution equations on spaces of tensor densities
and their Peakon solutions, Comm. Math. Phys. 299 (2010) 129–161.

1250025-16 426



September 14, 2012 16:33 WSPC/1402-9251 259-JNMP 1250025

On the Nonlocal Symmetries of the µCH Equation

[17] P. Olver, Application of Lie Groups to Differential Equations, 2nd edn. (Springer, New York,
1993).

[18] E. Reyes, Geometric integrability of the Camassa–Holm equation, Lett. Math. Phys. 59 (2002)
117–131.

[19] E. Reyes, Nonlocal symmetries and the Kaup–Kupershmidt equation, J. Math. Phys. 46 (2005)
073507.

[20] E. Reyes, Pseudo-potentials, nonlocal symmetries and integrability of some shallow water equa-
tions, Selecta Math. (NS.) 12 (2006) 241–270.

[21] J. Schiff, The Camassa–Holm equation: Loop group approach, Phys. D 121(1–2) (1998) 24–43.
[22] J.-F. Song and C.-Z. Qu, Geometric integrability of two-component Camassa–Holm and

Hunter–Saxton systems, Commun. Theor. Phys. 55 (2011) 955–959.
[23] M. Taylor, Partial Differential Equations III. Nonlinear Equations (Springer, New York, 1996).
[24] L. Yan, J.-F. Song and C.-Z. Qu, Nonlocal symmetries and geometric integrability of multi-

component Camassa–Holm and Hunter–Saxton systems, Chin. Phys. Lett. 28(5) (2011) 050204.
[25] Z. Zawistowski, Symmetries of integro-differential equations, Proc. Inst. Math. Natl. Acad. Sci.

Ukraine 23(1) (2002) 263–270.
[26] D. Zuo, A 2-component µ-Hunter–Saxton equation, Inverse Problems 26 (2011) 085003.

1250025-17 427




