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1. Introduction

1.1. General setting of the problem

Several years ago Ovsienko and Roger suggested the following problem. Let ρ : h → g be
an embedding of Lie algebras over a field k. A map ρ + tρ1 : h → g, where ρ1 ∈ Z1(h, g)
and t ∈ k, is a Lie algebra homomorphism up to quadratic terms in t. Such infinitesimal
deformations of the embedding are classified by linearly independent elements of H1(h, g),
see [13]. Let c1, . . . , cn be cocycles representing a basis of H1(h, g). The generic infinitesimal
deformation of the embedding h → g is of the form t1c1 + · · · + tncn. The obstructions
to integrability of infinitesimal deformations are described by elements of H2(h, g). The
idea of Ovsienko and Roger: one can canonically associate to the embedding ρ : h → g a
commutative associative algebra, whose generators are the nontrivial cohomology classes
in H1(h, g), and the relations between the generators correspond to the obstructions to
integrability of infinitesimal deformations, and they are given by elements of H2(h, g). We
thus get an algebra k[t]/I, where t = (t1, . . . , tn) and I is the ideal generated by the
coefficients of the obstructions. The algebra k[t]/I only depends on the triple ρ : h → g.
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For interesting examples (the deformations of the natural embeddings of the Lie algebra
vect(S1) into the Poisson algebra of the Laurent series on S1 and into the Lie algebra of
symbols of pseudodifferential operators on S1), see [14, 15]. One more example is considered
in [1].

Certain superizations of the constructions considered in [14, 15] were obtained in [2–6].
In [2, 3, 5], the authors described the infinitesimal deformations of the natural embedding
of the Lie superalgebra K(1|N) of contact vector fields on the supercircle S1|N into the
Lie superalgebra of symbols of pseudodifferential operators on S1|N for N = 1, 2 and 3,
respectively. In [5] the authors also discussed the difficulties in generalizing their result from
S1|3 to the case S1|N with N ≥ 4. In [6] and [4] the authors computed the obstructions to
integrability and classified nontrivial deformations of these embeddings for N = 1 and 2,
respectively.

Here we consider the infinitesimal deformations of the embedding of K(1|4) into the
Poisson superalgebra of symbols of pseudodifferential operators on S1|2.

1.2. Basic notions

The Lie superalgebra K(1|N) — the complexified space of contact vector fields on the
supercircle S1|N (with even variable t and odd variables ξ = (ξ1, . . . , ξr) and η = (η1, . . . , ηr)
if N = 2r plus one more variable θ if N = 2r + 1) with Laurent polynomials as coefficients
is characterized by its action on a contact 1-form. Let W (1|N) be the Lie superalgebra
of all superderivations of C[t, t−1] ⊗ Λ(N), where Λ(N) is the Grassmann algebra in N

indeterminates ξ, η (and, perhaps, θ). By definition,

K(1|N) = {D ∈W (1|N) |DΩN = fΩN for some f ∈ C[t, t−1] ⊗ Λ(N)},
where

ΩN = dt +
∑

1≤i≤r

(ξidηi + ηidξi) +

{
0 if N = 2r,

θdθ if N = 2r + 1

is a differential 1-form (see [8, Sec. 1; 10, Sec. 2]). Note that there are two types of super-
circles: one is associated with the trivial vector bundle over the circle, the other one with
the Whitney sum of the trivial bundle and the Möbius bundle; the supermanifold S1|N is
associated with the rank N trivial bundle over the circle. We consider not all Fourier images
of the smooth functions on S1|N , but only polynomial ones.

Superalgebras K(1|N) are simple, except for N = 4 when the derived superalgebra
K ′(1|4) = [K(1|4),K(1|4)] is simple. It is known to physicists as the (centerless) “big
N = 4 superconformal algebra”. Note that K(1|N) has no (nontrivial) central extensions if
N > 4, it has one central extension if N ≤ 3, while K(1|4) has two central extensions. The
Lie superalgebra K ′(1|4) is the only superconformal algebra which has three independent
central extensions, see [8, 11].

The superalgebra K(1|2N) can be realized as a subsuperalgebra of the Poisson super-
algebra P (2|2N) of symbols of pseudodifferential operators on S1|N , see [16, 18] and ref-
erences therein. K(1|2N + 1) has a similar realization, and it will be discussed in detail
in another paper. Note that the realization, which we consider here is different from the
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realization of K(1|N) in [2–6], where the authors consider the natural embedding of K(1|N)
into the Lie superalgebra of symbols of pseudodifferential operators on S1|N , which contracts
to the Poisson superalgebra P (2|2N).

It is a remarkable fact that if N = 2, one of the nontrivial central extensions K̂ ′(1|4)
also admits an embedding into the deformed Poisson superalgebra Ph(2|4) which contracts
to P (2|4). There exists a one-parameter family of irreducible representations of K̂ ′(1|4)
associated with this embedding in a superspace spanned by four fields (coefficients of the
monomials in ξ = (ξ1, ξ2)), see [16].

In this work, to compute H1(K ′(1|4), P (2|4)), we restrict an arbitrary 1-cocycle to a
certain subsuperalgebra Γ(σ) of K ′(1|4).

1.3. What is Γ(σ) := Γ(σ1, σ2, σ3)

Let σ1, σ2, σ3 ∈ C be such that σ1 + σ2 + σ3 = 0. Let Vi be a 2-dimensional vector space
and ψi be a nondegenerate skew-symmetric form on Vi for each i. Let Γ(σ)0̄ = sp(ψ1) ⊕
sp(ψ2) ⊕ sp(ψ3) and Γ(σ)1̄ = V1 ⊗ V2 ⊗ V3 with the natural Γ(σ)0̄-action on Γ(σ)1̄. Let
Pi : Vi × Vi → sp(ψi) be sp(ψi)-invariant bilinear mappings given by

Pi(xi, yi)zi = ψi(yi, zi)xi − ψi(zi, xi)yi, where xi, yi, zi ∈ Vi.

The commutator of two elements of Γ(σ)1̄ is given by the formula

[x1 ⊗ x2 ⊗ x3, y1 ⊗ y2 ⊗ y3] = σ1ψ2(x2, y2)ψ3(x3, y3)P1(x1, y1)

+σ2ψ1(x1, y1)ψ3(x3, y3)P2(x2, y2)

+σ3ψ1(x1, y1)ψ2(x2, y2)P3(x3, y3).

The superalgebra Γ(σ1, σ2, σ3) is simple if and only if
∏
σi �= 0, and Γ(σ1, σ2, σ3) ∼=

Γ(σ′1, σ′2, σ′3) if and only if the sets {σ′i} and {σi} are obtained from each other by a per-
mutation and multiplication of all elements of one set by a nonzero complex number, so we
can fix σ1 = 2 and set λ = σ2/σ3, so Γ(σ1, σ2, σ3) is a one-parameter family of deformations
of the Lie superalgebra osp(4|2).

Note that this family of Lie superalgebras has different notation in the literature. It was
introduced in [12] and denoted by Γ(A,B,C). In [9, p. 33] it is denoted by D(2, 1;λ).

For each α ∈ C, the Lie superalgebra Γ(2,−1− α,α− 1) can be realized as a subsuper-
algebra of the Poisson superalgebra P (2|4) (see [17, 18]):

Γ(2,−1 − α,α − 1) ⊂ K ′(1|4) ⊂ P (2|4).

In [18], the infinitesimal deformations of the embedding of Γ(2,−1−α,α−1) into P (2|4)
are described: dimH1(Γ(2,−1−α,α− 1), P (2|4)) = 2. To compute the obstructions to the
integrability of these infinitesimal deformations is an open problem.

Let Γ = Γ(2,−1,−1) ∼= osp(4|2). Let c be a 1-cochain for the K ′(1|4)-module P (2|4). Let
c|Γ be its restriction to Γ. We will show that dimH1(K ′(1|4), P (2|4)) = 3 and that the map
ϕ : c → c|Γ defines a surjective homomorphism ϕ : H1(K ′(1|4), P (2|4)) → H1(Γ, P (2|4)).
We will also show that dimH1(K(1|4), P (2|4)) = 3.
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2. Poisson Superalgebra P (2|4)
The Poisson algebra P of pseudodifferential symbols on the circle is formed by the formal
series

A(t, τ) =
n∑

−∞
ai(t)τ i,

where ai(t) ∈ C[t, t−1], and the even variable τ corresponds to ∂t, see [14, 15]. The Poisson
bracket is defined as follows:

{A(t, τ), B(t, τ)} = ∂τA(t, τ) · ∂tB(t, τ) − ∂tA(t, τ) · ∂τB(t, τ).

Let Λ(2N) = C[ξ1, . . . , ξN , η1, . . . , ηN ]. The Poisson superalgebra of pseudodifferential sym-
bols on S1|N is P (2|2N) = P ⊗ Λ(2N). The Poisson bracket is defined as follows:

{A,B} = ∂τA · ∂tB − ∂tA · ∂τB + (−1)p(A)+1
∑

1≤i≤N

(∂ξi
A · ∂ηiB + ∂ηiA · ∂ξi

B).

2.1. The superalgebra K(1|4)
Lie superalgebrasK(1|N) have different names and notation in the literature. Physicists call
these superalgebras “superconformal” by analogy with the Witt algebra witt = derC[t, t−1]
of conformal transformations. Physicists who studied superstrings were mainly interested
in nontrivial central extensions of “superconformal” superalgebras, and they used the term
“superconformal” for centrally extended superalgebras although it is not known if these
algebras are conformal in any sense.

In [8], it is explained to which extent the simple “superconformal” superalgebra is con-
formal, a not self-contradicting definition superizing the notion of “deep” algebras (due to
O. Mathieu), and the term “stringy” is suggested instead to them, and their “relatives”,
i.e. central extensions and algebras of derivations.

In [10], the author uses notation W(N), K(N) and K ′
(4).

Consider a Z-grading P (2|2N) =
⊕

i P(i)(2|2N), of an associative superalgebra,
defined by

deg t = deg ηi = deg τ = deg ξi = 1 for i = 1, . . . , N.

With respect to the Poisson super bracket we see that

{P(i)(2|2N), P(j)(2|2N)} ⊂ P(i+j−2)(2|2N).

Thus P(2)(2|2N) is a subsuperalgebra of P (2|2N), and P(2)(2|2N) ∼= K(1|2N); see [16, 18].
Note that K(1|4) is spanned by the following elements:

E1
i = ti+2τ−i, F 1

i = ti−2τ−iξ1ξ2η1η2, T 1
i = ti+1τ−iη1, T 2

i = ti+1τ−iη2,

E2
i = tiτ−iξ1ξ2, F 2

i = tiτ−iη1η2, T 3
i = ti+1τ−iξ1, T 4

i = ti+1τ−iξ2,

E3
i = tiτ−iξ1η2, F 3

i = tiτ−iξ2η1, D1
i = ti−1τ−iξ1ξ2η2 D2

i = ti−1τ−iξ1ξ2η1

H1
i = tiτ−iξ1η1, H2

i = tiτ−iξ2η2, D3
i = ti−1τ−iξ2η1η2, D4

i = ti−1τ−iξ1η1η2,
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where i ∈ Z. The Lie superalgebra K ′(1|4) is defined from the exact sequence

0 → K ′(1|4) → K(1|4) → CF 1
1 → 0.

2.2. Realization of Γ(σ) as a subsuperalgebra of P (2|4)
We proved in [18, Proposition 3.2] that for each α ∈ C there exists an embedding

Γ(2,−1 − α,α − 1)
ρα−→ K ′(1|4) ⊂ P (2|4).

The image Γα = ρα(Γ(2,−1 − α,α− 1)) is spanned by the following elements:

E1
α = t2, F 1

α = τ2 − 2αt−2ξ1ξ2η1η2, H1
α = tτ,

E2
α = ξ1ξ2, F 2

α = η1η2, H2
α = ξ1η1 + ξ2η2,

E3
α = ξ1η2, F 3

α = ξ2η1, H3
α = ξ1η1 − ξ2η2,

T 1
α = tη1, T 2

α = tη2, T 3
α = tξ1,

T 4
α = tξ2, D1

α = τξ1 + αt−1ξ1ξ2η2, D2
α = τξ2 − αt−1ξ1ξ2η1,

D3
α = τη1 + αt−1ξ2η1η2, D4

α = τη2 − αt−1ξ1η1η2.

We have also proved in [18, Theorem 4.1] that H1(Γα, P (2|4)) is spanned by the classes
of the 1-cocycles θ1 and θ2 given as follows:

θ1(F 1
α) = 2t−1τ, θ1(H1

α) = 1, θ1(D1
α) = t−1ξ1,

θ1(D2
α) = t−1ξ2, θ1(D3

α) = t−1η1, θ1(D4
α) = t−1η2,

θ2(E1
α) = tτ−1 − τ−2ξ1η1

− τ−2ξ2η2 − 2t−1τ−3ξ1ξ2η1η2, θ2(E2
α) = t−1τ−1ξ1ξ2,

θ2(F 1
α) = t−1τ + t−2ξ1η1

+ t−2ξ2η2 + 2(1 + α)t−3τ−1ξ1ξ2η1η2, θ2(H1
α) = 1,

θ2(F 2
α) = −t−1τ−1η1η2, θ2(T 3

α) = τ−1ξ1 − t−1τ−2ξ1ξ2η2,

θ2(T 4
α) = τ−1ξ2 + t−1τ−2ξ1ξ2η1, θ2(D1

α) = t−1ξ1,

θ2(D2
α) = t−1ξ2, θ2(D3

α) = −(1 + α)t−2τ−1ξ2η1η2,

θ2(D4
α) = (1 + α)t−2τ−1ξ1η1η2.

3. The First Cohomology of K(1|4)
Theorem 3.1. The space H1(K ′(1|4), P (2|4)) is spanned by the classes of the 1-cocycles
c1, c2 and c3 given as follows (i ∈ Z):

c1(E1
i ) = −iti+1τ−i−1, c1(F 1

i ) = −iti−3τ−i−1ξ1ξ2η1η2 (i �= 1),

c1(E2
i ) = −iti−1τ−i−1ξ1ξ2, c1(F 2

i ) = −iti−1τ−i−1η1η2,

c1(E3
i ) = −iti−1τ−i−1ξ1η2, c1(F 3

i ) = −iti−1τ−i−1ξ2η1,

c1(H1
i ) = −iti−1τ−i−1ξ1η1, c1(H2

i ) = −iti−1τ−i−1ξ2η2,
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c1(T 1
i ) = −itiτ−i−1η1, c1(T 2

i ) = −itiτ−i−1η2,

c1(T 3
i ) = −itiτ−i−1ξ1, c1(T 4

i ) = −itiτ−i−1ξ2,

c1(D1
i ) = −iti−2τ−i−1ξ1ξ2η2, c1(D2

i ) = −iti−2τ−i−1ξ1ξ2η1,

c1(D3
i ) = −iti−2τ−i−1ξ2η1η2, c1(D4

i ) = −iti−2τ−i−1ξ1η1η2,

c2(E1
i ) = ti+1τ−i−1

− (i+ 1)tiτ−i−2(ξ1η1 + ξ2η2), c2(F 1
i ) = −ti−3τ−i−1ξ1ξ2η1η2 (i �= 1),

c2(E2
i ) = ti−1τ−i−1ξ1ξ2, c2(F 2

i ) = −ti−1τ−i−1η1η2,

c2(H1
i ) = iti−2τ−i−2ξ1ξ2η1η2, c2(H2

i ) = iti−2τ−i−2ξ1ξ2η1η2,

c2(T 1
i ) =

(
i+

1
2

)
ti−1τ−i−2ξ2η1η2, c2(T 2

i ) = −
(
i+

1
2

)
ti−1τ−i−2ξ1η1η2,

c2(T 3
i ) = tiτ−i−1ξ1

−
(
i+

1
2

)
ti−1τ−i−2ξ1ξ2η2, c2(T 4

i ) = tiτ−i−1ξ2 +
(
i+

1
2

)
ti−1τ−i−2ξ1ξ2η1,

c2(D3
i ) = −ti−2τ−i−1ξ2η1η2, c2(D4

i ) = −ti−2τ−i−1ξ1η1η2,

c3(E1
i ) = i(i + 1)(i+ 2)ti−1τ−i−3ξ1ξ2η1η2, c3(F 1

i ) =
1

i− 1
ti−1τ−i+1 (i �= 1),

c3(E2
i ) = −iti−1τ−i−1ξ1ξ2, c3(F 2

i ) = −iti−1τ−i−1η1η2,

c3(E3
i ) = iti−1τ−i−1ξ1η2, c3(F 3

i ) = iti−1τ−i−1ξ2η1,

c3(H1
i ) = iti−1τ−i−1ξ2η2, c3(H2

i ) = −iti−1τ−i−1ξ1η1.

c3(T 1
i ) = i(i + 1)ti−1τ−i−2ξ2η1η2, c3(T 2

i ) = −i(i+ 1)ti−1τ−i−2ξ1η1η2,

c3(T 3
i ) = i(i + 1)ti−1τ−i−2ξ1ξ2η2, c3(T 4

i ) = −i(i+ 1)ti−1τ−i−2ξ1ξ2η1,

c3(D1
i ) = ti−1τ−iξ1, c3(D2

i ) = −ti−1τ−iξ2,

c3(D3
i ) = ti−1τ−iη1, c3(D4

i ) = −ti−1τ−iη2.

Proof. Consider gl(2) ∼= Span(ξiηj | i, j = 1, 2) ⊂ K ′(1|4). The diagonal subalgebra of gl(2)
consists of h = h1ξ1η1 +h2ξ2η2, where h1, h2 ∈ C. Let εi(h) = hi, where i = 1, 2. Obviously,
Span(ξ1, ξ2) is the standard gl(2)-module, Span(η1, η2) is its dual, ξi and ηi have weights εi
and −εi, respectively. Note that H1(K ′(1|4), P (2|4)) is a trivial gl(2)-module, since every
Lie (super)algebra acts trivially on its own cohomology (see [7, p. 28]). Hence we have to
compute only 1-cocycles of weight 0. Note that

H1(K ′(1|4), P (2|4)) =
⊕
k∈Z

H1(K ′(1|4), P(k)(2|4))

and

H1(K ′(1|4), P (2|4)(k)) =
⊕
n∈Z

H1,n(K ′(1|4), P(k)(2|4)),
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where the Z-grading of H1(K ′(1|4), P (2|4)(k)) is given by the conditions

deg t = 1, deg τ = −1, deg ξi = deg ηi = 0 for i = 1, 2.

Let c ∈ C1,n(K ′(1|4), P(k)(2|4)) be a 1-cochain of weight zero. Let θ = c|Γ be the
restriction of c to Γ. If c is a cocycle (a coboundary), then θ is a cocycle (a coboundary).
It follows from the description of H1(Γ, P (2|4)) that if k �= 0 or n �= 0 and θ is a 1-cocycle,
then it is a coboundary. Let k = 0 and n = 0.

(1) Suppose that c|Γ = θ1. Then

c(E1−2) = 2t−1τ, c(E1−1) = 1, c(E1
0) = 0,

c(T 1
−1) = t−1η1, c(T 2

−1) = t−1η2, c(T 3
−1) = t−1ξ1, c(T 4

−1) = t−1ξ2.
(3.1)

Note that

c(E1
i ) = ai,1t

i+1τ−i−1 + ai,2t
iτ−i−2ξ1η1 + ai,3t

iτ−i−2ξ2η2

+ ai,4t
i−1τ−i−3ξ1ξ2η1η2, (3.2)

for some ai,k ∈ C. Note also that

{E1
i , E

1
j } = 2(j − i)E1

i+j+1.

The cocycle equation reads: dc = 0, where for (homogeneous) X,Y ∈ K ′(1|4) we have

dc(X,Y ) =



{X, c(Y )} + {Y, c(X)} − c({X,Y }) if p(X) = p(Y ) = 1̄,

{X, c(Y )} − {Y, c(X)} − c({X,Y }) if p(X) = 0̄, p(Y ) = 1̄,

{X, c(Y )} − {Y, c(X)} − c({X,Y }) if p(X) = p(Y ) = 0̄.

Then from

(dc)(E1
i , E

1
j ) = {E1

i , c(E
1
j )} − {E1

j , c(E
1
i )} − c({E1

i , E
1
j }) = 0

we have

(j − i)ai+j+1,1 = (j + 1)aj,1 − (i+ 1)ai,1, (j − i)ai+j+1,2 = (i+ j + 2)(aj,2 − ai,2),

(j − i)ai+j+1,3 = (i+ j + 2)(aj,3 − ai,3), (j − i)ai+j+1,4 = (2i+ j + 3)aj,4

− (i+ 2j + 3)ai,4.

(3.3)

Then from Eq. (3.1) it follows that ai,1 = −i for all i, and ai,k = 0 for all i if k = 2, 3,
and also ai,4 = ai(i + 1)(i + 2) for all i and an arbitrary a ∈ C. Assume that a = 0.
We will show that then c = c1. Note that if c is an arbitrary 1-cocycle for the K ′(1|4)-
module P (2|4) such that c|Γ = θ1, then (c − c1)|Γ = 0, and it follows from part (3) of
the proof that c− c1 is a multiple of c3.

To compute c, we will use the Hochschild–Serre spectral sequence with respect to
the subalgebra Γ. Recall the definition of this spectral sequence (see [7, pp. 40–44]).
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We consider the following filtration on the space of cochains Ck = Ck(K ′(1|4), P (2|4)):
F 0Ck = Ck ⊃ F 1Ck ⊃ · · · ⊃ F pCk ⊃ · · · ⊃ F k+1Ck = 0,

where

F pCk = {c ∈ Ck | c(X1, . . . ,Xi, . . . ,Xk) = 0 if X1, . . . ,Xk+1−p ∈ Γ},
where 0 ≤ p ≤ k + 1. Set

Zp,q
r = {c ∈ F pCp+q | dc ∈ F p+rCp+q+1}, Ep,q

r = Zp,q
r /(Zp+1,q−1

r−1 + dZp−r+1,q+r−2
r−1 ).

Notice that the differential d induces the differentials

dp,q
r : Ep,q

r → Ep+r,q−r+1
r

and Ep,q
r+1 = Hp,q(Er), so that

Hk(K ′(1|4), P (2|4)) =
⊕

p+q=k

Ep,q
∞ .

Note that

Ep,q
1 (K ′(1|4), P (2|4)) = Hq(Γ,Hom(Λp(K ′(1|4)/Γ), P (2|4))),

see [7, p. 40]. If k = 1, then

H1(K ′(1|4), P (2|4)) = E0,1
∞ ⊕ E1,0

∞ .

Note that c ∈ E0,1
1 , and

0
d−1,1
1−→ E0,1

1

d0,1
1−→ E1,1

1 , 0
d−2,2
2−→ E0,1

2

d0,1
2−→ E2,0

2 , 0
d−3,3
3−→ E0,1

3

d0,1
3−→ 0.

The condition c ∈ E0,1
2 requires that (d0,1

1 c)(X,Y ) = 0, if Y ∈ Γ. Note that

(d0,1
1 c)(E1

i , T
k
−1) = {E1

i , c(T
k
−1)} − {T k

−1, c(E
1
i )} + (i+ 2)c(T k

i ) = 0 for k = 1, 2, 3, 4

(3.4)

implies that

c(T k
i ) = −itiτ−i−1ηk if k = 1, 2, c(T k+2

i ) = −itiτ−i−1ξk if k = 1, 2.

Since

(d0,1
1 c)(T 3

i , T
4
−1) = {T 3

i , c(T
4
−1)} + {T 4

−1, c(T
3
i )} + (i+ 1)c(E2

i ) = 0, (3.5)

we have

c(E2
i ) = −iti−1τ−i−1ξ1ξ2.

Since

(d0,1
1 c)(T 1

i , T
2
−1) = {T 1

i , c(T
2
−1)} + {T 2

−1, c(T
1
i )} + (i+ 1)c(F 2

i ) = 0,

we derive c(F 2
i ) = −iti−1τ−i−1η1η2.
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Since

(d0,1
1 c)(E2

i , T
k
−1) = {E2

i , c(T
k
−1)} − {T k

−1, c(E
2
i )} + ic(D3−k

i ) ± c(T 5−k
i−1 ) = 0 if k = 1, 2,

we have

c(D3−k
i ) = −iti−2τ−i−1ξ1ξ2ηk, if k = 1, 2.

Similarly, from (d0,1
1 c)(F 2

i , T
k+2
−1 ) = 0 we derive

c(D5−k
i ) = −iti−2τ−i−1ξkη1η2, if k = 1, 2.

Next, since

(d0,1
1 c)(T 3

i , T
2
−1) = {T 3

i , c(T
2
−1)} + {T 2

−1, c(T
3
i )} + (i+ 1)c(E3

i ) = 0,

it follows that c(E3
i ) = −iti−1τ−i−1ξ1η2, and the condition (d0,1

1 c)(T 4
i , T

1−1) = 0 implies
c(F 3

i ) = −iti−1τ−i−1ξ2η1. From the condition

(d0,1
1 c)(T 1

i , T
3
−1) = {T 1

i , c(T
3
−1)} + {T 3

−1, c(T
1
i )} + (i+ 1)c(H1

i ) − c(E1
i−1) = 0,

it follows that c(H1
i ) = −iti−1τ−i−1ξ1η1, and from the condition (d0,1

1 c)(T 4
i , T

2
−1) = 0,

it follows that c(H2
i ) = −iti−1τ−i−1ξ2η2. Finally, the condition

(d0,1
1 c)(D3

i , T
3
−1) = {D3

i , c(T
3
−1)} + {T 3

−1, c(D
3
i )} + (1 − i)c(F 1

i ) + c(H2
i−1) = 0

implies that if i �= 1, then c(F 1
i ) = −iti−3τ−i−1ξ1ξ2η1η2. Thus c = c1, and since

d0,1
1 c = 0, then c1 ∈ E0,1

2 . Examination of the higher differential d0,1
2 shows that c1 ∈

E0,1
3 = E0,1∞ .

(2) Suppose that c′ is a 1-cocycle for the K ′(1|4)-module P (2|4) whose restriction to Γ
coincides with the 1-cocycle θ2. Let c = c′ + 1

2dc0, where c0 = t−2τ−2ξ1ξ2η1η2. Then

c(E1
0 ) = tτ−1 − τ−2(ξ1η1 + ξ2η2), c(E1−2) = t−1τ + t−2(ξ1η1 + ξ2η2), c(E1−1) = 1,

(3.6)

c(T 1−1) = −1
2
t−2τ−1ξ2η1η2, c(T 2−1) =

1
2
t−2τ−1ξ1η1η2,

c(T 3
−1) = t−1ξ1 +

1
2
t−2τ−1ξ1ξ2η2, c(T 4

−1) = t−1ξ2 − 1
2
t−2τ−1ξ1ξ2η1.

(3.7)

Let c(E1
i ) be given by (3.2). Then Eqs. (3.3) and (3.6) imply ai,1 = 1, ai,2 = ai,3 =

−i− 1 for all i, and ai,4 = ai(i + 1)(i + 2) for all i and an arbitrary a ∈ C.
Assume that a = 0. We will show that then c = c2. Hence c′ = c2 − 1

2dc0. Note
that if c′ is an arbitrary 1-cocycle for the K ′(1|4)-module P (2|4) such that c′|Γ = θ2,
then (c′ − c2 + 1

2dc0)|Γ = 0, and it follows from part (3) of the proof that c′ − c2 +
1
2dc0 is a multiple of c3. Note that c ∈ E0,1

1 . The condition c ∈ E0,1
2 requires that
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(d0,1
1 c)(X,Y ) = 0, if Y ∈ Γ. Equations (3.4) and (3.7) imply

c(T k
i ) = ±

(
i+

1
2

)
ti−1τ−i−2ξ3−kη1η2 if k = 1, 2,

c(T k+2
i ) = tiτ−i−1ξk ∓

(
i+

1
2

)
ti−1τ−i−2ξ1ξ2η3−k if k = 1, 2.

From Eq. (3.5) we derive

c(E2
i ) = ti−1τ−i−1ξ1ξ2.

Similarly, the condition (d0,1
1 c)(T 1

i , T
2−1) = 0 implies that c(F 2

i ) = −ti−1τ−i−1η1η2.
From the condition (d0,1

1 c)(E2
i , T

k−1) = 0 we have

c(D3−k
i ) = 0 if k = 1, 2.

From the condition (d0,1
1 c)(F 2

i , T
k+2
−1 ) = 0 we derive

c(D5−k
i ) = −ti−2τ−i−1ξkη1η2 if k = 1, 2.

Next, (d0,1
1 c)(T 3

i , T
2−1) = 0 implies that c(E3

i ) = 0, and (d0,1
1 c)(T 4

i , T
1−1) = 0 implies

that c(F 3
i ) = 0. Since (d0,1

1 c)(T 1
i , T

3
−1) = 0, it follows that c(H1

i ) = iti−2τ−i−2ξ1ξ2η1η2,

and since (d0,1
1 c)(T 4

i , T
2−1) = 0, it follows that c(H2

i ) = iti−2τ−i−2ξ1ξ2η1η2. Finally,
(d0,1

1 c)(D3
i , T

3−1) = 0 implies that if i �= 1, then c(F 1
i ) = −ti−3τ−i−1ξ1ξ2η1η2. Thus

c = c2, and since d0,1
1 c = 0, then c1 ∈ E0,1

2 . Examination of the higher differential d0,1
2

shows that c2 ∈ E0,1
3 = E0,1∞ .

(3) Suppose that c is a 1-cocycle for the K ′(1|4)-module P (2|4) such that c|Γ = 0. Then

c(E1
−2) = c(E1

−1) = c(E1
0) = 0, c(T k

−1) = 0 for k = 1, . . . , 4. (3.8)

Let c(E1
i ) be given by Eq. (3.2). It follows from Eqs. (3.3) and (3.8) that ai,k = 0 for

all i and k = 1, 2, 3 and ai,4 = ai(i + 1)(i + 2) for all i and an arbitrary a ∈ C. Note
that c ∈ Z1,0

1 , and

E0,0
1

d0,0
1−→ E1,0

1

d1,0
1−→ E2,0

1 , 0
d−1,1
2−→ E1,0

2

d1,0
2−→ 0.

Note also that

E1,0
1 (K ′(1|4), P (2|4)) = H0(Γ,Hom((K ′(1|4)/Γ), P (2|4))).

The condition c ∈ E1,0
1 requires that dc(X,Y ) = 0, if Y ∈ Γ. Since dc(E1

i , T
k−1) = 0, it

follows that

c(T k
i ) = ±ai(i+ 1)ti−1τ−i−2ξ3−kη1η2 if k = 1, 2,

c(T k+2
i ) = ±ai(i+ 1)ti−1τ−i−2ξ1ξ2η3−k if k = 1, 2.

The condition dc(T 3
i , T

4−1) = 0 implies that c(E2
i ) = −aiti−1τ−i−1ξ1ξ2, and the con-

dition dc(T 1
i , T

2−1) = 0 implies that c(F 2
i ) = −aiti−1τ−i−1η1η2. From dc(E2

i , T
k−1) = 0
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we have

c(D3−k
i ) = ∓ati−1τ−iξ3−k if k = 1, 2,

and from dc(F 2
i , T

k+2
−1 ) = 0 we derive

c(D5−k
i ) = ∓ati−1τ−iη3−k if k = 1, 2.

Next, dc(T 3
i , T

2−1) = 0 implies that c(E3
i ) = aiti−1τ−i−1ξ1η2, and dc(T 4

i , T
1−1) = 0

implies that c(F 3
i ) = aiti−1τ−i−1ξ2η1. From dc(T 1

i , T
3
−1) = 0 we see that c(H1

i ) =
aiti−1τ−i−1ξ2η2 and from dc(T 4

i , T
2−1) = 0 we see that c(H2

i ) = −aiti−1τ−i−1ξ1η1.
Finally, dc(D3

i , T
3−1) = 0 implies that if i �= 1, then c(F 1

i ) = a
i−1t

i−1τ−i+1. Thus c = ac3,
and c ∈ E1,0

1 . Examination of the higher differential d1,0
1 shows that ac3 ∈ E1,0

2 = E1,0∞ .

Corollary 3.2. Let c ∈ C1(K ′(1|4), P (2|4)). The map ϕ : c → c|Γ defines a surjective
homomorphism ϕ : H1(K ′(1|4), P (2|4)) → H1(Γ, P (2|4)).
Corollary 3.3. The space H1(K(1|4), P (2|4)) is spanned by the classes of 1-cocycles c̄1, c̄2
and c̄3, where

c̄k|K ′(1|4) = ck, c̄k(F 1
1 ) = −t−2τ−2ξ1ξ2η1η2 for k = 1, 2, and

c̄3|K ′(1|4) = 0, c̄3(F 1
1 ) = 1.

Proof. Note that c̄3 is a 1-cocycle. In fact, since {F 1
1 ,X} ∈ K ′(1|4), it follows that

dc̄3(F 1
1 ,X) = {F 1

1 , c̄3(X)} − {X, c̄3(F 1
1 )} − c̄3({F 1

1 ,X}) = 0 for any element X ∈ K(1|4).
Let c be a 1-cocycle for the K(1|4)-module P (2|4). Note that

c(F 1
1 ) = b1,1 + b1,2t

−1τ−1ξ1η1 + b1,3t
−1τ−1ξ2η2 + b1,4t

−2τ−2ξ1ξ2η1η2 (3.9)

for some b1,i ∈ C. Assume that c|Γ = θ1 so that c|K ′(1|4) = c1 or (c − 1
2dc0)|Γ = θ2, where

c0 = t−2τ−2ξ1ξ2η1η2, so that c|K ′(1|4) = c2. Then from

dc(F 1
1 , T

n
i ) = {F 1

1 , c(T
n
i )} − {T n

i , c(F
1
1 )} − c({F 1

1 , T
n
i }) = 0 for n = 1, . . . , 4 (3.10)

we have b1,2 = b1,3 = 0 and b1,4 = −1. Hence c = c̄k + b1,1c̄3 for k = 1, 2. Finally, if c|Γ = 0,
and hence c|K ′(1|4) = ac3, where a ∈ C, then Eqs. (3.9) and (3.10) imply that if n = 1, then
b1,2 = a, b1,3 = b1,4 = 0, and if n = 2, then b1,3 = a, b1,2 = b1,4 = 0. Thus, a = 0. Hence,
c|K ′(1|4) = 0 and c = b1,1c̄3.
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