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We report triangular auto-Bäcklund transformations for the solutions of a fifth-order evolution
equation, which is a constraint for an invariance condition of the Kaup–Kupershmidt equation
derived by E. G. Reyes in his paper titled “Nonlocal symmetries and the Kaup–Kupershmidt
equation” [J. Math. Phys. 46 (2005) 073507, 19 pp.]. These auto-Bäcklund transformations can
then be applied to generate solutions of the Kaup–Kupershmidt equation. We show that triangular
auto-Bäcklund transformations result from a systematic multipotentialization of the Kupershmidt
equation.
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1. Introduction

In his paper [7], Reyes reports an invariance of the Kaup–Kupershmidt equation

qt = qxxxxx + 5qqxxx +
25
2

qxqxx + 5q2qx, (1.1)

by the following proposition.

Proposition 1 ([7]). The Kaup–Kupershmidt equation, (1.1), is invariant under the trans-
formation q �→ q̄, in which

q̄ = q + 3(ln B)xx, (1.2)

where the variables q and B are related by

q(x, t) = −Bxxx

Bx
+

3
4

(
Bxx

Bx

)2

(1.3)
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and B(x, t) is a solution to

Bt = Bxxxxx − 5
BxxBxxxx

Bx
− 15

4
B2

xxx

Bx
+

65
4

BxxxB
2
xx

B2
x

− 135
16

B4
xx

B3
x

. (1.4)

In this letter we report a class of auto-Bäcklund transformations, known as the triangular
auto-Bäcklund transformations (or �-auto-Bäcklund transformations [5]), by a systematic
multipotentialization of Eq. (1.4). Triangular auto-Bäcklund transformations have been
defined and demonstrated in our recent paper [5]. For details on the multipotentialization
procedure we refer the reader to our papers [2, 3]. We show that the equation,

vt = vxxxxx − 5
vxxvxxxx

vx
+ 5

v2
xxvxxx

v2
x

(1.5)

plays a central role in the construction of solutions of the Kaup–Kupershmidt equation and
consequently we find the general stationary solution of (1.5) by calculating its first integrals.

We remark that both Eqs. (1.4) and (1.5) first appeared in a paper by Weiss [9] on
the Painlevé analysis in the form of singularity manifold constraints for the Kupershmidt
equation (see [9, Eq. (3.32)]) and the Caudrey–Dodd–Gibbon equation (see [9, Eq. (3.21)]),
respectively. For more details on the Painlevé analysis and singularity manifolds we refer the
reader to [8]. Furthermore, both (1.4) and (1.5) are known symmetry-integrable equations
and appear in [6] as part of the list of fifth-order semilinear integrable evolution equations
(see [6, Eqs. (4.2.12) and (4.2.11)]). The recursion operators for both Eqs. (1.4) and (1.5)
are given in [4].

2. Multipotentializations and �-auto-Bäcklund Transformations

Let

ut = F [u] (2.1)

denote an evolution equation in u, where F [u] denotes a given function that depends in
general on x, t, u and x-derivatives of u. The procedure to potentialize (2.1) in the equation

vt = G[vx] (2.2)

is well-known (see e.g. [1, 3]). Equation (2.2) is known as the potential equation of (2.1). For
the benefit of the reader and to establish the notation we describe this procedure briefly:
The potentialization of (2.1) in (2.2), if it exists, is established by a conserved current Φt[u]
of (2.1) and the relation to the potential variable v is then

vx = Φt[u], (2.3)

where

DtΦt[u] + DxΦx[u]
∣∣
ut=F [u]

= 0 (2.4)

and Φx is the conserved flux of (2.1). Here Dt and Dx are the total t- and x-derivatives,
respectively. Conserved currents, Φt[u], for (2.1) can be obtained by the relation

Λ[u] = Ê[u]Φt[u], (2.5)
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where Λ is an integrating factor (also called multiplier) of (2.1) that can be calculated by
the relation

Ê[u](Λ[u]ut − Λ[u]F [u]) = 0. (2.6)

Here Ê[u] is the Euler operator,

Ê[u] =
∂

∂u
− Dx ◦ ∂

∂ux
− Dt ◦ ∂

∂ut
+ D2

x ◦ ∂

∂u2x
− D3

x ◦ ∂

∂u3x
+ · · · .

A multipotentialization of (2.1) exists if (2.2) can also be potentialized. A �-auto-Bäcklund
transformation for (2.1) exists if (2.2) potentializes back into the original Eq. (2.1). In fact
we have define three different types of �-auto-Bäcklund transformations. Details are in [5],
where several examples of �-auto-Bäcklund transformations are given for some third-order
and fifth-order evolution equations, as well as for systems in (1+1) dimensions and higher-
dimensional evolution equations.

Our starting point is the Kupershmidt equation

Kt = Kxxxxx + λ(KxKxxx + K2
xx) − λ2

5
(K2Kxxx + 5KxKxx + K3

x) +
λ4

125
K4Kx (2.7)

which potentializes under

Ux = K (2.8)

in the first potential Kupershmidt equation,

Ut = Uxxxxx + λUxxUxxx − λ2

5
(U2

xUxxx + UxU2
xx) +

(
λ

5

)4

U5
x , (2.9)

and, in turn again potentializes under

ux = − 5
2λ

exp
(
−2λ

5
U

)
(2.10)

in a second-potential Kupershmidt equation,

ut = uxxxxx − 5uxxuxxxx

ux
− 15u2

xxx

4ux
+

65u2
xxuxxx

u2
x

− 135u4
xx

16u3
x

. (2.11)

In addition, the first potential Kupershmidt equation (2.9) also potentializes in

vt = vxxxxx − 5
vxxvxxxx

vx
+ 5

v2
xxvxxx

v2
x

(2.12)

under

vx =
5
λ

exp
(

λ

5
U

)
. (2.13)

A connection between the Kupershmidt equation, (2.7), and Eq. (2.11) is given by the
differential substitution

K(x, t) = − 5
2λ

uxx

ux
, (2.14)

which is obtained by combining Ux = K and ux = −5/(2λ) exp(−2U/(5λ)).
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Furthermore, we can connect the first potential Kupershmidt equation, (2.9), and the
Kaup–Kupershmidt equation

Qt = Qxxxx + µQQxxx +
5µ
2

QxQxx +
µ2

5
Q2Qx (2.15)

for arbitrary constant µ �= 0, by the differential substitution (given in [6] for the special
case, µ = 5 and λ = 5)

Q =
(

2λ
µ

)
Uxx −

(
λ

5µ

)
U2

x . (2.16)

We now focus our attention on Eq. (2.11). For this equation the most general second-
order integrating factors are

Λ1[u] = αu−5/2
x uxx, Λ2[u] = α(uu−5/2

x uxx − 2u−1/2
x ), (2.17)

which leads to two potentializations in (2.12) with α = −3/4, namely

v1,x = u−1/2
x , v2,x = uu−1/2

x , (2.18)

respectively. See the diagram below. Furthermore, the most general second-order integrating
factors of Eq. (2.12) are

Λn[v] = vn vxx

v2
x

− n

2
vn−1 1

v2
x

, n = 0, 1, 2, 3, 4. (2.19)

The integrating factor Λ0 and Λ4 lead to the potentialization of Eq. (2.12) in equation (2.11),
namely

u3,x = v−2
x , u4,x = v4v−2

x , (2.20)

respectively. See the diagram below.

Diagram:

Eq. (2.11) in u1

vx=u
−1/2
1,x

���������������������
Eq. (2.11) in u2

vx=u2u
−1/2
2x

���������������������

vt = vxxxxx − 5v−1
x vxxvxxxx + 5v−2

x v2
xxvxxx

u4,x=v4v−2
x ���������������������

u3,x=v−2
x���������������������

Eq. (2.11) in u3 Eq. (2.11) in u4

Combining the above potentializations for the Eqs. (2.11) and (2.12), leads to the following
�-auto-Bäcklund transformations for these equations:

Proposition 2. The Eq. (2.11), viz.

ut = uxxxxx − 5
uxxuxxxx

ux
− 15

4
u2

xxx

ux
+

65
4

uxxxu2
xx

u2
x

− 135
16

u4
xx

u3
x
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admits the following �-auto-Bäcklund transformations:

uj+1,xx = uj+1,x

[
uj,xx

uj,x
− 2

uj,x

uj

]
+ 4u

3/4
j+1,x

[
u

1/2
j

u
1/4
j,x

]
, (2.21a)

uj+1,xx = uj+1,x

[
uj,xx

uj,x

]
+ 4u3/4

j+1,x

[
1

u
1/4
j,x

]
, (2.21b)

where uj and uj+1 satisfy (2.11) for all natural numbers j.

Proposition 3. The Eq. (2.12), viz.

vt = vxxxxx − 5
vxxvxxxx

vx
+ 5

v2
xxvxxx

v2
x

,

admits the following �-auto-Bäcklund transformations:

vj+1,xx = vj+1,x

[
vj,xx

vj,x

]
− 1

vj,x
, (2.22a)

vj+1,xx = vj+1,x

[
vj,xx

vj,x

]
+

1
vj,x

, (2.22b)

vj+1,xx = vj+1,x

[
vj,xx

vj,x
− 2

vj,x

vj

]
+

v2
j

vj,x
, (2.22c)

where vj and vj+1 satisfy (2.12) for all natural numbers j.

Remark 4. We note that in addition to the transformations given by Propositions 2 and 3,
both (2.11) and (2.12) admit the symmetry transformation

uj+1 = − 1
uj

+ constant, vj+1 = − 1
vj

+ constant (2.23)

which are included in the diagram: combine vx = u
−1/2
1,x with vx = u2u

−1/2
2,x , and ux = v−2

1,x

with ux = v4
2v

−2
2,x, respectively. Note that these relations were also identified by Weiss (see

relation [9, (3.37)]).

Remark 5. The �-auto-Bäcklund transformations (2.21a) and (2.21b) given in Proposi-
tion 2 can be linearized, as those are in the form of first-order Bernoulli equations under
the substitution uj+1,x = wj+1.

3. Solutions

In the above diagram it is clear that Eq. (2.12), viz.

vt = vxxxxx − 5vxxvxxxx

vx
+

5v2
xxvxxx

v2
x

,

plays a central role in the connection between the Kupershmidt, the Kaup–Kupershmidt
and Eq. (2.11).
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We now find the most general stationary solution for Eq. (2.12) by calculating the first
integrals and the general solution of the ordinary differential equation

vxxxxx − 5vxxvxxxx

vx
+

5v2
xxvxxx

v2
x

= 0. (3.1)

We find that Eq. (3.1) admits five second-order integrating factors, {Λ0,Λ1,Λ2,Λ3,Λ4}:

Λn(x, v, vx, vxx) = an
vxx

v2
x

− a′n
2

1
v2
x

, (3.2)

where

an(v) = vn with n = 0, 1, 2, 3, 4.

Here the primes denote derivatives with respect to v. The corresponding first five integrals
are then

In =
(

an
vxx

v4
x

− 1
2

a′n
v2
x

)
vxxxx − 1

2
an

v2
xxx

v4
x

+
(

1
2
a′n

vxx

v3
x

− an
v2
xx

v5
x

+
1
2

a′′n
vx

)
vxxx

− 1
2
a′′′n vxx +

1
4
a(4)

n v2
x, n = 0, 1, 2, 3, 4.

Combining I0, I1, I2, I3 and I4, we obtain

vx = (I0v
4 − 4I1v

3 + 6I2v
2 − 4I3v + I4)1/2,

with the condition

I0I4 − 4I1I3 + 3I2
2 = 0.

So the general solution of (3.1) is given by the quadrature

∫
(I0v

4 − 4I1v
3 + 6I2v

2 − 4I3v + I4)−1/2dv = x + C, (3.3)

where C is a constant of integration. Since the quadrature (3.3) contains five independent
free constants, it represents the most general stationary solution of (2.12). This solution
can now be used to generate nonstationary solutions for (2.12) by the �-auto-Bäcklund
transformations of Proposition 3 and, by applying the transformations in the above diagram,
solutions of (2.11) can be constructed. Then by Proposition 1, the so constructed solutions
of (2.11) lead to solutions of the Kaup–Kupershmidt equation, as well as solutions of the
Kupershmidt equation by the differential substitution (2.14).

For example, by (3.3) with I0 = I1 = I2 = I4 = C = 0 and I3 = −2 we obtain the
solution

v(x, t) = 2x2

1220001-6 290
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for (2.12) and hence the solution

u(x, t) = 16x

for (2.11). Applying now, for example, the �-auto-Bäcklund transformation (2.21a) leads
to the solution

u(x, t) =
1
7
x7 − 4

5
c1x

5 + 2c2
1x

3 − 4c3
1x − c4

1x
−1 − 576c1t + c2,

where c1 and c2 are arbitrary constants. Applying again (2.21a), setting c1 = c2 = 0 for
simplicity, we obtain the following solution for (2.11):

u(x, t) =
1

54 · 7 · 91x13 +
36

53 · 7x8t +
27 · 34

52
x3t2 − 212 · 38 · 7x−7t4 − 210 · 36 · 7

5
x−2t3.

Proposition 1 can now be applied with the above solutions of (2.11) (put u(x, t) ≡ B(x, t)
in (1.2) and (1.3)) to gain solutions for the Kaup–Kupershmidt equation (1.1). Furthermore,
solutions of the Kupershmidt equation, (2.7), are then given by the differential substitu-
tion (2.14).
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1988).

[9] J. Weiss, On classes of integrable systems and the Painlevé property, J. Math. Phys. 25 (1984)
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