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We show that a method presented in [S. L. Trubatch and A. Franco, Canonical Procedures for Pop-
ulation Dynamics, J. Theor. Biol. 48 (1974) 299–324] and later in [G. H. Paine, The development
of Lagrangians for biological models, Bull. Math. Biol. 44 (1982) 749–760] for finding Lagrangians
of classic models in biology, is actually based on finding the Jacobi Last Multiplier of such mod-
els. Using known properties of Jacobi Last Multiplier we show how to obtain linear Lagrangians
of systems of two first-order ordinary differential equations and nonlinear Lagrangian of the cor-
responding single second-order equation that can be derived from them, even in the case where
those authors failed such as the host-parasite model. Also we show that the Lagrangians of certain
second-order ordinary differential equations derived by Volterra in [V. Volterra, Calculus of varia-
tions and the logistic curve, Hum. Biol. 11 (1939) 173–178] are particular cases of the Lagrangians
that can be obtained by means of the Jacobi Last Multiplier. Actually we provide more than one
Lagrangian for those Volterra’s equations.

Keywords: Jacobi Last Multiplier; Lagrangian; population dynamics.

PACS: 02.30.Hq, 02.30.Xx, 45.20.Jj, 87.23.Cc

1. Introduction

In 1974, nearly forty years ago, Trubatch and Franco published a paper [42] in which they
presented an explicit algorithm for constructing Lagrangians of some biological systems,
namely the classical Volterra–Lotka’s model [48], the Gompertz’s model [10], the Verhulst’s
model [44], and an host-parasite model [25].
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Their method for finding a Lagrangian of a second-order equation is, as they state, that
by Havas [13] who based his method on Helmholtz’s work [14]. Neither Helmholtz nor Havas
ever acknowledged the use of the Jacobi Last Multiplier in order to find Lagrangians of a
second-order equation [19],a [50].

Indeed, the method by Trubatch and Franco is based on finding a function f that satisfies
their Eq. (6) and is nothing else than the Jacobi Last Multiplier. Because they did not know
the properties of the Jacobi Last Multiplier they were unable to find a Lagrangian for the
host-parasite model. In fact they found just a linear Lagrangian of this model and stated
explicitly “In general, there is no relation between the linear Lagrangians of this section
and the nonlinear ones of the previous section for the same model systems.” In this paper
we prove that they were wrong since a relation exists and it is given by means of the Jacobi
Last Multiplier.

It is interesting to note that the method by Trubatch and Franco for finding linear
Lagrangians is that introduced by Kerner [23]. Again Trubatch and Franco did not realize
that their key-function W that satisfies their Eq. (50a) is nothing else than the Jacobi Last
Multiplier.b

Eight years later, in 1982, Paine [37] published a paper on the same subject and based
his work on the method introduced by Kerner [23], and cited Helmholtz’s work [14] as well.
Of course, the method proposed by Paine is based on a function g that is actually the Jacobi
Last Multiplier of the two-dimensional systems that he studies.

Paine posed the following questions: “What are the criteria that a system of ordinary
differential equations must satisfy to assure the existence of a Lagrangian?” (omissis) “Does
there exist an algorithm that enables one to construct the Lagrangian from the dynamical
equations?”

Strangely enough, he did not mention the previous work by Trubatch and Franco [42].
Paine’s examples are the Volterra–Lotka’s model similar to that studied by Trubatch and
Franco [42], and two trivial linear systems of two first-order equations.

In this paper we show that recognizing that the key-function for finding a Lagrangian is
the Jacobi Last Multiplier permits to obtain all the results in [42] in a simple and complete
way and furthermore where Trubatch and Franco fail, namely the model of host-parasite,
Jacobi Last Multiplier prevails by yielding a suitable Lagrangian.

Also we show that the Lagrangians of certain second-order ordinary differential equations
derived by Volterra in [49] are particular cases of the Lagrangians that can be obtained by
means of the Jacobi Last Multiplier. Indeed here we provide more than just one Lagrangian
for those Volterra’s equations thanks to the link between Lie symmetries and Jacobi Last
Multiplier that was found by Lie himself [26].

The paper is organized in the following way. In Sec. 2 we recall the properties of the
Jacobi Last Multiplier, its connection with Lagrangians of second-order equations [19, 50],
and that with the Lagrangians of systems of two first-order equations that we have found;
also Noether’s theorem [30] is presented, and the link between Lie symmetries and Jacobi
Last Multiplier is recalled [26, 27, 5]. In Sec. 3 we apply the method of the Jacobi Last

aAn English translation is now available [20].
bActually Havas and Kerner never acknowledged each other work, although, at least once, they were pre-
senting at the same meeting in the same Section [12, 22].
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Multiplier to the same systems as given in [42], and their equivalent single second-order
equations. In Sec. 4 we apply the method of the Jacobi Last Multiplier to the second-order
equations considered by Volterra in [49]. Section 5 contains some final remarks.

2. The Method by Jacobi

The method of the Jacobi Last Multiplierc [16–19] provides a means to determine all the
solutions of the partial differential equation

Af =
n∑

i=1

ai(x1, . . . , xn)
∂f

∂xi
= 0 (2.1)

or its equivalent associated Lagrange’s system

dx1

a1
=

dx2

a2
= · · · =

dxn

an
. (2.2)

In fact, if one knows the Jacobi Last Multiplier and all but one of the solutions, namely
n − 2 solutions, then the last solution can be obtained by a quadrature. The Jacobi Last
Multiplier M is given by

∂(f, ω1, ω2, . . . , ωn−1)
∂(x1, x2, . . . , xn)

= MAf, (2.3)

where

∂(f, ω1, ω2, . . . , ωn−1)
∂(x1, x2, . . . , xn)

= det




∂f
∂x1

· · · ∂f
∂xn

∂ω1
∂x1

∂ω1
∂xn

...
...

∂ωn−1

∂x1
· · · ∂ωn−1

∂xn




= 0 (2.4)

and ω1, . . . , ωn−1 are n − 1 solutions of (2.1) or, equivalently, first integrals of (2.2) inde-
pendent of each other. This means that M is a function of the variables (x1, . . . , xn) and
depends on the chosen n−1 solutions, in the sense that it varies as they vary. The essential
properties of the Jacobi Last Multiplier are:

(a) If one selects a different set of n − 1 independent solutions η1, . . . , ηn−1 of Eq. (2.1),
then the corresponding last multiplier N is linked to M by the relationship:

N = M
∂(η1, . . . , ηn−1)
∂(ω1, . . . , ωn−1)

.

cMany authors have dealt with the Jacobi Last Multiplier, and an up to date (2004) nearly complete list
can be found in [31]. It ranges from the 1871-paper by Laguerre [24] and the seminal 1874-paper by Lie
[26] to the 2003-review paper by Berrone and Giacomini [4]. A missed reference in [31] is Sec. 2.11 in the
2001-book by Goriely [11].
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(b) Given a nonsingular transformation of variables

τ : (x1, x2, . . . , xn) → (x′
1, x

′
2, . . . , x

′
n),

then the last multiplier M ′ of A′F = 0 is given by:

M ′ = M
∂(x1, x2, . . . , xn)
∂(x′

1, x
′
2, . . . , x

′
n)

,

where M obviously comes from the n − 1 solutions of AF = 0 which correspond to
those chosen for A′F = 0 through the inverse transformation τ−1.

(c) One can prove that each multiplier M is a solution of the following linear partial
differential equation:

n∑
i=1

∂(Mai)
∂xi

= 0; (2.5)

vice versa every solution M of this equation is a Jacobi Last Multiplier.
(d) If one knows two Jacobi Last Multipliers M1 and M2 of Eq. (2.1), then their ratio is

a solution ω of (2.1), or, equivalently, a first integral of (2.2). Naturally the ratio may
be quite trivial, namely a constant. Viceversa the product of a multiplier M1 times any
solution ω yields another last multiplier M2 = M1ω.

Since the existence of a solution/first integral is consequent upon the existence of sym-
metry, an alternative formulation in terms of symmetries was provided by Lie [26, 27]. A
clear treatment of the formulation in terms of solutions/first integrals and symmetries is
given by Bianchi [5]. If we know n − 1 symmetries of (2.1)/(2.2), say

Γi =
n∑

j=1

ξij(x1, . . . , xn)∂xj , i = 1, n − 1, (2.6)

a Jacobi Last Multiplier is given by M = ∆−1, provided that ∆ �= 0, where

∆ = det




a1 · · · an

ξ1,1 ξ1,n

...
...

ξn−1,1 · · · ξn−1,n




. (2.7)

There is an obvious corollary to the results of Jacobi mentioned above. In the case that
there exists a constant multiplier, the determinant is a first integral. This result is potentially
very useful in the search for first integrals of systems of ordinary differential equations. In
particular, if each component of the vector field of the equation of motion is missing the
variable associated with that component, i.e. ∂ai/∂xi = 0, the last multiplier is a constant,
and any other Jacobi Last Multiplier is a first integral.

Another property of the Jacobi Last Multiplier is its (almost forgotten) relationship
with the Lagrangian, L = L(t, x, ẋ), for any second-order equation

ẍ = φ(t, x, ẋ) (2.8)
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i.e. [19, Lecture 10; 50]

M =
∂2L

∂ẋ2
, (2.9)

where M = M(t, x, ẋ) satisfies the following equation

d
dt

(log M) +
∂φ

∂ẋ
= 0. (2.10)

Then Eq. (2.8) becomes the Euler–Lagrangian equation:

− d
dt

(
∂L

∂ẋ

)
+

∂L

∂x
= 0. (2.11)

The proof is given by taking the derivative of (2.11) by ẋ and showing that this yields (2.10).
If one knows a Jacobi Last Multiplier, then L can be obtained by a double integration, i.e.:

L =
∫ (∫

M dẋ

)
dẋ + �1(t, x)ẋ + �2(t, x), (2.12)

where �1 and �2 are functions of t and x which have to satisfy a single partial differential
equation related to (2.8) [33]. As it was shown in [33], �1, �2 are related to the gauge function
F = F (t, x). In fact, we may assume

�1 =
∂F

∂x
,

�2 =
∂F

∂t
+ �3(t, x),

(2.13)

where �3 has to satisfy the mentioned partial differential equation and F is obviously
arbitrary.

In [42] it was shown that a system of two first-order ordinary differential equations

u̇1 = φ1(t, u1, u2),

u̇2 = φ2(t, u1, u2)
(2.14)

always admits a linear Lagrangian of the form

L = U1(t, u1, u2)u̇1 + U2(t, u1, u2)u̇2 − V (t, u1, u2). (2.15)

The key is a function W such thatd

W = −∂U1

∂u2
=

∂U2

∂u1
(2.16)

and

d
dt

(log W ) +
∂φ1

∂u1
+

∂φ2

∂u2
= 0. (2.17)

dIn [42] this formula contains an inessential multiplicative constant, namely the integer 2.
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It is obvious that Eq. (2.17) is Eq. (2.5) of the Jacobi Last Multiplier for system (2.14).
Therefore once a Jacobi Last Multiplier M(t, u1, u2) has been found, then a Lagrangian of
system (2.14) can be obtained by two integrations, i.e.:

L =
(∫

M du1

)
u̇2 −

(∫
M du2

)
u̇1 + g(t, u1, u2) +

d
dt

G(t, u1, u2), (2.18)

where g(t, u1, u2) satisfies two linear differential equations of first-order that can be always
integrated, and G(t, u1, u2) is the arbitrary gauge functione that should be taken into con-
sideration in order to correctly apply Noether’s theorem [30]. If a Noether’s symmetry

Γ = ξ(t, u1, u2)∂t + η1(t, u1, u2)∂u1 + η2(t, u1, u2)∂u2 (2.19)

exists for the Lagrangian L in (2.18) then a first integral of system (2.14) is

−ξL − ∂L

∂u̇1
(η1 − ξu̇1) − ∂L

∂u̇2
(η2 − ξu̇2) + G(t, u1, u2). (2.20)

We underline that u̇1 and u̇2 always disappear from the expression of the first integral (2.20)
thanks to the linearity of the Lagrangian (2.18) and formula (2.18).

3. Some Biological Examples from [42]

3.1. Volterra–Lotka’s model

The Volterra–Lotka’s model considered in [42] is the following:

ẇ1 = w1(a + bw2),

ẇ2 = w2(A + Bw1).
(3.1)

In order to simplify system (3.1) we follow [42] and introduce the change of variables

w1 = exp(r1), w2 = exp(r2) (3.2)

and then system (3.1) becomes

ṙ1 = b exp(r2) + a,

ṙ2 = B exp(r1) + A.
(3.3)

An obvious Jacobi Last Multiplier of this system is a constant, say 1, and consequently by
means of (2.18) a linear Lagrangian of system (3.3) is

L[r] = r1ṙ2 − r2ṙ1 + 2(−B exp(r1) + b exp(r2) − Ar1 + ar2) +
d
dt

G(t, r1, r2) (3.4)

which (minus the gauge function G) was found in [42]. Moreover we can derive a Jacobi
Last Multiplier for the Volterra–Lotka system (3.1) by using property (b). In fact we have

eThe gauge function was not taken into consideration in [42].
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to calculate the Jacobian of the transformation (3.2) between (w1, w2) and (r1, r2) and this
yields a Jacobi Last Multiplier of system (3.1), i.e.

M[w] = M[r]
∂(r1, r2)
∂(w1, w2)

=

∣∣∣∣∣
1

w1
0

0 1
w2

∣∣∣∣∣ =
1

w1w2
. (3.5)

Finally, formula (2.18) yields a linear Lagrangian of system (3.1)

L[w] = log(w1)
ẇ2

w2
− log(w2)

ẇ1

w1
+ 2(−A log(w1)

+ a log(w2) − Bw1 + bw2) +
d
dt

G(t, w1, w2). (3.6)

This Lagrangian was not obtained in [42]. We note that (3.1) is autonomous and therefore
invariant under time translation, namely ∂t. It is easy to show that the Lagrangian L[w] in
(3.6) yields a time-invariant first integral through Noether’s theorem [30], i.e.:

−L[w] + ẇ1

∂L[w]

∂ẇ1
+ ẇ2

∂L[w]

∂ẇ2
= A log(w1) − a log(w2) + Bw1 − bw2 = const. (3.7)

We may mention that in 1998 a particular case of the Volterra–Lotka’s model (3.1) was
investigated with the purpose of finding its possible underlying Lagrangian structure [9].
The author was unaware of Trubatch and Franco’s paper [42]: his Lagrangian is a particular
case of the Lagrangian (3.6).

Following [42] we can transform system (3.3) into an equivalent second-order ordinary
differential equation by eliminating, say, r1. In fact from the second equation in (3.3) one
gets

r1 = log
(

ṙ2 − A

B

)
, (3.8)

and the equivalent second-order equation in r2 is the following

r̈2 = −(b exp(r2) + a)(A − ṙ2). (3.9)

A Jacobi Last Multiplier for this equation has to satisfy Eq. (2.10), i.e.:

d
dt

(log M) + b exp(r2) + a = 0 (3.10)

namely

d
dt

(log M) + ṙ1 = 0, (3.11)

by taking into account the first equation in (3.3), and consequently we get the following
Jacobi Last Multiplier for Eq. (3.9):

M1 = exp(−r1) =
B

ṙ2 − A
, (3.12)
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the last equality thanks to (3.8). Then a Lagrangian can be obtained by a double integration
as in (2.12), i.e.

L1 = B((ṙ2 − A) log(A − ṙ2) − ṙ2 + b exp(r2) + ar2) +
d
dt

F (t, r2). (3.13)

The same Lagrangian (minus the gauge function F ) was obtained in [42]. In order to show
the power of the Jacobi’s method we derive at least another Lagrangian for Eq. (3.9).

We note that (3.9) is autonomous and therefore invariant under time translation. It is
easy to show that the Lagrangian L1 in (3.13) yields a time-invariant first integral, through
Noether’s theorem [30], i.e.:

I1 = −ar2 + ṙ2 + A log(A − ṙ2) − b exp(r2) = const. (3.14)

As a consequence of the property (d) of the Jacobi last multiplier, the product of a Jacobi
last multiplier M1 as in (3.12) and a first integral I1 as in (3.14) of Eq. (3.9) yields another
Jacobi last multiplier, i.e.

M2 = M1I1 =
B

A − ṙ2
(ar2 − ṙ2 − A log(A − ṙ2) + b exp(r2)) (3.15)

and therefore we can obtain a second Lagrangian of Eq. (3.9), i.e.

L2 = −B

2
((A log(A − ṙ2) − 2ar2)(A − ṙ2) log(A − ṙ2)

− (2ar2 + ṙ2)ṙ2 − 2b exp(r2)((A − ṙ2) log(A − ṙ2) + ṙ2)

+ b2 exp(2r2) + 2abr2 exp(r2) + a2r2
2) +

d
dt

F (t, r2). (3.16)

This Lagrangian yields another time invariant first integral which is just the square of I1

in (3.14).
We can keep using property (d) to derive more and more Jacobi last multipliers and

therefore Lagrangians of Eq. (3.9). In fact other Jacobi last multipliers can be obtained by
simply taking any function of the first integral I1 in (3.14) and multiplying it for either M1

in (3.12) or M2 in (3.15), and so on ad libitum.

3.2. Gompertz’s model

The Gompertz’s model considered in [42] is the followingf :

ẇ1 = w1

(
A log

(
w1

m1

)
+ Bw2

)
,

ẇ2 = w2

(
a log

(
w2

m2

)
+ bw1

)
.

(3.17)

In order to simplify system (3.17) we follow [42] and introduce the change of variables

w1 = m1 exp(r1), w2 = m2 exp(r2) (3.18)

f In [42] some parentheses are missing: an obvious misprint.
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and then system (3.17) becomes

ṙ1 = m2B exp(r2) + Ar1,

ṙ2 = m1b exp(r1) + ar2.
(3.19)

It is easy to derive a Jacobi Last Multiplier for this system from (2.5), i.e.

d
dt

log(M[r]) = −(a + A) ⇒ M[r] = exp[−(a + A)t] (3.20)

and therefore the following Lagrangian

L[r] = exp[−(a + A)t][r1ṙ2 − r2ṙ1 − 2m1b exp(r1)

+ 2m2B exp(r2) + (A − a)r1r2] +
d
dt

G(t, r1, r2), (3.21)

which (minus the gauge function G) was found in [42]. Then, property (b) yields a Jacobi
Last Multiplier for the Gompertz’s system (3.17). The product of M[r] in (3.20) with the
Jacobian of the transformation (3.18) between (w1, w2) and (r1, r2) yields the following
Jacobi Last Multiplier of system (3.17), i.e.

M[w] = M[r]
∂(r1, r2)
∂(w1, w2)

= exp[−(a + A)t]

∣∣∣∣∣
1

w1
0

0 1
w2

∣∣∣∣∣ = exp[−(a + A)t]
1

w1w2
, (3.22)

and consequently a Lagrangian of the original system (3.17)

L[w] = exp[−(a + A)t]
[
log(w1)

ẇ2

w2
− log(w2)

ẇ1

w1
− 2a log

(
w2

m2

)
log(w1) + 2Bw2 − 2bw1

+ 2A log
(

w1

m1

)
log(w2) − (A − a) log(w1) log(w2)

]
+

d
dt

G(t, w1, w2). (3.23)

This Lagrangian was not obtained in [42].
We can transform system (3.19) into an equivalent second-order ordinary differential

equation by eliminating, say, r2. In fact from the second equation in (3.19) one gets

r2 = log
(

ṙ1 − Ar1

Bm2

)
, (3.24)

and the equivalent second-order equation in r2 is the following

r̈1 =
(

bm1 exp(r1) + a log
(

ṙ1 − Ar1

Bm2

))
(ṙ1 − Ar1) + Aṙ1. (3.25)

Using property (b) a Jacobi Last Multiplier for this equation can be obtained. In fact we
have to calculate the Jacobian of the transformation between (r1, r2) and (r1, ṙ1), namely
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(3.24) and this yields a Jacobi Last Multiplier of Eq. (3.25), i.e.g

M1 = M[r]
∂(r1, r2)
∂(r1, ṙ1)

= exp[−(a + A)t]
1

ṙ1 − Ar1
. (3.26)

Then a Lagrangian can be obtained by a double integration as in (2.12), i.e.

L1 = exp[−(a + A)t]((ṙ1 − Ar1) log(ṙ1 − Ar1)

+ m1b exp(r1) − ar1 log(Bm2) − ar1) +
d
dt

F (t, r1). (3.27)

The same Lagrangian (minus the gauge function F ) was obtained in [42].

3.3. Verhulst’s model

The Verhulst’s model considered in [42] is the following:

ẇ1 = w1(A + Bw1 + f1w2),

ẇ2 = w2(a + bw2 + f2w1).
(3.28)

In order to derive a Jacobi Last Multiplier for this system from (2.5), i.e.

d
dt

log(M[w]) + (2B + f2)w1 + (2b + f1)w2 + a + A = 0 (3.29)

we assume that M[w] has the following form:

M[w] = wb1
1 wb2

2 exp(b3t), (3.30)

where bi, (i = 1, 2, 3) are constants to be determined. Replacing this M[w] into (3.29) yields

b1 =
−2Bb + bf2 + f1f2

Bb − f1f2
, (3.31)

b2 =
−2Bb + Bf1 + f1f2

Bb − f1f2
, (3.32)

b3 =
ABb − Abf2 + aBb − aBf1

Bb − f1f2
, (3.33)

if Bb − f1f2 �= 0, and therefore if no condition is imposed on the parameters in Verhulst’s
model. Consequently a Lagrangian of system (3.28) is

L[w] = exp(b3t)
(

wb2
2 wb1+1

1

ẇ2

b1 + 1
− wb2+1

2 wb1
1

ẇ1

b2 + 1

−wb2+1
2 wb1+1

1

(
2

f2w1

b1 + 2
+ 2

bw2

b1 + 1
+

2a(b2 + 1) + b3

(b1 + 1)(b2 + 1)

))

+
d
dt

G(t, w1, w2) (3.34)

that was not obtained in [42].

gOf course, we do not consider any multiplicative constants because they are inessential.

1250021-10 339



September 14, 2012 16:35 WSPC/1402-9251 259-JNMP 1250021

Lagrangians for Biological Models

We follow [42] and introduce the change of variablesh

w1 = exp(r1), w2 = exp(r2) (3.35)

and then system (3.28) becomes

ṙ1 = A + B exp(r1) + f1 exp(r2),

ṙ2 = a + b exp(r2) + f2 exp(r1).
(3.36)

We can transform this system into an equivalent second-order ordinary differential equation
by eliminating, say, r2. In fact from the second equation in (3.36) one gets

r2 = log
(

ṙ1 − B exp(r1) − A

f1

)
, (3.37)

and the equivalent second-order equation in r1 is the following

r̈1 =
1
f1

[(af1 + bṙ1)ṙ1 + A2b + B exp(2r1)(Bb − f1f2) − A(af1 + 2bṙ1)

− exp(r1)(f1(aB − f2ṙ1) + B(2b − f1)ṙ1 − A(2bB − f1f2))]. (3.38)

Using property (b) a Jacobi Last Multiplier for this equation can be obtained. In fact
we have to calculate the Jacobian of the transformation between (w1, w2) and (r1, ṙ1), and
this yields a Jacobi Last Multiplier of Eq. (3.38), i.e.i

M1 = M[w]
∂(w1, w2)
∂(r1, ṙ1)

= exp(b1r1 + b3t)[ṙ1 − A − B exp(r1)]b2(b2 + 2)(b2 + 1). (3.39)

Then a Lagrangian can be obtained by a double integration as in (2.12), i.e.

L1 = exp(b1r1) exp(b3t)[ṙ1 − A − B exp(r1)]b2+2 +
d
dt

F (t, r1). (3.40)

The same Lagrangian (minus the gauge function F ) was obtained in [42].
Since a Jacobi Last Multiplier of system (3.36) is

M[r] = M[w]
∂(w1, w2)
∂(r1, r2)

= exp[(b1 + 1)r1 + (b2 + 1)r2 + b3t], (3.41)

analogously a Lagrangian of system (3.36) is

L[r] = exp((b1 + 1)r1 + (b2 + 1)r2 + b3t)
(

ṙ2

b1 + 1
− ṙ1

b2 + 1

−
(

2
f2 exp(r1)

b1 + 2
+ 2

b exp(r2)
b1 + 1

+
2a(b2 + 1) + b3

(b1 + 1)(b2 + 1)

))
+

d
dt

G(t, r1, r2). (3.42)

This Lagrangian (minus the gauge function G) was also obtained in [42].

hIt is not clear the reason of this change of variables that was performed in [42].
iOf course, we do not consider any multiplicative constants because they are inessential.
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3.4. Host-Parasite model

As stated in [42], “a simple mathematical model which describes the interaction between
a host and its parasite and which takes into account the nonlinear effects of the
host population size on the growth rate of the parasite population is given by the
equations [25]”

ẇ1 = (a − bw2)w1,

ẇ2 =
(

A − B
w2

w1

)
w2.

(3.43)

As in the previous example it is easy to derive that a Jacobi Last Multiplier is

M[w] =
exp(At)
w1w

2
2

, (3.44)

and consequently a Lagrangian of system (3.47)

L[w] = exp[At]
[
log(w1)

ẇ2

w2
2

+
ẇ1

w1w2
− 2

a

w2
− 2

B

w1

− log(w1)
A

w2
− 2b log(w2)

]
+

d
dt

G(t, w1, w2). (3.45)

This Lagrangian was obtained in [42].
In order to simplify system (3.43) we introduce the change of variablesj

w1 = r1 exp(at), w2 = r2 exp(At) (3.46)

and then system (3.43) becomes

ṙ1 = −b exp(At)r1r2,

ṙ2 = −B exp(At)r2
2

exp(at)r1
.

(3.47)

Since a Jacobi Last Multiplier of system (3.47) is

M[r] = M[w]
∂(w1, w2)
∂(r1, r2)

=
1

r1r2
2

, (3.48)

analogously a Lagrangian of system (3.47) is

L[r] =
log(r1)ṙ2

r2
2

+
ṙ1

r1r2
− 2 exp(At)

br1 log(r2) exp(at) + B

r1 exp(at)
+

d
dt

G(t, r1, r2). (3.49)

This Lagrangian was obviously not obtained in [42].

jThis change of variables was not performed in [42].
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We can transform system (3.47) into an equivalent second-order ordinary differential
equation by eliminating, say, r2. In fact from the first equation in (3.47) one gets

r2 = − ṙ1

b exp(At)r1
, (3.50)

and the equivalent second-order equation in r1 is the following

r̈1 =
b exp(at)r1 + B

b exp(at)r2
1

ṙ2
1 + Aṙ1. (3.51)

Using property (b) a Jacobi Last Multiplier for this equation can be obtained. In fact we
have to calculate the Jacobian of the transformation between (r1, r2) and (r1, ṙ1), and this
yields a Jacobi Last Multiplier of Eq. (3.51), i.e.k

M1 = M[r]
∂(r1, r2)
∂(r1, ṙ1)

=
b2 exp(2At)r1

ṙ2
1

∣∣∣∣∣
1 0
ṙ1

b exp(At)r2
1

− 1
b exp(At)r1

∣∣∣∣∣ = −b exp(At)
ṙ2
1

. (3.52)

Then a Lagrangian can be obtained by a double integration as in (2.12), i.e.

L1 = b exp(At) log(ṙ1) − b exp(At) log(r1) +
B exp(At)
exp(at)r1

+
d
dt

F (t, r1). (3.53)

This Lagrangian was not obtained in [42].

4. Volterra’s Lagrangians

In this section we present the Volterra’s Lagrangians for two biological equations [49] and
show that they can be obtained by means of Jacobi Last Multiplier.

Volterra knew Jacobi’s work, especially [19] that in 1887 he mentions in one of his
earlier works [46, p. 280]. Therefore Volterra knew Lecture 10 of [19] since he cites p. 78 of
precisely this Lecture in [46]. May be he did overlooked the following pages especially p. 82
where Jacobi wrote his formula (2.9) that links the last multiplier to the Lagrangian of any
second-order equation. Also in his 1906 address at the Congress of Italian Naturalists [47]
Volterra wrote: “una delle più celebri scoperte del matematico Jacobi, quella del principio
dell’ultimo moltiplicatore”.l

In 1939 Volterra wrote [49]: “I have been able to show that the equations of the struggle
for existence depend on a question of Calculus of Variations (omissis). In order to obtain
this result, I have replaced the notion of population by that of quantity of life [48]. In this
manner I have also obtained some results by which dynamics is brought into relation to
problems of the struggle for existence.” The quantity of life X and the population N of a
species are connected by the relation

N =
dX

dt
. (4.1)

kOf course, we do not consider any multiplicative constants because they are inessential.
l“One of the most celebrated discovery by the mathematician Jacobi, that of the principle of the last
multiplier” translated by M. C. Nucci.
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It is immediately obvious that this idea of raising the order of each equation is totally
different from that by Trubach and Franco who provided a method for finding a linear
Lagrangian for systems of first-order equations. Also Volterra’s method is different from
that of deriving a single second-order equation from a system of two first-order equations:
indeed Volterra takes a system of first-order equations and transform it into a system of
second-order equations.

We now show that Volterra’s Lagrangians for the two second-order equations that he
considered in [49] can be obtained by means of Jacobi Last Multiplier (2.9). The first
equation is

dN

dt
= a

n∏
i=1

(N − ai) (4.2)

that through (4.1) becomes

d2X

dt2
= a

n∏
i=1

(
dX

dt
− ai

)
, (4.3)

and the second equation is the Verhulst–Pearl equation

dN

dt
= N(ε − λN) (4.4)

that through (4.1) becomes

d2X

dt2
=

dX

dt

(
ε − λ

dX

dt

)
. (4.5)

Substituting the unknown function with its first derivative in the original autonomous
first-order ordinary differential equation yields a second-order ordinary differential equa-
tion which admits a two-dimensional abelian transitive Lie symmetry algebra generated by
the operators of translations in both the independent and dependent variables. Therefore
a Jacobi Last Multiplier is obtained and consequently a Lagrangian. In particular both
Eqs. (4.3) and (4.5) admit a two-dimensional Lie symmetry algebra generated by the oper-
ators ∂t and ∂X . Then a Jacobi Last multiplier for (4.3) and (4.5) can be obtained by means
of (2.7), i.e.

∆(4.3) = det



1 dX

dt a
∏n

i=1

(
dX
dt − ai

)
1 0 0

0 1 0


 ⇒ M(4.3) =

1
∆(4.3)

=
1

a
∏n

i=1

(
dX
dt − ai

) (4.6)

and

∆(4.5) = det



1 dX

dt
dX
dt

(
ε − λdX

dt

)
1 0 0

0 1 0


 ⇒ M(4.5) =

1
∆(4.5)

=
1

dX
dt

(
ε − λdX

dt

) (4.7)
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respectively, and consequently from Jacobi’s formula (2.9) we obtain the Lagrangians

L(4.3) = −1
a

n∑
i=1

1∏n
j=1,j �=i(ai − aj)

(
ai − dX

dt

)
log

(
ai − dX

dt

)
+ X, (4.8)

and

L(4.5) =
1
ε

dX

dt
log

(
dX

dt

)
+

1
ελ

(
ε − λ

dX

dt

)
log

(
ε − λ

dX

dt

)
+ X (4.9)

respectively, which are indeed the Volterra’s Lagrangians in [49].
Equation (4.5) admits an eight-dimensional Lie symmetry algebra generated by the

following operators:

Γ1 = exp(λX − εt)∂t, Γ2 = exp(λX)
(
∂t +

ε

λ
∂X

)
, Γ3 = exp(−λX + εt)∂X ,

Γ4 = exp(−λX)∂X , Γ5 = exp(εt)
(

λ

ε
∂t + ∂X

)
, Γ6 = ∂X ,

Γ7 = exp(−εt)∂t, Γ8 = ∂t. (4.10)

Therefore Eq. (4.5) is linearizable by means of a point transformation. In order to find
the linearizing transformation we have to look for a two-dimensional abelian intransitive
subalgebra, and, following Lie’s classification of two-dimensional algebras in the real plane
[27], we have to transform it into the canonical form

∂u, y∂u

with u and y the new dependent and independent variables, respectively. We found that
one such subalgebra is that generated by X3 and X4. Then it is easy to derive that

y = exp(−εt), u =
1
λ

exp(λX − εt) (4.11)

and Eq. (4.5) becomes

d2u

dy2
= 0. (4.12)

As we have shown above the Volterra’s Lagrangian (4.9) of Eq. (4.5) comes from the Jacobi
Last Multiplier that can be obtained by means of (2.7) with the two symmetries Γ8 and
Γ6 in (4.10). This Lagrangian (4.9) admits two Noether symmetries and therefore two first
integrals of Eq. (4.5) can be derived by Noether’s theorem [30], i.e.

Γ6 ⇒ In6 = log
(

ε − λ
dX

dt

)
− log

(
dX

dt

)
+ εt,

Γ8 ⇒ In8 = log
(

ε − λ
dX

dt

)
+ λX.

(4.13)
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Other nine Jacobi Last Multipliers and therefore Lagrangians can be obtained by means
of (2.7) and any other combination of two symmetries in (4.10). The nine Jacobi Last
Multipliers are:

JLM14 =
exp(εt)

λ
(

dX
dt

)2 , JLM15 = − ε exp(−λX)
dX
dt

(
ε − λdX

dt

)2 , JLM17 = −exp(2εt − λX)

λ
(

dX
dt

)3 ,

JLM18 =
exp(εt − λX)(
dX
dt

)2 (
ε − λdX

dt

) , JLM23 =
λ exp(−εt)(
ε − λdX

dt

)2 , JLM25 =
ελ exp(−εt − λX)(

ε − λdX
dt

)3 ,

JLM34 = −exp(−εt − 2λX)
ε

, JLM36 = −exp(−εt + λX)
ε − λdX

dt

, JLM37 =
exp(λX)

dX
dt

,

(4.14)

and the indices indicate which two of the symmetries in (4.10) have been used. Consequently
the nine Lagrangians are:

Lag14 = − exp(εt)
(

1
λ

log
(

dX

dt

)
+ X

)
,

Lag15 = exp(−λX)
(

1
ε

dX

dt
log

(
dX

dt

)
+

1
ε

log
(

λ
dX

dt
− ε

)
dX

dt
+

1
λ

)
,

Lag17 = − 1
2λdX

dt

exp(2εt − λX),

Lag18 =
1
ε2

exp(εt − λX)
(

λ
dX

dt
− ε

) (
log

(
dX

dt

)
− ε log

(
λ

dX

dt
− ε

))
,

Lag23 = − 1
λ

exp(−εX)
(

log
(

ε − λ
dX

dt

)
+ λX

)
, (4.15)

Lag25 =
ε exp(−εt − λX)
2λ

(
εt − λdX

dt

) ,

Lag34 = − 1
2ε

exp(−εt + 2λX)
(

dX

dt

)2

,

Lag36 =
1
λ2

exp(−εt + λX)
((

λ
dX

dt
− ε

)
log

(
ε − λ

dX

dt

)
− λ

dX

dt

)
,

Lag37 =
1
ε

exp(λX)
(

dX

dt
log

(
dX

dt

)
− dX

dt
+

ε

λ

)
.

These Lagrangians admit a different number of Noether symmetries. The Lagrangians
Lag17,Lag25,Lag34 admit five Noether symmetries, the possible higher number. For exam-
ple the Lagrangian Lag34 in (4.15) yields the following five Noether symmetries and
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corresponding first integrals of Eq. (4.5)

Γ3 ⇒ Int3 = exp(λX)
(
−ε + λ

dX

dt

)
,

Γ4 ⇒ Int4 = exp(−εt + λX)
dX

dt
,

Γ5 ⇒ Int5 = exp(2λX)
(

ε − λ
dX

dt

)2

, (4.16)

Γ6 + 2
λ

ε
Γ8 ⇒ Int6 = exp(−εt + 2λX)

dX

dt

(
ε − λ

dX

dt

)
,

Γ7 ⇒ Int7 = exp(−2εt + 2λX)
(

dX

dt

)2

.

Since in this paper we are mainly interested to show that the Volterra’s Lagrangians L(4.3)

and L(4.5) can be obtained by means of Jacobi Last Multiplier, the Noether symmetries of
the other Lagrangians in (4.15) will be reported elsewhere.

About Eq. (4.3) we have found out that it possesses a third Lie point symmetry if all
the ai are equal, say ai = b, (i = 1, . . . , n), i.e. the equation

d2X

dt2
= a

(
dX

dt
− b

)n

(4.17)

admits the following third symmetry

t∂t +
1

n − 1
(bt + (n − 2)X) ∂X . (4.18)

Then two other Jacobi Last Multipliersm can be obtained, i.e.

M1 =
n − 1

a
(

dX
dt − b

)n
(bt + (n − 2)X) +

(
dX
dt − b

)
dX
dt

(4.19)

that comes from (2.7) with the two symmetries (4.18), ∂t, and

M2 = − n − 1
a(n − 1)t

(
dX
dt − b

)
+ dX

dt − b
(4.20)

that comes from (2.7) with the two symmetries (4.18), ∂X . Property (d) in Sec. 2 implies
that the ratio of M1 and M2, i.e. M1/M2, is a first integral of Eq. (4.17), and since in this
case

M3 ≡ M(4.3) =
1

a
(

dX
dt − b

)n , (4.21)

also M1/M3 and M2/M3 are first integralsn of Eq. (4.17).

mThe corresponding Lagrangian cannot be obtained in closed form since the integral of both M1 and M2

with respect to dX
dt can be evaluated for n = 1, 2, 3 only.

nObviously only two of these three first integrals are functionally independent.
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In the case when the right-hand side of Eq. (4.3) is either a second degree (i.e. all
aj = 0, j > 2) or a third degree (i.e. all aj = 0, j > 3) polynomial then Eq. (4.3) admits
an eight-dimensional Lie symmetry algebra and therefore is linearizable and many more
Lagrangians can be determined as it was shown above for Eq. (4.5). In particular equation

d2X

dt2
= a

(
dX

dt
− a1

)(
dX

dt
− a2

)
, (4.22)

admits an eight-dimensional Lie point symmetry algebra generated by the following
operators:

∂t, ∂X , exp(a(a1t − X))(∂t + a2∂X), exp(a(a2t − X))(∂t + a1∂X),

exp(−a(a1t − X))∂X , exp(−a(a2t − X))∂X , (4.23)

exp((a1 − a2)at)(∂t + a2∂X), exp((a1 − a2)at)(∂t + a1∂X),

and equation

d2X

dt2
= a

(
dX

dt
− a1

)(
dX

dt
− a2

)(
dX

dt
− a3

)
(4.24)

admits an eight-dimensional Lie point symmetry algebra generated by the following
operators:

∂t, ∂X , exp(a(a1 − a2)(a3t − X))(∂t + a1∂X), exp(a(a1 − a3)(a2t − X))(∂t + a1∂X),

exp(a(a2 − a1)(a3t − X))(∂t + a2∂X), exp(a(a2 − a3)(a1t − X))(∂t + a2∂X),

exp(a(a3 − a1)(a2t − X))(∂t + a3∂X), exp(a(a3 − a2)(a1t − X))(∂t + a3∂X).

(4.25)

Obviously both equations are linearizable. The transformation that takes Eq. (4.24) into
the free particle Eq. (4.12) is

y = exp(at(a1 − a2)), u = −1
a

exp(a(a1t − X)), (4.26)

thanks to the two-dimensional abelian intransitive subalgebra generated by the two
operators:

exp(−a(a1t − X))∂X , exp(−a(a2t − X))∂X ,

while that for Eq. (4.24) is

y = exp(a(a2 − a3)(X − a1t)), u =
exp(a(a1 − a3)(X − a2t))

a(a1 − a2)(a1 − a3)
, (4.27)

thanks to the two-dimensional abelian intransitive subalgebra generated by the two
operators:

exp(a(a1 − a2)(a3t − X))(∂t + a1∂X), exp(a(a1 − a3)(a2t − X))(∂t + a1∂X).
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It is a simple application of (2.7) to find all the Jacobi Last Multipliers and then from
(2.9) the corresponding Lagrangians for both Eqs. (4.22) and (4.24). Since it is outside the
purpose of the present paper, we will report them elsewhere.

5. Final Remarks

This paper deals with Jacobi Last Multiplier and its connection to the inverse problem of
calculus of variation for certain biological systems, namely finding one or more Lagrangians
for either systems of two first-order equations or single second-order equations.

It was shown in [32] that Jacobi Last Multiplier yields the Lagrangian for any equation
of even ordero

u(2n) = F (x, u, u′, u′′, . . . , u(2n−1)), (5.1)

since it can be derived from the following formula

M1/n =
∂2L

∂(u(n))2
, (5.2)

where M is the Jacobi Last Multiplier of Eq. (5.1) and L is its Lagrangian. This formula
was given by Jacobi himself in [18, p. 364].

We recall that Fels has proven [8] that the Lagrangian is unique in the case of fourth-
order equation if it exists. In the case of equations of sixth- and eighth-order the uniqueness
was proven by Juráš [21].

In [41] Tonti provided a brief historical survey of the inverse problem of calculus of
variations. He begins with the year 1887 when both Helmholtz [14] and Volterra [46] pub-
lished their work. Unfortunately no mention is made of Jacobi’s work. That historical survey
should have at least begun — if not with the year 1845 when Jacobi’s paper [18] was pub-
lished in Crelle’s journal — with the year 1884 when Jacobi’s Dynamics Lectures, delivered
at the University of Königsberg in the Winter Semester 1842–1843, were finally published
[19] with a foreword by Weierstrass.

As pointed out by Tonti [41] many authors have dealt with the inverse problem of
calculus of variations by either using a formal approach or an operatorial approach following
on the steps of either Helmholtz or Volterra: for example [40, 29, 43, 38, 45, 1] and many
others.

We do not underestimate the research of these very distinguished authors. Yet when
possible we prefer to follow Jacobi since his Last Multiplier has a direct link to conservation
laws and symmetries that are the essential elements that in our opinion make the difference
between a mathematical abstraction and a physical concreteness.

We provide two examples of such a difference and may call them two missed
opportunities [7].

The first example is the following ordinary differential equation of fourth-order

u(iv) + 2uu′′ + u′2 = 0 (5.3)

oWe use a prime to indicate the derivative with respect to x.
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that can be found in Olver’s book [36, p. 364]. This equation comes from the Lagrangian

L =
1
2
u′′2 − uu′2. (5.4)

In [36] the homotopy formula was used in order to find the Lagrangian of Eq. (5.3). Instead
of a Lagrangian of order two it yielded the following Lagrangian of order four

1
2
uu(iv) +

2
3
u2u′′ +

1
3
uu′2 (5.5)

that, as shown by Olver himself, while not the same as the original one, is still equivalent
to it since it differs from (5.4) by a total derivative, i.e:

1
2
uu(iv) +

2
3
u2u′′ +

1
3
uu′2 =

1
2
u′′2 − uu′2 + Dt

(
1
2
uu′′′ − 1

2
u′u′′ +

2
3
u2u′

)
. (5.6)

Instead the Jacobi Last Multiplier straightforwardly yields the Lagrangian (5.4). In fact,
a Jacobi Last Multiplier of Eq. (5.3) is trivially a constant, say 1, thus formula (5.2) after
two simple integrations, i.e.

LJ =
∫ (∫ √

1du′′
)

du′′ =
∫

u′′du′′ + F1(x, u) =
1
2
u′′2 + F1(x, u, u′)u′′ + F2(x, u, u′)

=
1
2
u′′2 + f(x, u, u′) +

dG

dx
(x, u, u′), (5.7)

yields (5.4). In fact imposing that the Euler–Lagrange equation of (5.7) be (5.3) implies the
following equation for the function f(x, u, u′)

−u′ ∂f

∂u′ +
∂f

∂u
− ∂2f

∂x∂u′ − u′′ ∂2f

∂u′2 − 2uu′′ − u′2 = 0 (5.8)

i.e. the overdetermined system

∂2f

∂u′2 + 2u = 0, u′ ∂f

∂u′ −
∂f

∂u
+

∂2f

∂x∂u′ + u′2 = 0, (5.9)

and its solutionp is indeed f(x, u, u′) = −uu′2. Other examples of the application of Jacobi’s
formula (5.2) to fourth-order equations can be found in [32].

The second example is the following system of two second-order ordinary differential
equations

ü1 = − u2

u2
1 + u2

2

, ü2 =
u1

u2
1 + u2

2

. (5.10)

that can be found in [1, 2]. In [34] it was shown that the method of the Jacobi Last Multiplier
yields the Lagrangian

L =
1
2
(u̇2

1 + u̇2
2) − arctan

(
u2

u1

)
+

d
dt

g(t, u1, u2) (5.11)

pThe additive linear function in u′ can be omitted without loss of generality.
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that is t-translational invariant while in [1] the method based on the variational bicomplex
yielded the Lagrangian

L1 =
1
2
(u̇2

1 + u̇2
2) + t

u2u̇1 − u1u̇2

u2
1 + u2

2

(5.12)

that is not t-translational invariant. The two Lagrangians are obviously connected by giving
a particular value to the otherwise arbitrary gauge function g(t, u1, u2) in (5.11). More
details can be found in [34].

We would like also to mention that many systems do not admit a Lagrangian. Never-
theless they may admit a Lagrangian if put in a different form as suggested by Bateman [3],
namely “finding a set of equations equal in number to a given set, compatible with it and
derivable from a variational principle”. In [35] it was demonstrated how to construct many
different Lagrangians for two famous examples which were deemed by Douglas [6] not to
have a Lagrangian. Following Bateman’s dictat different sets of equations compatible with
those by Douglas and derivable from a variational principle were found.

Finally on systems of more than two first-order equations: the general formula was given
by Trubatch and Franco [42] but no nontrivial examples were provided. Work is in progress
to address this instance.
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[21] M. Juráš, The inverse problem of the calculus of variations for sixth- and eighth-order scalar
ordinary differential equations, Acta. Appl. Math. 66 (2001) 25–39.

[22] E. H. Kerner, A Statistical Mechanics of biologically associated species, Bull. Am. Phys. Soc.
1 (1956) 337–338.

[23] E. H. Kerner, Statistical-mechanical theories in biology, Adv. Chem. Phys. 19 (1971) 325–352.
[24] E. N. Laguerre, Application du principe du dernier multiplicateur à l’intégration d’une équation

différentielle du second ordre, Bull. Sci. Math. Astron. 2 (1871) 246–250.
[25] P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator–prey type

of interaction between two species, Biometrika 47 (1960) 219–234.
[26] S. Lie, Veralgemeinerung und neue Verwerthung der Jacobischen Multiplicator theorie, Chris-

tiania Forh. (1874) 255–274.
[27] S. Lie, Vorlesungen über Differentialgleichungen mit Bekannten Infinitesimalen Transformatio-

nen (Teubner, Leipzig, 1912).
[28] A. J. Lotka, Elements of Mathematical Biology (Dover, New York, 1956).
[29] F. Magri, Variational formulation for every linear equation, Int. J. Eng. Sci. 12 (1974) 537–549.
[30] E. Noether, Invariante Variationsprobleme, Nachr. König. Gesellsch. Wiss. Göttingen. Math.

Phys. Klasse (1918) 235–257.
[31] M. C. Nucci, Jacobi last multiplier and Lie symmetries: A novel application of an old relation-

ship, J. Nonlinear Math. Phys. 12 (2005) 284–304.
[32] M. C. Nucci and A. M. Arthurs, On the inverse problem of calculus of variations for fourth-order

equations, Proc. R. Soc. A 466 (2010) 2309–2323.
[33] M. C. Nucci and P. G. L. Leach, Lagrangians galore, J. Math. Phys. 48 (2007) 123510.
[34] M. C. Nucci and P. G. L. Leach, Jacobi last multiplier and Lagrangians for multidimensional

linear systems, J. Math. Phys. 49 (2008) 073517.
[35] M. C. Nucci and P. G. L. Leach, Some Lagrangians for systems without a Lagrangian, Phys.

Scripta 83 (2011) 035007.
[36] P. J. Olver, Applications of Lie Groups to Differential Equations (Springer-Verlag, New York,

1993).
[37] G. H. Paine, The development of Lagrangians for biological models, Bull. Math. Biol. 44 (1982)

749–760.
[38] V. Sarlet, The Helmholtz conditions revisited. A new approach to the inverse problem of

Lagrangian dynamics, J. Phys. A: Math. Gen. 15 (1982) 1503–1517.

1250021-22 351



September 14, 2012 16:35 WSPC/1402-9251 259-JNMP 1250021

Lagrangians for Biological Models
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