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Universidade Técnica de Lisoba
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In this paper we study the integrability of the Muthuswamy–Chua system

x′ = y, y′ = −x

3
+

y

2
− yz2

2
, z′ = y − αz − yz.

For α = 0 we characterize all its generalized rational first integrals, which contains the Darboux
type first integrals. For α �= 0 we show that the system has no Darboux type first integrals.

Keywords: Darboux integrability; exponential factor; Darboux polynomials; Chua system; general-
ized rational first integrals.
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1. Introduction

Muthuswamy and Chua in [9] proposed the simplest electronic circuit producing chaotic
attractors. This circuit contains a linear passive inductor, a linear passive capacitor and a
nonlinear active memristor, and it can be described by the differential system




x′ = y,

y′ = −x

3
+

y

2
− yz2

2
,

z′ = y − αz − yz,

(1)

for any value of α ∈ R, where the prime denotes derivative with respect to the variable t.
Here, as in [6], this differential system is written in a slightly modified form because the
third equation is not z′ = −y−αz+yz as in [9] but rather z′ = y−αz−yz. The nonlinearity
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is inverted and thus the orientation of the attractor in the (x, y) plane is rotated by π. Hence
there is no topologically difference between these two attractors. A topological characteri-
zation of this system and its comparison with the Rössler-like attractors was given in [6].

We define the vector field X associated to (1) as

X = y
∂

∂x
+

(
−x

3
+

y

2
− yz2

2

)
∂

∂y
+ (y − αz − yz)

∂

∂z
.

Let U be an open subset in R
3 such that R

3 \U has zero Lebesgue measure. We say that
a nonconstant real function H = H(x, y, z) : R

3 → R is a first integral if H(x(t), y(t), z(t))
is constant for all values of a solution (x(t), y(t), z(t)) of X contained in U , i.e. XH|U = 0.

The existence of a first integral for a differential system in R
3 allows to reduce its study

in one dimension. This is the main reason to look for first integrals.
Two functions f1(x, y, z) and f2(x, y, z) are said to be independent if their gradients

are linearly independent vectors for all (x, y, z) ∈ R
3 except perhaps for a set of zero

Lebesgue measure. If the vector field X has two independent first integrals H1 and H2, we
say that it is completely integrable. In this case, the orbits of X are contained in the curves
{H1(x, y, z) = h1} ∩ {H2(x, y, z) = h2}, where h1, h2 vary in R.

We define a generalized rational function as the quotient of two analytic functions. The
following is our main result for system (1) with α = 0.

Theorem 1. The unique generalized rational first integrals of system (1) with α = 0 are
generalized rational functions in the variable ex(1 − z).

Theorem 1 is proved in Sec. 2.
Now we work with α �= 0. One of the best tools to look for first integrals is the Darboux

theory of integrability. Now we shall introduce its basic notions. Let C[x, y, z] be the ring
of all polynomials with coefficients in C.

We say that f ∈ C[x, y, z] is a Darboux polynomial of the vector field X if there exists
a polynomial k ∈ C[x, y, z] such that Xf = kf . The polynomial k = k(x, y, z) is called the
cofactor of f . It is easy to show that the cofactor of a Darboux polynomial of system (1) has
degree at most 2. Note that we look for complex Darboux polynomials in real differential
systems. The reason is that frequently the complex structure forces the existence of real
first integrals, and sometimes if we only work with reals we cannot detect all the real first
integrals.

If f ∈ C[x, y, z] is a Darboux polynomial, then f(x, y, z) = 0 is an invariant algebraic
surface for the differential system (1), i.e. if an orbit has a point on the surface f(x, y, z) = 0
all the orbit is contained in it. See [1] and the references quoted there, where the Darboux
polynomials for the Lotka–Volterra systems have been studied.

An exponential factor F (x, y, z) of the vector field X is an exponential function of the
form exp(g/h) with g and h coprime polynomials in C[x, y, z] and satisfying XF = LF

for some L ∈ C[x, y, z] with degree at most 2. The exponential factors appear when some
Darboux polynomial has multiplicity larger than one, for more details see [3, 7].

A first integral of system (1) is called Darboux type if it is a first integral of the form

fλ1
1 · · · fλp

p Fµ1
1 · · ·Fµq

q ,

where f1, . . . , fp are Darboux polynomials and F1, . . . , Fq are exponential factors.
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The next theorem is the main result for system (1) with α �= 0, and it shows the
nonexistence of first integrals of Darboux type.

Theorem 2. When α �= 0 system (1) has no first integrals of Darboux type.

Theorem 2 is proved in Sec. 4.

2. Proof of Theorem 1

To prove Theorem 1 we use the following result which is due to Llibre and Zhang in [4].

Theorem 3. Assume that the differential system (1) has p as a singular point and let
λ1, λ2, λ3 be the eigenvalues of the linear part of system (1) at p. Then the number of
functionally independent generalized rational first integrals of system (1) is at most the
dimension of the minimal vector subspace of R

3 containing the set

{
(k1, k2, k3) ∈ Z

3 : k1λ1 + k2λ2 + k3λ3 = 0, (k1, k2, k3) �= (0, 0, 0)
}
.

Proof of Theorem 1. We consider system (1) with α = 0, that is

ẋ = y, ẏ = −x

3
+

y

2
− yz2

2
, ż = y − yz. (2)

It is easy to check that

H = x + ln(1 − z)

is a first integral of system (2). Therefore, K = eH = ex(1 − z) is a generalized rational
function. To conclude the proof of the theorem we shall show that system (2) has no other
generalized rational first integrals. To prove this we will use Theorem 3. First we note that
the singular points of system (2) are of the form (0, 0, z) with z ∈ R. We compute the
eigenvalues λ1, λ2, λ3 of the Jacobian matrix of system (2) on these singular points and we
get

λ1 = 0, λ2,3 =
1
12

(3 − 3z2 ∓
√

−39 + 9z2(z2 − 2)).

Therefore k1λ1 + k2λ2 + k3λ3 = 0 is equivalent to

k2(3 − 3z2 −
√

−39 + 9z2(z2 − 2)) + k3(3 − 3z2 +
√

−39 + 9z2(z2 − 2)) = 0,

or in other words

k2

k3
= −3 − 3z2 +

√−39 + 9z2(z2 − 2)

3 − 3z2 −
√

−39 + 9z2(z2 − 2)
. (3)

It is clear that the left-hand side of (3) is a rational number (once that k2, k3 ∈ Z), and
that choosing z in a convenient way the right-hand side of (3) is irrational. Therefore (3)
cannot hold for this convenient choice of z. Hence for this special singular point (0, 0, z),
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the dimension of the minimal vector subspace of R
3 containing the set

{
(k1, k2, k3) ∈ Z

3 : k1λ1 + k2λ2 + k3λ3 = 0, (k1, k2, k3) �= (0, 0, 0)
}

is clearly one, generated by (k1, 0, 0). Thus it follows from Theorem 3 that system (2) can
only have one independent generalized rational first integral, which must be a function of
H. This completes the proof of the theorem.

3. Auxiliary Results

In the proof of Theorem 2 we will use the following well known result of the Darboux theory
of integrability, see for instance [5, Chap. 8].

Theorem 4 (Darboux theory of integrability). Suppose that a polynomial vector field
X defined in R

n of degree m admits p Darboux polynomials fi with cofactors Ki for i =
1, . . . , p, and q exponential factors Fj = exp(gj/hj) with cofactors Lj for j = 1, . . . , q. If
there exist λi, µj ∈ C not all zero such that

p∑
i=1

λiKi +
q∑

j=1

µjLj = 0, (4)

then the following real (multivalued) function of Darboux type

fλ1
1 · · · fλp

p Fµ1
1 · · ·Fµq

q , (5)

substituting fλi
i by |fi|λi if λi ∈ R is a first integral of the vector field X.

For a proof of the next result see [7, 8].

Proposition 5. The following statements hold.

(a) If eg/h is an exponential factor for the polynomial differential system (1) and h is not
a constant polynomial, then h = 0 is an invariant algebraic surface.

(b) Eventually eg can be an exponential factor, coming from the multiplicity of the infinite
invariant plane.

The proof of the next result can be found in [2].

Lemma 6. Let f be a polynomial and f =
∏s

j=1 f
αj

j be its decomposition into irreducible
factors in C[x, y, z]. Then f is a Darboux polynomial of system (1) if and only if all the fj

are Darboux polynomials of system (1). Moreover, if K and Kj are the cofactors of f and
fj, then K =

∑s
j=1 αjKj .

We note that in view of Lemma 6 to study the Darboux polynomials of system (1) it is
enough to study the irreducible ones.

4. Proof of Theorem 2

To prove Theorem 2 we first study the existence of polynomial first integrals.

Proposition 7. System (1) has no polynomial first integrals.

1250029-4 480
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Proof. Let F = F (x, y, z) be a polynomial first integral of system (1). Then it satisfies

y
∂F

∂x
+

(
−x

3
+

y

2
− yz2

2

)
∂F

∂y
+ (y − αz − yz)

∂F

∂z
= 0. (6)

We write F as powers in the variable z in the form F (x, y, z) =
∑n

j=0 Fj(x, y)zj , where each
Fj is a polynomial in the variables x, y. Computing the coefficient in (6) of zn+2 we obtain

−y

2
∂Fn

∂y
= 0 that is Fn = Fn(x).

Now, computing the coefficient in (6) of zn+1 we obtain

−y

2
∂Fn−1

∂y
= 0 that is Fn−1 = Fn−1(x).

Finally, computing the coefficient in (6) of zn we get

−y

2
∂Fn−2

∂y
+ y

dFn

dx
− (α + y)nFn = 0.

That is, if n �= 0, Fn = Fn(x) must be divisible by y, in contradiction with the fact that
Fn is a polynomial in the variable x. Therefore, for n �= 0 we must have Fn = 0. Thus,
F = F0(x, y). Now, computing the coefficient in (6) of z2 we obtain

−y

2
∂F0

∂y
= 0 that is F0 = F0(x),

and again by (6) we obtain

y
dF0

dx
= 0 that is F0 = C0 ∈ R,

in contradiction with the fact that F is a polynomial first integral of system (1). This
concludes the proof of the proposition.

Now we will study the existence of Darboux polynomials with nonzero cofactor. Note
that the Darboux polynomial with zero cofactor is the polynomial first integrals. We recall
that a Darboux polynomial of system (1) is a non-constant polynomial f ∈ C[x, y, z] such
that

y
∂f

∂x
+

(
−x

3
+

y

2
− yz2

2

)
∂f

∂y
+ (y − αz − yz)

∂f

∂z
= kf, (7)

for some polynomial k ∈ C[x, y, z] called the cofactor. Since the degree of system (1) is three
we have that the degree of k can be at most two, that is, k is of the form

k = a0 + a1x + a2y + a3z + a4x
2 + a5xy + a6xz + a7y

2 + a8yz + a9z
2, (8)

where ai ∈ C for i = 0, . . . , 9.

Proposition 8. System (1) has no Darboux polynomials with nonzero cofactor.
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Proof. Let f be a Darboux polynomial of system (1) with cofactor k given in (8). First
we claim that a1 = a3 = a4 = a5 = a6 = a7 = a8 = 0 and a9 = −m/2, where m is a
non-negative integer.

Now we prove the claim. We write f as sum of its homogeneous parts as follows f =∑n
j=0 fj(x, y, z), where each fj is a homogeneous polynomial in its variables. Without loss

of generality we can assume that fn �= 0 and n ≥ 1. Computing the terms of degree n + 2
in (7) we have

−y

2
z2 ∂fn

∂y
= (a4x

2 + a5xy + a6xz + a7y
2 + a8yz + a9z

2)fn.

The general solution of this linear differential equation is of the form

fn = Kn(x, z) exp
(
−2a5x

z2
y − 2a8

z
y − a7

z2
y2

)
y−

2a4x2

z2 − 2a6x

z y−2a9 ,

where Kn is an arbitrary function in the variables x, z. Since fn must be a polynomial we
get that a4 = a5 = a6 = a7 = a8 = 0 and a9 = −m/2, where m is a non-negative integer.
Therefore

fn = Knym, where Kn = Kn(x, z) is an arbitrary polynomial in x, z. (9)

Now computing the terms of degree n + 1 in (7) we obtain

−y

2
z2 ∂fn−1

∂y
− yz

∂fn

∂z
= −m

2
z2fn−1 + (a1x + a2y + a3z)fn,

that is

−y

2
z2 ∂fn−1

∂y
− yz

dKn

dz
ym = −m

2
z2fn−1 + (a1x + a2y + a3z)Knym.

Solving this linear differential equation we obtain

fn−1 = Kn−1y
m − 2ym

z2

(
a2Kny +

dKn

dz
y + (a1x + a3z)Kn log y

)
, (10)

where Kn−1 = Kn−1(x, z) is an arbitrary function in x, z. Since fn−1 must be a polynomial
and Kn �= 0 (otherwise fn = 0) we conclude that a1 = a3 = 0. Hence, the claim is proved.

Now we make the change of variables

x = X, y = µ−2Y, z = µ−1Z, t = µ2τ,

then the Muthuswamy–Chua system becomes

Ẋ = Y, Ẏ = −Y Z2

2
+ µ2 Y

2
− µ4 X

3
, Ż = −Y Z + µY − αµ2Z, (11)

where the dot denotes derivative with respect to the variable τ . Set F (X,Y,Z) =
µnf(X,µ−2Y, µ−1Z) and K(X,Y,Z) = µ2k(X,µ−2Y, µ−1Z), whereas we considered above
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n is the highest weight degree in the weight homogeneous components of f in the variables
(x, y, z) with weight degrees (0, 2, 1). Assume that

F =
n∑

i=0

µiFi(X,Y,Z),

where Fi is a weight homogenous polynomial in X,Y and Z with weight degree n − i for
i = 0, 1, . . . , n. Note that in particular

Fj(X,Y,Z) = µnfn−j(x, y, z), j = 0, . . . , n. (12)

From the definition of Darboux polynomial we have that

Y

n∑
i=0

µi ∂Fi

∂X
+

(
−Y Z2

2
+ µ2 Y

2
− µ4 X

3

) n∑
i=0

µi ∂Fi

∂Y

+ (−Y Z + µY − αµ2Z)
n∑

i=0

µi ∂Fi

∂Z
=

(
a2Y − m

2
Z2 + µ2a0

) n∑
i=0

µiFi.

Equating the terms with µi for i = 0, 1 we get

L[F0] =
(

a2Y − m

2
Z2

)
F0 and L[F1] =

(
a2Y − m

2
Z2

)
F1 − Y

∂F0

∂Z
, (13)

where L is the linear partial differential operator of the form

L = Y
∂

∂X
− 1

2
Y Z2 ∂

∂Y
− Y Z

∂

∂Z
.

The characteristic equations associated to the linear partial differential operator are

dX

dZ
= − Y

Y Z
= − 1

Z
,

dY

dZ
=

Y Z2

2Y Z
=

Z

2
.

This system has the general solution

e1 = ZeX and e2 = Y − Z2

4
,

where e1 and e2 are constants of integration. According to this, we introduce the change of
variables

u = ZeX , v = Y − Z2

4
, w = X. (14)

Its inverse transformation is

Z = ue−w, Y = v +
u2e−2w

4
, X = w. (15)

Under the changes (14) and (15), the first equation in (13) becomes the following ordinary
differential equation (for fixed u, v):

(
v +

u2e−2w

4

)
∂F̄0

∂w
=

(
a2

(
v +

v2e−2w

4

)
− m

2
u2e−2w

)
F̄0,

1250029-7 483
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where F̄0 is F0 written in terms of u, v and w. In what follows we always use the notation Ḡ

to denote G(x, y, z) written in terms of u, v, w. The last equation has the general solution

F̄0 = K̄0(u, v)ea2w
(
v +

u2e−2w

4

)m
,

where K̄0 is an arbitrary smooth function in u and v. So,

F0 = F̄0 = ea2XY mK0

(
ZeX , Y − Z2

4

)
.

Since F0 must be a weight homogeneous polynomial of weight degree n, we must have
a2 = −l for some non-negative integer l and

F0 = c0Z
lY mP0

(
Y − Z2

4

)
,

where P0 is a polynomial in the variable Y −Z2/4 and c0 ∈ C\{0}. Since the weight degree
of Y − Z2/4 is 2, we get that

F0 = c0Z
lY m

(
Y − Z2

4

)p

, l + 2m + 2p = n. (16)

Now from (9), (12) and (16) we obtain

p = 0, Kn = c0z
l and fn = c0z

lym, F0 = c0Z
lY m.

Note that from (10) we get that

fn−1 = Kn−1y
m − 2lc0y

m+1

z2
(−zl + zl−1). (17)

Now, substituting F0 into the second equation of (13) we get that

L[F1] =
(
−lY − m

2
Z2

)
F1 − c0lz

l−1ym+1.

Using again the change of variables (14) and (15) and working as we did for F0 we get that(
v +

u2e−2w

4

)
∂F̄1

∂w
=

(
−l

(
v +

v2e−2w

4

)
− m

2
u2e−2w

)
F̄1

− c0lu
l−1e−(l+1)w

(
v +

u2e−2w

4

)m+1

.

Integrating this equation with respect to w we get

F1 = −c0lY
mZ l−1 + e−lXY mK1

(
ZeX , Y − Z2

4

)
.

Note that since F1 must be a polynomial of degree n − 1, proceeding as we did for F0 we
have that

e−lXY mK1

(
ZeX , Y − Z2

4

)
= Y mZ lP1

(
Y − Z2

4

)
,

where P1 is a polynomial in the variable Y −Z2/4. Note that F1 has weight degree 2m+l+2q
where q is the degree of P1 with respect to Y − Z2/4. Since F1 has degree 2m + 2l − 1 it
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follows that P1 = 0. Thus

F1 = −c0lY
mZ l−1.

Now from this equation, Eqs. (12), (17) and the fact that c0 �= 0 we get

l = 0, Kn = c0, fn = c0y
m, fn−1 = 0.

Therefore, a2 = 0. Now computing the terms of degree n in (7) we obtain

−y

2
z2 ∂fn−2

∂y
+ m

(
−x

3
+

y

2

)
c0y

m−1 = −m

2
z2fn−2 + a0c0y

m.

Solving it

fn−2 = ymKn−2 +
c0y

m

z2

(
2mx

3y
+ (m − 2a0) log y

)
,

where Kn−2 = Kn−2(x, z) is an arbitrary function in x, z. Since fn−2 must be a polynomial
and c0 �= 0 we get that m = 0 and a0 = m/2 = 0. Therefore, since a9 = −m/2 we conclude
that ai = 0 for i = 0, . . . , 9 and thus k = 0, in contradiction with the fact that f is a Darboux
polynomial with nonzero cofactor. This concludes the proof of the proposition.

An exponential factor of system (1) is a function f = exp(h/g) satisfying (7), where
h, g ∈ C[x, y, z] are coprime polynomials.

Proposition 9. The unique exponential factors, modulo constants, of system (1) are

ex, ex2
, ez and ez2−4y

with cofactors

y, 2xy, y − yz − αz and
4
3
x − 2y + 2yz − 2αz2,

respectively.

Proof. Let F = exp(g/h) be an exponential factor of the Muthuswamy–Chua system with
cofactor L, where g, h ∈ C[x, y, z] with (g, h) = 1. Then from the definition of exponential
factor and in view of Propositions 5, 7 and 8 we have that h is a constant that we can take
h = 1. Thus F = exp(g), where g ∈ C[x, y, z]. Then, g satisfies

y
∂g

∂x
+

(
−x

3
+

y

2
− yz2

2

)
∂g

∂y
+ (y − αz − yz)

∂g

∂z
= L, (18)

where L = a0 + a1x + a2y + a3z + a4x
2 + a5xy + a6xz + a7y

2 + a8yz + a9z
2. We write g as

a polynomial in the variable z in the form

g(x, y, z) =
n∑

j=0

gj(x, y)zj ,

where each gj is a polynomial in the variables x, y. We first assume n ≥ 3. Computing the
coefficient in (18) of zn+2 we obtain

−y

2
∂gn

∂y
= 0 that is gn = gn(x).
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Now computing the coefficient in (18) of zn+1 we obtain

−y

2
∂gn−1

∂y
= 0 that is gn−1 = gn−1(x).

Finally, computing the coefficient in (18) of zn we get

−y

2
∂gn−2

∂y
+ y

dgn

dx
− (α + y)ngn = 0.

Then gn = gn(x) must be divisible by y, in contradiction with the fact that gn is a polynomial
in the variable x. Therefore n < 3 and we write h as g = g0(x, y) + g1(x, y)z + g2(x, y)z2,
where gi are polynomials in x, y for i = 0, 1, 2. Imposing that g satisfies (18) and computing
the coefficients of zj , that we call Aj for j = 0, 1, 2, 3, 4 in (18) we get

A1 =
1
6

(
−6a0 − 6a1x − 6a4x

2 − 6a2y − 6a5xy − 6a7y
2 + 6yg1 + (3y − 2x)

∂g0

∂y
+ 6y

∂g0

∂x

)
,

A2 =
1
6

(
−6a3 − 6a6x − 6a8y − 6(y + α)g1 + 12yh2 + (3y − 2x)

∂g1

∂y
+ 6y

∂g1

∂x

)
,

A3 =
1
6

(
−6a9 − 12(y + α)g2 − 3y

∂g0

∂y
+ (3y − 2x)

∂g2

∂y
+ 6y

∂g2

∂x

)
,

A4 = −1
2
y
∂g1

∂y
,

A5 = −1
2
y
∂g2

∂y
.

From conditions A4 = A5 = 0 we get that g1(x, y) = g1(x) and g2(x, y) = g2(x). Now the
equation for A2 becomes

A2 = −6(a3 + a6x + αg1) − 6y
(
a8 + g1 − 2g2 − dg1

dx

)
,

and setting A2 = 0 we obtain

g1 = − 1
α

(a3 + a6x) and g2 =
1
2α

(a8α + a6 − a3 − a6x).

Furthermore, condition A3 becomes

A3 =
1
2α

(
2a3(y + α) + a6((2x − 3)y + 2(x − 1)α) − 2α(a9 + a8(y + α)) − yα

∂g0

∂y

)
,

and thus, from A3 = 0 we get

g0 =
1
α

(y(2a3 + a6(2x − 3) − 2a8α) − 2α(−a3 + a6 + a9 − a6x + a8α) log y + αG0(x)).

Since g0 must be a polynomial we have

a6 = 0, a3 = a9 + a8α and g0 =
2a9

α
y + G0(x).
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Now imposing these conditions into the relation A1 = 0 we obtain

−2a9x − 3(a0 + a1x + a4x
2 + y(a2 + a8 + a5x + a7y))α + 3yα

dG0

dx
= 0,

which yields

G0 = K0 +
a4x

3

3y
+

x

y
(a0 + (a2 + a8)y + a7y

2) +
x2

6αy
(2a9 + 3αa1 + 3αa5y).

Since G0 must be a polynomial in the variable x we get

a4 = 0, a0 = 0, a9 = −3
2
a1 and a7 = 0,

and hence G0 = K0 +(a2 +a8)x+a5x
2/2. Moreover, since we are searching the exponential

factors modulo constants we can set K0 = 0. In summary

g =
2a9

α
y + (a2 + a8)x +

a5

2
x2 +

(
3a1

2
− a8

)
z +

3a1

4
z2

= a2x +
a5

2
x2 + a8(x − z) + a1

(
−3y +

3z
2

+
3z2

4

)
.

Note that in modulo multiplicative constants, the exponential factors are ex, ex2
, ez and

ez2−4y. Knowing the exponential factors we can compute easily their cofactors, obtaining the
ones given in the statement of the proposition. This completes the proof of the proposition.

Proof of Theorem 2. It follows from Theorem 4 that the Muthuswamy–Chua system
(1) has a first integral of Darboux type if and only if there exist λi, µj ∈ C not all zero
such that Eq. (4) is satisfied, where p, q are the number of Darboux polynomials and the
number of exponential factors, respectively. Furthermore, Ki, Lj are the cofactors of Dar-
boux polynomials and exponential factors, respectively. It follows from Propositions 7 and
8 that the Muthuswamy–Chua system has no Darboux polynomials, and by Proposition 9
we have that there are four cofactors of the form L1 = y, L2 = 2xy, L3 = y − yz − αz and
L4 = 4x/3 − 2y + 2yz − 2αz2. So Eq. (4) is equivalent to

µ1y + 2µ2xy + µ3(y − yz − αz) + µ4

(
4
3
x − 2y + 2yz − 2αz2

)
= 0.

Solving this equation we obtain that µ1 = µ2 = µ3 = µ4 = 0. This completes the proof of
the theorem.
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