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On the basis of the theory of algebraic curves, the continuous flow and discrete flow related to the
relativistic Toda hierarchy are straightened out using the Abel–Jacobi coordinates. The meromor-
phic function and the Baker–Akhiezer function are introduced on the hyperelliptic curve. Quasi-
periodic solutions of the relativistic Toda hierarchy are constructed with the help of the asymptotic
properties and the algebro-geometric characters of the meromorphic function and the hyperelliptic
curve.

Keywords: Relativistic Toda hierarchy; quasi-periodic solutions.

1. Introduction

The relativistic Toda lattice

at(n) =
1
2
a(n)

[
a2(n+ 1) − a2(n− 1) + b(n + 1) − b(n)

]
,

bt(n) = b(n)
[
a2(n) − a2(n − 1)

]
.

(1.1)

was first introduced by Ruijsenaars [16] and has been extensively studied by many authors.
For instance, its integrability has been proved by the author himself, and in a list of papers
by Bruschi and Ragnisco, in the case of a finite lattice (periodic case and free ends) [2–4].
Oevel, Fuchssteiner and Zhang investigated the integrability structure of the infinite rel-
ativistic Toda lattice from the Lie-algebraic point of view [14]. Alber found a nonlinear
family of relativistic Toda lattices with corresponding stationary and dynamical systems,
and reduced the finite-gap problem to the Jacobi inversion problem [1]. Ohta, Kajiwara,
Matusukidara and Satsuma obtained its Casorati determinant solution [15]. Suris studied
algebraic structure of discrete-time and relativistic Toda lattices [17]. Under a constraint
between potentials and eigenfunctions, the discrete spectral problem associated with the
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relativistic Toda lattice is nonlinearized so as to be an integrable symplectic map of Neu-
mann type, and the calculation of the finite-band solutions of the relativistic Toda lattice is
reduced to the solution of a system of ordinary differential equations plus a simple iterative
process of the symplectic map [18]. The relation between 2+1-dimensional modified Toda
lattice and the relativistic Toda flows are revealed in [7]. A Darboux transformation for
the relativistic Toda lattice is constructed, by which exact solutions of the relativistic Toda
lattice equation are presented [19].

We recall here the basic definitions for the relativistic Toda lattice and its various dif-
ferent forms. In terms of the canonically conjugate variables (q(n, t), p(n, t)), the infinite
relativistic Toda system is defined by the following Hamiltonian [2, 14, 16]

H(q, p) =
∑
n∈Z

{
exp(p(n))[1 + exp(q(n− 1) − q(n))]

1
2

× [1 + exp(q(n) − q(n+ 1))]
1
2 − 2

}
, (1.2)

whose canonical equations of motion of the Hamiltonian system reads

qt(n) = c(n),

pt(n) =
1
2
d(n − 1)(c(n) + c(n− 1)) − 1

2
d(n)(c(n) + c(n + 1)),

(1.3)

where

c(n) = exp(p(n))[1 + exp(q(n− 1) − q(n− 1))]
1
2 [1 + exp(q(n) − q(n+ 1))]

1
2 ,

d(n) =
exp(q(n) − q(n+ 1))

1 + exp(q(n) − q(n+ 1))
.

(1.4)

Substituting (1.4) into (1.3) and canceling variable p(n), the equations of motion (1.3) are
written in Newtonian form

qtt(n) = qt(n)
(
qt(n− 1)

exp(q(n− 1) − q(n))
1 + exp(q(n− 1) − q(n))

− qt(n+ 1)
exp(q(n) − q(n+ 1))

1 + exp(q(n) − q(n+ 1))

)
.

(1.5)

Differentiating (1.4) with respect to t and substituting (1.3) yield the following lattice [3]

ct(n) = c(n− 1)c(n)d(n − 1) − c(n)c(n + 1)d(n),

dt(n) = d(n)(1 − d(n))(c(n) − c(n + 1)).
(1.6)

A further useful form of the relativistic Toda lattice can be obtained from (1.6) by setting

r(n) = c(n)d(n), s(n) = c(n)(1 − d(n)),

so that we have [4]

st(n) = s(n)(r(n− 1) − r(n)),

rt(n) = r(n)(s(n) − s(n+ 1) + r(n− 1) − r(n+ 1)),
(1.7)
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which can be written as (1.1) in terms of new variables

r(n) = −a2(n), s(n) = −b(n). (1.8)

The main aim of this paper is to construct quasi-periodic solutions of the relativistic
Toda hierarchy based on the approaches in [5, 6, 8–10]. This is realized through three main
steps. First, based on the resulting Lax representation, the relativistic Toda hierarchy is
decomposed into the solvable ordinary differential equations. Second, the determinant of
Lax matrix serves as a base to construct the associated algebraic curve and the Abel–
Jacobi coordinates, through which the continuous flows and discrete ones determined by
the time variable tm and discrete variable n, respectively, are straightened out and the
linear superposition yields the solutions of the relativistic Toda hierarchy, expressed in the
Abel–Jacobi coordinates. Here straightening out of the various flows means that the Abel–
Jacobi coordinate is a linear function of the associated flow variables tm and n. Third,
an inverse procedure is indispensable in transforming the explicit solution in the original
coordinates. The main tool in our theory is the asymptotic properties and the algebro-
geometric characters of the meromorphic function and the hyperelliptic curve.

The outline of this paper is as follows. In Sec. 2, we introduce the Lenard gradients and
derive the relativistic Toda hierarchy with the aid of the stationary zero-curvature equation,
in which the first nontrivial member is the relativistic Toda lattice. In Sec. 3, we introduce a
Lax matrix and establish a direct relation between the elliptic variables and the potentials.
The relativistic Toda hierarchy is separated into solvable ordinary differential equations.
In Sec. 4, the hyperelliptic Riemann surface of arithmetic genus N and the Abel–Jacobi
coordinates are introduced from which the corresponding various flows are straightened
out, including the continuous and discrete ones. In Sec. 5, quasi-periodic solutions of the
relativistic Toda hierarchy are constructed in terms of the Riemann theta functions accord-
ing to the asymptotic properties and the algebro-geometric characters of the meromorphic
function on the hyperelliptic curve.

2. The Relativistic Toda Hierarchy

In this section, we construct the relativistic Toda hierarchy. Throughout this paper we
suppose the following hypothesis.

Hypothesis 2.1. Assume that a and b satisfy

a(·, t), b(·, t) ∈ C
Z, t ∈ R, a(n, ·), b(n, ·) ∈ C1(R), n ∈ Z,

a(n, t)b(n, t) �= 0, (n, t) ∈ Z × R,

where C
Z denotes the set of all complex-valued sequences indexed by Z. For the sake

of convenience, we denote by E± the shift operators acting on complex-valued sequences
f = {f(n)}n∈Z according to

(E±f)(n) = f(n± 1), n ∈ Z

and define difference operators by � = E − 1, �∗ = E− − 1. Moreover, we will frequently
use the notation

f± = E±f, f ∈ C
Z.
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Let us consider the discrete spectral problem

χn+1 = Unχn, Un =
1

a(n)

(
0 −a2(n)

1 λ− λ−1b(n)

)
, (2.1)

where a(n) and b(n) are two potentials, and λ is a constant spectral parameter. To derive
the relativistic Toda hierarchy, we introduce the Lenard gradient sequences

KnSj−1(n) = JnSj(n), JnS−1(n) = 0, j ≥ 0, (2.2)

KnŜj−1(n) = JnŜj(n), KnŜ0(n) = 0, j ≤ 0, (2.3)

where Sj(n) = (S(1)
j (n), S(2)

j (n))T , Ŝj(n) = (Ŝ(1)
j (n), Ŝ(2)

j (n))T , and take

S−1(n) =

(
2a(n)

1

)
, Ŝ0(n) =

 0
1
b(n)

 (2.4)

as a starting point of (2.2) or (2.3), and two skew-symmetric matrix operators are defined as

Kn =

 1
2
a(n)(�−�∗)a(n) a(n)�b(n)

−b(n)�∗a(n) 0

 , Jn =

(
0 a(n)�

−�∗a(n) 2(�∗a2(n) − a2(n)�)

)
.

It is easy to see that

ker Jn = {c1S−1(n) + c2S−2(n) | ∀ c1, c2 ∈ R},

kerKn = {c1Ŝ0(n) + c2Ŝ1(n) | ∀ c1, c2 ∈ R},

where c1 and c2 are two arbitrary constants, S−2 = Ŝ1 = ( 1
a(n) , 0)

T . Then Sj (j ≥ 0) and

Ŝj (j ≤ 0) are uniquely determined by (2.2) or (2.3), respectively, up to a term c1S−1(n) +
c2S−2(n) or c1Ŝ0(n)+ c2Ŝ1(n), which are always assumed to be zero. For example, the first
two members are

S0(n) =

(
2a(n)(a2(n+ 1) + a2(n) + a2(n − 1) + b(n + 1) + b(n))

a2(n) + a2(n− 1) + b(n)

)
, (2.5)

Ŝ−1(n) =


− 2a(n)
b(n+ 1)b(n)

1
b2(n)

(
1 +

a2(n)
b(n+ 1)

+
a2(n− 1)
b(n − 1)

)
 . (2.6)

Assume that the time evolution of the eigenfunction χn obeys the differential equation

χn,tm = V
(m)
n χn, V

(m)
n =

(
A(m)(n) λB(m)(n)

λC(m)(n) −A(m)(n)

)
, m = (m1,m2) ∈ N

2
0, (2.7)
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where A(m)(n), B(m)(n), C(m)(n) are polynomials of the spectral parameter λ, which take
the form

A(m)(n) = b(n)S(2)(n) − 1
2
�∗anS

(1)(n) − λ2S(2)(n),

B(m)(n) = −2a2(n− 1)S(2)(n), C(m)(n) = 2S(2)(n),

S(1)(n) = α
m1∑
j=0

S
(2)
j−1(n)λ2m1−2j + β

−m2+1∑
j=0

Ŝ
(1)
j (n)λ−2m2−2j ,

S(2)(n) = α
m1∑
j=0

S
(2)
j−1(n)λ2m1−2j + β

−m2+1∑
j=0

Ŝ
(2)
j (n)λ−2m2−2j .

(2.8)

Then the compatibility condition (∂/∂t)Eχn = E(∂/∂t)χn of (2.1) and (2.7) yields the
zero-curvature equation, Un, tm +UnV

(m)
n − V

(m)
n+1Un = 0, which is equivalent to a hierarchy

of the relativistic Toda lattices:

(a(n), b(n))Ttm = αXm1(n) − βX−m2(n), m1 ≥ 0, m2 ≥ 1, (2.9)

where Xm1 = KnSm1−1 = JnSm1, X−m2 = KnŜ−m2 = JnŜ−m2+1. The first member in
(2.9) is the relativistic Toda lattice

at(0,1)
(n) = αa(n)(a2(n + 1) − a2(n− 1)

+ b(n+ 1) − b(n)) − βa(n)
(

1
b(n+ 1)

− 1
b(n)

)
,

(2.10)

bt(0,1)
(n) = 2αb(n)(a2(n) − a2(n− 1)) − 2β

(
a2(n− 1)
b(n− 1)

− a2(n)
b(n+ 1)

)
.

Equation (2.10) is, respectively, reduced to the two members in the relativistic Toda lattice
hierarchy

at(n) =
1
2
a(n)(a2(n+ 1) − a2(n− 1) + b(n+ 1) − b(n)),

bt(n) = b(n)(a2(n) − a2(n− 1)),

for α = 1
2 , β = 0, t = t(0, 1), and

ax(n) =
1
2
a(n)

(
1

b(n+ 1)
− 1
b(n)

)
,

bx(n) =
a2(n − 1)
b(n− 1)

− a2(n)
b(n + 1)

,

for α = 0, β = −1
2 , x = t(0,1).

3. Evolution of the Elliptic Variables

In what follows, we will establish a relation between the elliptic variables µj(n) (see (3.18)
and [12]) and the potentials a(n), b(n) in the discrete spectral problem (2.1). Let ψ(n) =
(ψ1(n), ψ2(n))T and ϕ(n) = (ϕ1(n), ϕ2(n))T be two basic solutions of (2.1) and (2.7). We
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introduce a Lax matrix

Wn =
1
2
(ψ(n)ϕ(n)T + ϕ(n)ψ(n)T )

(
0 −1

1 0

)
=

(
G(n) λF (n)

λH(n) −G(n)

)
, (3.1)

which satisfies the Lax equations

Wn+1Un − UnWn = 0, Wn,tm = [V (m)
n ,Wn]. (3.2)

Therefore, det W is a constant independent of n and tm. In fact, we obtain by the first
expression of (3.2) that Wn+1 = UnWnU

−1
n . Then det Wn+1 = det Wn, which means that

det Wn is independent of n. In a way similar to the continuous case, a direct calculation
shows that (det W )tm = 0.

In the following, we shall solve the Lax equations (3.2), by which we derive explicit
expressions of G(n), F (n),H(n) in the Lax matrix Wn and show them to be polynomials of
λ and λ−1. Equation (3.2) can be written as

F (n + 1) + a2(n)H(n) = 0,

(λ2 − b(n))F (n+ 1) − a2(n)(G(n + 1) +G(n)) = 0,

(λ2 − b(n))H(n) + (G(n + 1) +G(n)) = 0,

(λ2 − b(n))�G(n) + λ2a2(n)H(n+ 1) + λ2F (n) = 0,

(3.3)

and

G(n)tm = λ2B(m)H(n) − λ2C(m)(n)F (n),

F (n)tm = 2A(m)(n)F (n) − 2B(m)(n)G(n),

H(n)tm = 2C(m)(n)G(n) − 2A(m)(n)H(n).

(3.4)

Suppose functions G(n), F (n) and H(n) are finite-order polynomials in λ:

G(n) = bnQ
(2)(n) − 1

2
�∗a(n)Q(1)(n) − λ2Q(2)(n),

F (n) = −2a2(n − 1)Q(2)(n− 1), H(n) = 2Q(2)(n),

Q(1)(n) =
N1∑
j=0

Q
(1)
j−1(n)λ2N1−2j +

−N2+1∑
j=0

Q̂
(1)
j (n)λ−2N2−2j ,

Q(2)(n) =
N1∑
j=0

Q
(2)
j−1(n)λ2N1−2j +

−N2+1∑
j=0

Q̂
(2)
j (n)λ−2N2−2j .

(3.5)

Substituting (3.5) into (3.3) yields

KnQj−1(n) = JnQj(n), JnQ−1(n) = 0, j ≥ 0,

KnQ̂j−1(n) = JnQ̂j(n), KnQ̂0(n) = 0, j ≤ 0,

KnQN1−1(n) = JnQ̂−N2+1(n),

(3.6)
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with Qj(n) = (Q(1)
j (n), Q(2)

j (n))T , (j ≥ 0); Q̂j(n) = (Q̂(1)
j (n), Q̂(2)

j (n))T, (j ≤ 0). It is easy to
see that the equation JnQ−1 = 0 and KnQ̂0(n) = 0 have the general solution:

Q−1(n) = α0,+S−1(n) + α̂0,+S−2(n), (3.7)

Q̂0(n) = α0,−Ŝ0(n) + α̂0,−Ŝ1(n), (3.8)

where α0,+, α̂0,+ and α0,−, α̂0,− are constants. Noticing S−2 = Ŝ1 ∈ ker Kn ∩ker Jn, acting
with the operators (J−1

n Kn)k+1 and (K−1
n Jn)k, respectively, on (3.7) and (3.8). We obtain

from (3.6) and (2.2) that

Qk(n) =
k∑

j=0

αj,+Sk−j(n) + αk+1,+S−1(n) + α̂k+1,+S−2(n), 0 ≤ k ≤ N1, (3.9)

Q̂−k(n) =
k∑

j=0

αj,−Ŝ−k+j(n) + α̂k,−S−2(n), 0 ≤ k ≤ N2, (3.10)

where α1,+, . . . , αk+1,+, α̂1,+, . . . , α̂k+1,+, α1,−, . . . , αk,− α̂1,−, . . . , α̂k,− are constants. Sub-
stituting (3.9) and (3.10) into the final equation in (3.6) gives rise to the N -order stationary
relativistic Toda lattice

α0,+XN1(n) + · · · + αN1,+X0(n) + αN2−1,−X−1(n) + · · · + α0,−X−N2(n) = 0.

From (3.5), (3.7)–(3.10), we have

G(n) =
N1+1∑
j=0

gj,+(n)λ2(N1+1)−2j +
N2−1∑
j=0

gj,−(n)λ−2N2+2j ,

F (n) =
N1∑
j=0

fj,+(n)λ2N1−2j +
N2−1∑
j=0

fj,−(n)λ−2N2+2j,

H(n) =
N1∑
j=0

hj,+(n)λ2N1−2j +
N2−1∑
j=0

hj,−(n)λ−2N2+2j ,

(3.11)

where

g0,+(n) = −α0,+, g1,+(n) = −2α0,+a
2(n− 1) − α1,+,

f0,+(n) = −2α0,+a
2(n − 1),

f1,+(n) = −2α0,+a
2(n − 1)(a2(n− 1) + a2(n− 2) + b(n− 1)) − 2α1,+a

2(n− 1),

h0,+(n) = 2α0,+, h1,+(n) = 2α0,+(a2(n) + a2(n − 1) + b(n)) + 2α1,+,

g0,−(n) = α0,−, g1,−(n) =
2α0,−a2(n− 1)
b(n)b(n− 1)

+ α1,−,

f0,−(n) = −2α0,−a2(n − 1)
b(n − 1)

,

(3.12)
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f1,−(n) = −2α0,−a2(n− 1)
b2(n− 1)

(
1 +

a2(n− 1)
b(n)

+
a2(n− 2)
b(n − 2)

)
− 2α1,−a2(n − 1)

b(n − 1)
,

h0,−(n) =
2α0,−
b(n)

, h1,−(n) =
2α0,−
b2(n)

(
1 +

a2(n)
b(n+ 1)

+
a2(n− 1)
b(n− 1)

)
+

2α1,−
b(n)

.

Subsequently, it will be useful to work with the homogeneous coefficients, ĝj,±, f̂j,±,
and ĥj,±, defined by the vanishing of all summation constants αk,± for k = 1, 2, . . . , j, and
α0,± = 1,

ĝ0,+(n) = −1, ĝ0,−(n) = 1, ĝj,±(n) = gj,±(n)|α0,±=1,αk,±=0,k=1,...,j,

f̂0,+(n) = −2a2(n − 1), f̂0,−(n) = −2a2(n− 1)
b(n− 1)

,

f̂j,±(n) = fj,±(n)|α0,±=1,αk,±=0,k=1,...,j,

ĥ0,+(n) = 2, ĥ0,−(n) =
2

b(n)
, ĥj,±(n) = hj,±(n)|α0,±=1,αk,±=0,k=1,...,j, j ∈ N.

(3.13)

By induction one infers that

gj,±(n) =
k∑

l=0

αj−l,±ĝk,±(n), fj,±(n) =
k∑

l=0

αj−l,±f̂k,±(n),

hj,±(n) =
k∑

l=0

αj−l,±ĥk,±(n).
(3.14)

Remark 3.1. As an useful tool to distinguish between nonhomogeneous and homogeneous
quantities gj,±, fj,±, hj,±, and ĝj,±, f̂j,±, ĥj,±, respectively, we now introduce the notion
of degree as follows. Denote

f = f(n)n∈Z ∈ C
Z, f (r) = S(r)f, S(r) =

{(
S+

)r
, r ≥ 0,(

S−)−r
, r < 0.

r ∈ Z,

and defines deg(a(r)) = 1, deg(b(r)) = 2, r ∈ Z.

Using (3.5), (3.6) and (3.11), then results in

deg(ĝl,+) = 2l, deg(ĝl,−) = −2l, l ∈ N0, (3.15)

deg(f̂l,+) = 2l + 2, deg(f̂l,−) = −2l, l ∈ N0, (3.16)

deg(ĥl,+) = 2l, deg(ĥl,−) = −2l − 2, l ∈ N0. (3.17)

Noticing (3.5) and (3.11), we can write F (n) and H(n) as finite products which take the
form

F (n) = −2α0,+a
2(n − 1)z−N2

N∏
j=1

(z − µj(n− 1)),

H(n) = 2α0,+z
−N2

N∏
j=1

(z − µj(n)), N = N1 +N2,

(3.18)
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where z = λ2, and the roots {µj(n)},{µ−j (n)} are called elliptic variables. Comparing the
coefficients of z in the expressions of F (n), H(n) in (3.11) and (3.18) readily yields trace
formulas for fl,±, hl,± in terms of symmetric functions of µj(n) and µ−j (n), respectively. For
simplicity, we just record the simplest cases

a2(n) + a2(n− 1) + b(n) = −
N∑

j=1

µj(n) − α1,+

α0,+
,

1
b(n)

=
α0,+

α0,−
(−1)N

N∏
j=1

µj(n).

(3.19)

Since det Wn is a polynomial that only depends on z, whose coefficients are constants of
the n-flow and tm-flow, we have

−det Wn = G2(n) + zF (n)H(n) = R(z), (3.20)

from which we obtain

G(n)|z=µk(n) =
√
R(µk(n)). (3.21)

Noticing (3.4) and (3.18), we get

H(n)tm |z=µk(n) = −2α0,+µk,tm(n)µk(n)−N2

N∏
j=1
j �=k

(µk(n) − µj(n))

= 2
√
R(µk(n))C(m)(n)|z=µk(n),

(3.22)

which means the Dubrovin equations for the time variation of µj(n)

µk,tm(n) = −
√
R(µk(n))C(m)(n)|z=µk(n)µk(n)N2

α0,+
∏N

j=1
j �=k

(µk(n) − µj(n))
, (3.23)

with 1 ≤ k ≤ N, m = (m1,m2), m1 ≥ 0, m2 ≥ 1, and

C(m)(n)|z=µk
= 2α

m1∑
j=0

S
(2)
j−1(n)µm1−j

k + 2β
−m2+1∑

j=0

Ŝ
(2)
j (n)µ−m2−j

k . (3.24)

4. Straightening Out of Various Flows

In the section, we first define a hyperelliptic curve KN with the aid of the determinant for
Lax matrix Wn. Then we introduce a fundamental meromorphic function and Abel–Jacobi
coordinates on KN . The corresponding continuous flow and discrete flow are straightened
out under the Abel–Jacobi coordinates. Here the meaning of straightening out of the various
flows is that the velocities of the Abel–Jacobi coordinate along the discrete n-flow and
continuous tm-flow are constant (see Theorems 4.6 and 4.9).

According to (3.1) and (3.2), one infers that the expression, R(z) = G2 + zFH =
− det Wn, is a constant independent of n and tm with z = λ2, in other words, R(z) only
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depends on z. Assuming in addition to Hypothesis 2.1 that

α0,± ∈ C\{0}, m = (m1,m2) ∈ N
2\{(0, 0)}, (4.1)

one may write R(z) as

R(z) = α2
0,+z

−2N2

2N+2∏
j=1

(z − zj), {zj}j=2N+2
j=1 ⊂ C\{0}, N = N1 +N2 ∈ N0. (4.2)

Moreover, (3.20) also implies

lim
z→0

z2N2R(z) = α2
0,+

2N+2∏
j=1

(−zj) = α2
0,−, (4.3)

and hence,

2N+2∏
j=1

zj =
α2

0,−
α2

0,+

. (4.4)

Equation (3.20) allows us to introduce a hyperelliptic curve KN of arithmetic genus N
(possibly with a singular affine part) defined by

KN : FN (z, y) = y2 − α−2
0,+z

2N2R(z) = y2 −
2N+2∏
j=1

(z − zj) = 0. (4.5)

The curve KN can be compactified by joining two points at infinity, P∞±, where P∞+ �=
P∞−. For notational simplicity the compactification is also denoted by KN . Points P on
KN\{P∞+, P∞−} are represented as pairs P = (z, y), where y(·) is the meromorphic func-
tion on KN satisfying FN (z, y) = 0. Here we assume that the zeros zj of R(z) in (3.20)
are mutually distinct, which means zj �= zk, for j �= k, 1 ≤ j, k ≤ 2N + 2. Then the
hyperelliptic curve KN becomes nonsingular. According to the definition of KN , we can lift
the roots {µj(n)} of H(n) and {µ−j (n)} of F (n) to KN by introducing

µ̂j(n, tm) = (µj(n, tm),−α−1
0,+µj(n, tm)N2G(µj(n, tm), n, tm)), (4.6)

µ̂−j (n, tm) = (µ−j (n, tm), α−1
0,+µj(n, tm)N2G(µ−j (n, tm), n, tm)), (4.7)

where j = 1, . . . , N, (n, tm) ∈ Z × R. We also introduce the points P0,± by

P0,± = (0, y(P0,±)) =
(

0,±α0,−
α0,+

)
∈ KN . (4.8)

We emphasize that P0,± and P∞± are not necessarily on the same sheet of KN .
Next, we briefly recall our conventions used in connection with divisors on KN . A map,

D : KN → Z, is called a divisor on KN if D(P ) �= 0 for only finitely many P ∈ KN . The
set of divisors on KN is denote by Div(KN ). We shall employ the following notation for
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divisors,

DQ0Q = DQ +DQ0, DQ = DQ1 + · · · +DQN
,

Q = {Q1, . . . , QN} ∈ SymN (KN ), Q0 ∈ KN , N ∈ N,

where for any Q ∈ KN ,

DQ : KN → N0, P 
→ DQ(P ) =

{
1, for P = Q,

0, P ∈ KN\{Q},

and SymN(KN ) denotes the Nth symmetric product of KN .

From (4.5) we know that

α2
0,+z

−2N2y2 = G2 + zFH ,

that is

(α0,+z
−N2y +G)(α0,+z

−N2y −G) = zFH ,

then we can define the fundamental meromorphic function φ(·, n, tm) on KN by

φ(P, n, tm) =
α0,+z

−N2y −G(n, tm)
F (n, tm)

=
zH(n, tm)

α0,+z−N2y +G(n, tm)
,

P = (z, y) ∈ KN , n ∈ N, (4.9)

with divisor (φ(·, n, tm)) of φ( ·, n, tm) given by

(φ(·, n, tm)) = DP0,+ν̂(n,tm) −DP∞−µ̂(n,tm) (4.10)

using (3.9). Here we abbreviated

µ̂(n, tm) = {µ̂1(n, tm), . . . , µ̂N (n, tm)}, ν̂(n, tm) = {ν̂1(n, tm), . . . , ν̂N (n, tm)}.

In order to straighten out of the corresponding flows, we consider the Riemann surface
KN and equip KN with canonical basis cycles: a1, . . . , aN ; b1, . . . , bN , which are independent
and have intersection numbers as follows

ai ◦ aj = 0, bi ◦ bj = 0, ai ◦ bj = δij .

For the present, we will choose our basis as the following set

ω̃l =
zl−1dz√

α−2
0,+z

2N2R(z)
, 1 ≤ l ≤ N, (4.11)

which are N linearly independent homomorphic differentials on KN . By using the cycles aj

and bj , the period matrices A and B can be constructed from

Aij =
∫

aj

ω̃i, Bij =
∫

bj

ω̃i.

It is possible to show that matrices A and B are invertible [11, 13]. Now we define the
matrices C and τ by C = A−1, τ = A−1B. The matrix τ can be shown to be symmetric
(τij = τji) and it has positive definite imaginary part (Im τ > 0). If we normalize ω̃l into
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the new basis ωj

ωj =
N∑

l=1

Cjlω̃l, 1 ≤ j ≤ N, (4.12)

then we have ∫
ai

ωj =
N∑

l=1

Cjl

∫
ai

ω̃l = δji,

∫
bi

ωj = τji.

Let T be the lattice generated by 2N vectors δj , τj, where δj = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
N−j

)

and τj = τδj . The complex torus J = C
N/T is called Jacobian variety of KN . Now we

introduce the Abel map A(P ) : Div(KN ) → J

A(P ) =
∫ P

P0

ω, A
(∑

nkPk

)
=
∑

nkA(Pk), (4.13)

where P , Pk ∈ KN , ω = (ω1, . . . , ωN ). The Riemann theta function is defined as [11, 13]

θ(P,D) = θ(Λ −A(P ) + A(D)) (4.14)

with P ∈ KN , D ∈ Div(KN ), and Λ = (Λ1, . . . ,ΛN ) is defined by

Λj =
1
2
(1 + τjj ) −

N∑
i=1
i�=j

∫
ai

ωi

∫ P

P0

ωj, j = 1, . . . , N.

Define the Abel–Jacobi coordinates

ρ(n, tm) = A
(

N∑
k=1

P (µk(n))

)
=

N∑
k=1

A(P (µk(n))) =
N∑

k=1

∫ P (µk(n))

P0

ω, (4.15)

where P (µk(n)) = (µk(n),
√
R(µk(n))). The components of the Abel–Jacobi coordinates in

(4.15) read

ρj(n, tm) =
N∑

k=1

∫ µ̂k(n,tm)

P0

ωj =
N∑

k=1

N∑
l=1

Cjl

∫ µk

z(P0)

zl−1dz√
α−2

0,+z
2N2R(z)

, (4.16)

where 1 ≤ j ≤ N . Without loss of generality, we choose the branch point P0 = (zj0 , 0),
j0 ∈ {1, . . . , 2N + 2}, as a convenient base point on KN , and z(P0) is its local coordinate.
Then according to (4.13) and the definition of Riemann theta function in (4.14), we have

θ(P,Dµ̂(n,tm)) = θ(Λ −A(P ) + ρ(n, tm)).

From (3.23), we obtain

∂tmρj(n, tm) =
N∑

l=1

N∑
k=1

Cjl

µl−1
k µk,tm√

α−2
0,+µk

2N2
R(µk)

=
N∑

l=1

N∑
k=1

(−Cjl)µl−1
k C(m)(n)|z=µk∏N

i=1
i�=k

(µk − µi)
. (4.17)
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Before discussing the following theorem, we start with some elementary results. Let

{zj}j=1,...,2N+2 ⊂ C

for some N ∈ N0 and ξ ⊂ C, such that |ξ| < min
{
|z1|−1, . . . , |z2N+2|−1

}
, and abbreviate

z = (z1, . . . , z2N+2), z−1 = (z−1
1 , . . . , z−1

2N+2).

Then 2N+2∏
j=1

(1 − zjξ)

− 1
2

=
∞∑

k=1

α̂k(z)ξk, (4.18)

where

α̂0(z) = 1,

α̂k(z) =
k∑

j1,...,j2N+2=0
j1+···+j2N+2=k

(2j1)! · · · (2j2N+2)!
22k (j1!)

2 · · · (j2N+2!)
2 z

j1
1 · · · zj2N+2

2N+2 , k ∈ N. (4.19)

The first three coefficients are given explicitly by

α̂0(z) = 1, α̂1(z) =
1
2

2N+2∑
j=1

zj , α̂2(z) =
1
4

2N+2∑
j,k=1
j<k

zjzk +
3
8

2N+2∑
j=1

z2
j . (4.20)

In a similar way, we have 2N+2∏
j=1

(1 − zjξ)


1
2

=
∞∑

k=1

αk(z)ξk, (4.21)

where

α0(z) = 1,

αk(z) =
k∑

j1,...,j2N+2=0
j1+···+j2N+2=k

(2j1)! · · · (2j2N+2)!
22k (j1!)

2 · · · (j2N+2!)
2 (2j1 − 1) · · · (2j2N+2 − 1)

× zj1
1 · · · zj2N+2

2N+2 , k ∈ N.

(4.22)

The first few coefficients explicitly read

α0(z) = 1, α1(z) = −1
2

2N+2∑
j=1

zj, α2(z) =
1
4

2N+2∑
j,k=1
j<k

zjzk − 1
8

2N+2∑
j=1

z2
j . (4.23)

Next, we turn to asymptotic expansions of various quantities in connection with
the relativistic Toda hierarchy. We begin with some general results associated with the
relativistic Toda hierarchy. Considering a fundamental system of solutions Ψ±(z, ·) =
(ψ1,±(z, ·), ψ2,±(z, ·))T of U(z)Ψ±(z) = Ψ+

±(z) for z ∈ C, with U given by (2.1) such
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that

det(Ψ−(z),Ψ+(z)) �= 0.

Introducing

φ± =
λψ2,±
ψ1,±

,

then φ± satisfy the Riccati-type equation

−a2φ±φ+
± − (z − b)φ± = z, z = λ2 (4.24)

and one introduces in addition,

F̌ =
2

φ+ − φ−
, (4.25)

Ǧ = −φ+ + φ−
φ+ − φ−

, (4.26)

Ȟ =
−2z−1φ+φ−
φ+ − φ−

. (4.27)

Using the Riccati-type equation (4.28), one derives the identities

F̌+ + a2Ȟ = 0,

(z − b)F̌+ − a2(Ǧ+ + Ǧ) = 0,

(z − b)Ȟ + Ǧ+ + Ǧ = 0, (4.28)

(z − b)�Ǧ+ za2Ȟ+ + zF̌ = 0,

Ǧ2 + zF̌ Ȟ = 1.

Moreover, (4.28) also permit one to derive nonlinear difference equations for Ǧ, F̌ , Ȟ sep-
arately,

((a+)2(z − b)2F̌+ + z(aa+)2F̌ − za4F̌++)2 − 4a2(a+)4z(z − b)2F̌ F̌+

= 4(aa+)4(z − b)2, (4.29)

(z − b)(z − b−)Ǧ2 − z(a−)2(Ǧ+ + Ǧ)(Ǧ+ Ǧ−) = (z − b)(z − b−), (4.30)

(za2Ȟ+ − (z − b)2Ȟ − z(a−)2Ȟ−)2 − 4(a−)2z(z − b)2ȞȞ− = 4(z − b)2. (4.31)

Next, we assume the existence of the asymptotic expansions of F̌ , Ǧ, Ȟ as P → P∞± and
P → P0,±. More precisely, near 1

z = 0 we assume that

F̌ (z) =
|z|→0
z∈CR

∓
∞∑
l=0

f̌l,+z
−l−1, Ǧ(z) =

|z|→0
z∈CR

∓
∞∑
l=0

ǧl,+z
−l,

Ȟ(z) =
|z|→0
z∈CR

∓
∞∑
l=0

ȟl,+z
−l−1, l ∈ N0,

(4.32)
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for z in some cone CR with apex at z = 0 and some opening angle in (0, 2π], exterior
to a disk centered at z = 0 of Sufficiently large radius R > 0, for some set of coefficients
f̌l,+, ǧl,+, ȟl,+, l ∈ N0, and the sign depends on whether P tends to P → P∞+ or P → P∞−.
Similarly, near z = 0 we assume that

F̌ (z) =
|z|→0
z∈Cr

±
∞∑
l=0

f̌l,−zl, Ǧ(z) =
|z|→0
z∈Cr

±
∞∑
l=0

ǧl,−zl,

Ȟ(z) =
|z|→0
z∈Cr

±
∞∑
l=0

ȟl,−zl, l ∈ N0,

(4.33)

for z in some cone Cr with apex at z = 0 and some opening angle in (0, 2π], interior to
a disk centered at z = 0 of Sufficiently small radius r > 0, for some set of coefficients
f̌l,−, ǧl,−, ȟl,−, l ∈ N0, and the sign depends on whether P tends to P → P0,+ or P → P0,−.
Then we can prove the following result.

Theorem 4.1. Suppose a, b ∈ C
Z, a(n)b(n) �= 0, n ∈ Z, and the existence of the asymp-

totic expansions (4.32) and (4.33). Then F̌ (z), Ǧ(z), Ȟ(z) have the following asymptotic
expansions as P → P∞±, z ∈ CR, respectively, P → P0, ±, z ∈ Cr,

F̌ (z) =
|z|→0
z∈CR

∓
∞∑
l=0

f̂l,+z
−l−1, Ǧ(z) =

|z|→0
z∈CR

∓
∞∑
l=0

ĝl,+z
−l,

Ȟ(z) =
|z|→0
z∈CR

∓
∞∑
l=0

ĥl,+z
−l−1, l ∈ N0,

(4.34)

and

F̌ (z) =
|z|→0
z∈Cr

±
∞∑
l=0

f̂l,−zl, Ǧ(z) =
|z|→0
z∈Cr

±
∞∑
l=0

ĝl,−zl,

Ȟ(z) =
|z|→0
z∈Cr

±
∞∑
l=0

ĥl,−zl, l ∈ N0,

(4.35)

where f̂l,±, ĝl±, ĥl,± are the homogeneous versions of the coefficients fl,±, gl±, hl,± defined in
(3.11). In particular, f̂l,±, ĝl±, ĥl,± can be computed from the nonlinear recursion relations

f̂0,+ = −2(a−)2,

f̂1,+ = −2(a−)2((a−)2 + (a−−)2 + b−),

f̂2,+ = −2(a−)2((a−)4 + (a−−)4 + (aa−)2 + 2(a−a−−)2 + (a−)2b+ 2(a−)2b−

+ (a−−a−−−)2 + 2(a−−)2b− + (a−−)2b−− + (b−)2),
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f̂l,+ = − 1
4a4(a−)2

(
a4

l−1∑
m=1

f̂m,+f̂l−m,+ − 4a4b−
l−1∑
m=0

f̂m,+f̂l−m−1,+

− 2a4(a−)2
l−1∑
m=0

f̂m,+f̂
−
l−m−1,+ − 2(a−)4a2

l−1∑
m=0

f̂m,+f̂
+
l−m−1,+

+ (aa−)4
l−2∑
m=0

f̂−m,+f̂
−
l−m−2,+ + 6a4(b−)2

l−2∑
m=0

f̂m,+f̂l−m−2,+ (4.36)

+ (a−)8
l−2∑
m=0

f̂+
m,+f̂

+
l−m−2,+ + 4(a−)2a4b

l−2∑
m=0

f̂m,+f̂
−
l−m−2,+

− 2(a−)6a2
l−2∑
m=0

f̂−m,+f̂
+
l−m−2,+ + 4a2(a−)4b−

l−2∑
m=0

f̂m,+f̂
+
l−m−2,+

− 4a4(b−)3
l−3∑
m=0

f̂m,+f̂l−m−3,+ − 2(a−)2a4(b−)2
l−3∑
m=0

f̂m,+f̂
−
l−m−3,+

− 2(a−)4a2(b−)2
l−3∑
m=0

f̂m,+f̂
+
l−m−3,+ + a4(b−)4

l−4∑
m=0

f̂m,+f̂l−m−4,+

)
, l ≥ 3,

ĝ0,+ = −1, ĝ1,+ = −2(a−)2,

ĝ2,+ = 2(a−)4 − (a−)2(a2 + (a−)2 + (a−−)2 + b+ b−),

ĝl,+ =
1
2

(
l−1∑
m=1

ĝm,+ĝl−m−1,+ − (b+ b−)
l−1∑
m=0

ĝm,+ĝl−m−1,+

+ bb−
l−2∑
m=0

ĝm,+ĝl−m−2,+ − (a−)2
l−1∑
m=0

ĝm,+(ĝ+
l−m−1,+

+ ĝl−m−1,+ + ĝ−l−m−1,+) − (a−)2
l−1∑
m=0

ĝ+
m,+ĝ

−
l−m−1,+

)
, l ≥ 3,

(4.37)

ĥ0,+ = 2, ĥ1,+ = 2(a2 + (a−)2 + b),

ĥ2,+ = 2(a4 + (a−)4 + (aa+)2 + 2(aa−)2 + a2b+ + 2a2b+ (a−a−−)2

+ 2(a−)2b+ (a−)2b− + b2),

ĥl,+ = −1
4

(
l−1∑
m=1

ĥm,+ĥl−m,+ − 4b
l−1∑
m=0

ĥm,+ĥl−m−1,+ − 2a2
l−1∑
m=0

ĥ+
m,+ĥl−m−1,+

− 2(a−)2
l−1∑
m=0

ĥm,+ĥl−m−1,+ + a4
l−2∑
m=0

ĥ+
m,+ĥ

+
l−m−2,+ + 6b2

l−2∑
m=0

ĥm,+ĥl−m−2,+
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+ (a−)4
l−2∑
m=0

ĥ−m,+ĥ
−
l−m−2,+ + 4a2b

l−2∑
m=0

ĥ+
m,+ĥl−m−2,+ − 2(aa−)2

l−2∑
m=0

ĥ+
m,+ĥ

−
l−m−2,+

+ 4(a−)2b
l−2∑
m=0

ĥm,+ĥ
−
l−m−2,+ − 4b3

l−3∑
m=0

ĥm,+ĥl−m−3,+ − 2a2b2
l−3∑
m=0

ĥ+
m,+ĥl−m−3,+

− 2(a−)2b2
l−3∑
m=0

ĥm,+ĥ
−
l−m−3,+ + b4

l−4∑
m=0

ĥm,+ĥl−m−4,+

)
, l ≥ 3,

(4.38)

f̂0,− = −2(a−)2

b−
,

f̂1,− = −2(a−)2

(b−)2

(
1 +

(a−)2

b
+

(a−−)2

b−−

)
,

f̂2,− = −2(a−)2

(b−)3

(
1 +

(a−)4

b2
+

(a−−)4

(b−−)2
+

2(a−)2

b
+

2(a−−)2

b−− +
2(a−a−−)2

bb−− +
(a−)2b−

b2

+
(a−−)2b−

(b−−)2
+

(aa−)2b−

b2b+
+

(a−−a−−−)2b−

(b−−)2b−−−

)
.

f̂l,− = − b−

4(a−)2(a+)4b4

(
(a+)4

l−4∑
m=0

f̂+
m,−f̂

+
l−m−4,− − 4(a+)4b

l−3∑
m=1

f̂+
m,−f̂

+
l−m−3,−

− 2a2(a+)4
l−3∑
m=0

f̂+
m,−f̂l−m−3,− − 2a4(a+)2

l−3∑
m=0

f̂+
m,−f̂

++
l−m−3,−

+ (aa+)4
l−2∑
m=0

f̂m,−f̂l−m−2,− + 6(a+)4b2
l−2∑
m=0

f̂+
m,−f̂

+
l−m−2,−

+ a8
l−2∑
m=0

f̂++
m,−f̂

++
l−m−2,− + 4a2(a+)4b

l−2∑
m=0

f̂+
m,−f̂l−m−2,−

− 2a6(a+)2
l−2∑
m=0

f̂m,−f̂++
l−m−2,− + 4a4(a+)2b

l−2∑
m=0

f̂+
m,−f̂

++
l−m−2,−

− 4(a+)4b3
l−1∑
m=0

f̂+
m,−f̂

+
l−m−1,− − 2a2(a+)4b2

l−1∑
m=0

f̂+
m,−f̂l−m−1,−

− 2a4(a+)2b2
l−1∑
m=0

f̂+
m,−f̂

++
l−m−1,− + (a+)4b4

l−1∑
m=1

f̂+
m,−f̂

+
l−m,−

)
, l ≥ 3,

(4.39)

ĝ0,−(n) = 1, ĝ1,−(n) =
2(a−)2

bb−
,

ĝ2,− =
4(a−)2(b+ b−)

(bb−)2
− 4(aa−)2

b+b2b−
− 4(a−a−−)2

b(b−)2b−− ,
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ĝl,− =
1

2bb−

(
−

l−2∑
m=0

ĝm,−ĝl−m−2,− + (b+ b−)
l−1∑
m=0

ĝm,−ĝl−m−1,−

+ bb−
l−1∑
m=1

ĝm,−ĝl−m,+

+ (a−)2
l−1∑
m=0

ĝm,−(ĝ+
l−m−1,− + ĝl−m−1,− + ĝ−l−m−1,−)

+ (a−)2
l−1∑
m=0

ĝ+
m,−ĝ

−
l−m−1,−

)
, l ≥ 3, (4.40)

ĥ0,− =
2
b
, ĥ1,− =

2
b2

(
1 +

a2

b+
+

(a−)2

b−

)
,

ĥ2,− =
2
b3

(
1 +

a4

(b+)2
+

(a−)4

(b−)2
+

2a2

b+
+

2(a−)2

b−
+

2(aa−)2

b+b−
+

(a)2b
(b+)2

+
(a−)2b
(b−)2

+
(aa+)2b
(b+)2b++

+
(a−a−−)2b
(b−)2b−−

)
.

ĥl,− = − 1
4b3

(
l−4∑
m=0

ĥm,−ĥl−m−4,− − 4b
l−3∑
m=1

ĥm,−ĥl−m−3,− − 2a2
l−3∑
m=0

ĥ+
m,−ĥl−m−3,−

− 2(a−)2
l−3∑
m=0

ĥm,−ĥ−l−m−3,− + a4
l−2∑
m=0

ĥ+
m,−ĥ

+
l−m−2,− + 6b2

l−2∑
m=0

ĥm,−ĥl−m−2,−

+ (a−)2
l−2∑
m=0

ĥ−m,−ĥ
−
l−m−2,− + 4a2b

l−2∑
m=0

ĥ+
m,−ĥl−m−2,− − 2(aa−)2

l−2∑
m=0

ĥ+
m,−ĥ

−
l−m−2,−

+ 4(a−)2b
l−2∑
m=0

ĥm,−ĥ−l−m−2,− − 4b3
l−1∑
m=0

ĥm,−ĥl−m−1,− − 2a2b2
l−1∑
m=0

ĥ+
m,−ĥl−m−1,−

− 2(a−)2b2
l−1∑
m=0

ĥm,−ĥl−m−1,− + b4
l−1∑
m=1

ĥm,−ĥl−m,−

)
, l ≥ 3.

(4.41)

Proof. A direct calculation shows that f̂l,± satisfies (4.36) and (4.39), ĝl,± satisfies (4.37)
and (4.40), ĥl,± satisfies (4.38) and (4.41). In order to prove (4.34) and (4.35), one only
need to prove f̌l,± = f̂l,±, ǧl,± = ĝl,±, ȟl,± = ĥl,±, l ∈ N0. We first consider the expansions
(4.34) near 1

z = 0 and the nonlinear recursions (4.36)–(4.38) in detail. Inserting expansions
(4.32) for F̌ into (4.29), expansions (4.32) for Ǧ into (4.30), expansions (4.32) for Ȟ into
(4.31), then yields the nonlinear recursion relations (4.36)–(4.38), but with f̂l,+, ĝl,+, ĥl,+

replaced by f̌l,+, ǧl,+, ȟl,+. The signs of f̌0,+, ǧ0,+, ȟ0,+ have been chosen such that the
coefficients f̌0,+ = −2a2(n − 1), ǧ0,+ = −1, ȟ0,+ = 2. f̌0,+, ǧ0,+, ȟ0,+ are consistent with
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(3.11) for α0,+ = 1. Thus, one concludes that

f̌l,+ = fl,+, ǧl,+ = gl,+, ȟl,+ = hl,+, l ∈ N0,

for certain values of the summation αl,+. In order to prove that

f̌l,+ = f̂l,+, ǧl,+ = ĝl,+, ȟl,+ = ĥl,+, l ∈ N0,

and hence all αl,+, l ∈ N vanish, we now depend on the notion of degree as introduced in
Remark 3.1. To this effect, we recall that

deg(f̂l,+) = 2l + 2, deg(ĝl,+) = 2l, deg(ĥl,+) = 2l, l ∈ N0.

Similarly, the nonlinear recursion relations (4.36)–(4.38) yield inductively that deg(f̌l,+) =
2l + 2,deg(ǧl,+) = 2l,deg(ȟl,+) = 2l, l ∈ N0. Hence one concludes

f̌l,+ = f̂l,+, ǧl,+ = ĝl,+, ȟl,+ = ĥl,+, l ∈ N0.

In a similar way, we can prove that

f̌l,− = f̂l,−, ǧl,− = ĝl,−, ȟl,− = ĥl,−, l ∈ N0.

Given this general result on asymptotic expansions for Laurent polynomial associated
with relativistic Toda hierarchy, we now specialize to the algebra-geometric case at hand.
We recall our convention y(P ) = ∓(ζ−N−1 + O(ζ−N)) for P → P∞± (where ζ = 1

z ) and
y(P ) = ±α0,−

α0,+
+O(ζ) for P → P0,± (where ζ = z).

Theorem 4.2. Assume a, b ∈ C
Z, a(n)b(n) �= 0, n ∈ Z, and suppose P = (z, y) ∈

KN\{P∞±, P0,±}. Then zN2G/y, zN2F/y, zN2H/y have the following convergent expansions
as P → P∞±,

zN2

α0,+

G(z)
y

=
ζ→0

∓
∞∑
l=0

ĝl,+ζ
l,

zN2

α0,+

F (z)
y

=
ζ→0

∓
∞∑
l=0

f̂l,+ζ
l+1,

zN2

α0,+
H(z)
y

=
ζ→0

∓
∞∑
l=0

ĥl,+ζ
l+1,

(4.42)

and as P → P0,±,

zN2

α0,+

G(z)
y

=
ζ→0

±
∞∑
l=0

ĝl,−ζ l,
zN2

α0,+

F (z)
y

=
ζ→0

±
∞∑
l=1

f̂l,−ζ l,

zN2

α0,+

H(z)
y

=
ζ→0

±
∞∑
l=1

ĥl,−ζ l,

(4.43)

where ζ = z−1 (respectively, ζ = z) is the local coordinate near P∞± (respectively, P →
P0,±), and f̂l,±, ĝl±, ĥl,± are the homogeneous versions of the coefficients fl,±, gl±, hl,±
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as introduced in (3.11). Moreover, one infers for the zj-dependent summation constants
αl,+, l = 0, . . . , N1 and αl,−, l = 0, . . . , N2 − 1 in G(z), F (z),H(z) that

αk,+ = α0,+αk (z) , 0 ≤ k ≤ N1; αk,− = α0,−αk

(
z−1

)
, 0 ≤ k ≤ N2 − 1, (4.44)

where z = (z1, . . . , z2N+2) , z−1 =
(
z−1
1 , . . . , z−1

2N+2

)
,

α0(z±1) = 1,

αk(z±1) =
k∑

j1,...,j2N+2=0
j1+···+j2N+2=k

(2j1)! · · · (2j2N+2)!z
±j1
1 · · · z±j2N+2

2N+2

22k (j1!)
2 · · · (j2N+2!)

2 (2j1 − 1) · · · (2j2N+2 − 1)
, k ∈ N. (4.45)

In addition, one has the following relations between the homogeneous and nonhomogeneous
recursion coefficients:

fl,± = α0,±
l∑

k=0

αl−k(z±1)f̂k,±, l = 0, . . . , N1+δ± − δ±, (4.46)

gl,± = α0,±
l∑

k=0

αl−k(z±1)ĝk,±, l = 0, . . . , N1+δ± ± 1, (4.47)

hl,± = α0,±
l∑

k=0

αl−k(z±1)ĥk,±, l = 0, . . . , N1+δ± − δ±, (4.48)

α0,±f̂l,± =
l∑

k=0

α̂l−k(z±1)fk,±, l = 0, . . . , N1+δ± − δ±, (4.49)

α0,±ĝl,± =
l∑

k=0

α̂l−k(z±1)gk,±, l = 0, . . . , N1+δ± ± 1, (4.50)

α0,±ĥl,± =
l∑

k=0

α̂l−k(z±1)hk,±, l = 0, . . . , N1+δ± − δ±, (4.51)

where

α̂0(z±1) = 1, α̂k(z±1) =
k∑

j1,...,j2N+2=0
j1+···+j2N+2=k

(2j1)! · · · (2j2N+2)!z
±j1
1 · · · z±j2N+2

2N+2

22k (j1!)
2 · · · (j2N+2!)

2 , k ∈ N.

Here we used the convention

δ± =


0, +,

1, −.
(4.52)

Proof. Now, we introduce the holomorphic sheet exchange map

∗ : KN → KN , P = (z, y) → P ∗ = (z,−y), y(P ∗) = −y(P ), P, P ∗ ∈ KN .

Identifying φ+(z, ·) with φ(P, ·) and φ−(z, ·) with φ(P ∗, ·), then φ(P, ·) and φ(P ∗, ·) satisfy
the Riccati-type equation (4.24). From the definition of meromorphic function φ in (4.9)
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and the expressions (4.25)–(4.29), we have

F̌ =
2

φ(P ) − φ(P ∗)
=

zN2

α0,+

F (z)
y

, (4.53)

Ǧ = −φ(P ) + φ(P ∗)
φ(P ) − φ(P ∗)

=
zN2

α0,+

G(z)
y

, (4.54)

Ȟ =
−2z−1φ(P )φ(P ∗)
φ(P ) − φ(P ∗)

=
zN2

α0,+

H(z)
y

. (4.55)

Moreover, as P → P∞±, one obtains the following expansions using (3.11):

zN2

α0,+

F (z)
y

=
ζ→0

∓ ζ

α0,+

( ∞∑
k=0

α̂k(λ)ζk

)N2−1∑
j=0

fN2−1−j,−ζN1+j +
N1∑
j=0

fN1−j,+ζ
N1−j


=

ζ→0
∓

∞∑
l=0

f̂l,+ζ
l+1, (4.56)

zN2

α0,+

G(z)
y

=
ζ→0

∓ ζ

α0,+

( ∞∑
k=0

α̂k(z)ζk

)N2−1∑
j=0

gN2−j,−ζN1+j +
N1+1∑
j=0

gN1+1−j,+ζ
N1−j


=

ζ→0
∓

∞∑
l=0

ĝl,+ζ
l, (4.57)

zN2

α0,+

H(z)
y

=
ζ→0

∓ ζ

α0,+

( ∞∑
k=0

α̂k(z)ζk

)N2−1∑
j=0

hN2−1−j,−ζN1+j +
N1∑
j=0

hN1−j,+ζ
N1−j


=

ζ→0
∓

∞∑
l=0

ĥl,+ζ
l+1. (4.58)

This implies (4.42) as P → P∞±. Similarly, as P → P0,±,

zN2

α0,+

F (z)
y

=
ζ→0

± 1
α0,−

( ∞∑
k=0

α̂k(z−1)ζk

)N2−1∑
j=0

fN2−1−j,−ζN1+j +
N1∑
j=0

fN1−j,+ζ
N1−j


=

ζ→0
±

∞∑
l=0

f̂l,−ζ l, (4.59)

zN2

α0,+

G(z)
y

=
ζ→0

± 1
α0,−

( ∞∑
k=0

α̂k(z−1)ζk

)N2−1∑
j=0

gN2−j,−ζN1+j +
N1+1∑
j=0

gN1+1−j,+ζ
N1+1−j


=

ζ→0
±

∞∑
l=0

ĝl,−ζ l, (4.60)
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zN2

α0,+

H(z)
y

=
ζ→0

± 1
α0,−

( ∞∑
k=0

α̂k(z−1)ζk

)N2−1∑
j=0

hN2−1−j,−ζN1+j +
N1∑
j=0

hN1−j,+ζ
N1−j


=

ζ→0
±

∞∑
l=0

ĥl,−ζ l. (4.61)

Thus, (4.43) holds as P → P0,±.
Next, by comparing powers of ζ in the second and third term of (4.56) and (4.59),

respectively, formula (4.49) follows. Similarly, we can get formula (4.50) and formula (4.51).
Finally, multiplying (4.18) and (4.21) and comparing coefficients of ζk, one finds∑k

l=0 αl(z±1)α̂k−l(z±1) = δk,0, then, one computes

α0,±
l∑

k=0

αl−k(z±1)f̂k,± =
l∑

k=0

αl−k(z±1)
k∑

s=0

α̂k−s(z±1)fs,± = fl,±, k ∈ N0. (4.62)

Hence (4.46) holds and (4.44) can be proved using (3.14). The proofs of expansions (4.47)
and (4.48) follow precisely the same strategy and are hence omitted.

Assuming N ∈ N to be fixed and introducing

Sk = {l = (l1, . . . , lk) ∈ N
k | 1 ≤ l1 < · · · < lk ≤ N}, k = 1, . . . , N,

I(j)
k = {l = (l1, . . . , lk) ∈ Sk | li �= j; i = 1, . . . , k}, k = 1, . . . , N − 1, j = 1, . . . , N,

one defines the symmetric functions

Ψ0(µ) = 1, Ψk(µ) = (−1)k
∑
l∈Sk

µl1 · · ·µlk , k = 1, . . . , N,

Tj
k(µ) = (−1)k

∑
l∈I

(j)
k

µl1 · · ·µlk , k = 1, . . . , N − 1, j = 1, . . . , N,

Tj
0(µ) = 1, Tj

N (µ) = 0, j = 1, . . . , N,

where µ = (µ1, . . . , µN ) ∈ C
N . Introducing

H̃(z) =
N∏

j=1

(z − µj) =
N∑

l=0

Ψl(µ)zN−l,

one infers

H̃z(µk) =
N∏

j=1
j �=k

(µk − µj).

According to Lagrange interpolation theorem, we have the following important facts (these
theorems were proven in detail in [5, Theorem D.1, Lemmas D.2 and D.3]).
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Theorem 4.3. Suppose that µ1, . . . , µN are N distinct complex numbers. Then,

N∑
j=1

µl−1
j

H̃z(µj)
Tj

k(µ) = δl,N−k − Ψk+l(µ)δl,N+1,

l = 1, . . . , N + 1, k = 0, . . . , N − 1. (4.63)

Theorem 4.4. Suppose that µ1, . . . , µN are N distinct complex numbers. Then,

Ψk+l(µ) + µjT
j
k(µ) = Tj

k+1(µ), j = 1, . . . , N, k = 0, . . . , N − 1, (4.64)

k∑
l=0

Ψk−l(µ)µl
j = Tj

k(µ), j = 1, . . . , N, k = 0, . . . , N. (4.65)

Assume that µj �= µj
′ for j �= j

′
, we introduce the N ×N matrix BN (µ) by

B1(µ) = 1, BN (µ) =

 µj−1
k∏N

i=1
i�=k

(µk − µi)

N

j,k=1

, (4.66)

where µ = (µ1, . . . , µN ) ∈ C
N .

Theorem 4.5. Suppose that µ1, . . . , µN are N distinct complex numbers. Then,

BN (µ)−1 =
(
Tj

N−k(µ)
)N

j,k=1
. (4.67)

From (3.18), we have

zN2H(n) = 2α0,+

N∏
l=1

(z − µj) = 2α0,+

N∑
l=0

Ψl(µ)zN−l.

Then hl,+ = 2α0,+Ψl(µ), 0 ≤ l ≤ N1, hl,− = 2α0,+ΨN−l(µ), 0 ≤ l ≤ N2 − 1.

With these preparations, we can derive the following important result.

Theorem 4.6 (Straightening out of the continuous flow).

∂tmρ(n, tm) = Y (m), m1 ≥ 0, m2 ≥ 1, (4.68)

where

Y (m) = −2α
m1∑
l=0

γm1−lCN−l + 2

2N+2∏
j=1

zj

− 1
2

β

m2−1∑
l=0

γ̂lCm2−l, m1 ≥ 0, m2 ≥ 1,

ρ(n, tm) = (ρ1(n, tm), . . . , ρN (n, tm)), Cr = (C1r, . . . , CNr), 1 ≤ r ≤ N, and the recursive
formula:

γ0 = 1, γ1 = −α1,+

α0,+
, γk =

1
α0,+

k∑
j=1

(−αj,+)γk−j , (4.69)
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γ̂0 = 1, γ̂1 = −α1,−
α0−

, γ̂k =
1

α0,−

k∑
j=1

(−αj,−)γ̂k−j. (4.70)

Proof. From (3.9) and (3.10), we arrive at

hk,+(n) =
k∑

j=0

αj,+C
(m)
k−j,+(n), (4.71)

hk,−(n) =
k∑

j=0

αj,−C
(m)
k−j,−(n), (4.72)

with C(m)
k,+ (n) = 2S(2)

k−1(n), C(m)
k,− (n) = 2Ŝ(2)

−k(n), which implies by induction that

C
(m)
k,+ (n) =

1
α0,+

k∑
l=0

γlhk−l,+(n) = 2
k∑

l=0

γlΨk−l(µ), (4.73)

C
(m)
k,− (n) =

1
α0,−

k∑
l=0

γ̂lh−k+l,−(n) =
2α0,+

α0,−

k∑
l=0

γ̂lΨN−k+l(µ). (4.74)

In fact, it is obvious that h0(n) = α0,+C
(m)
0 (n) = 2α0,+. If (4.73) holds for a fixed k ∈ N0,

then a direct calculation shows by (4.71) that

α0,+C
(m)
k+1,+ = hk+1,+ − α1,+C

(m)
k − · · · − αk,+C

(m)
1 − αk+1,+C

(m)
0

= hk+1,+ + (−α1,+γ0)hk + (−α1,+γ1 − α2,+γ0)hk−1,+

+ · · · + (−α1,+γk − · · · − αk+1,+)h0,+

=
k+1∑
l=0

γlhk+1−l,+. (4.75)

Therefore (4.73) holds, in a similar way, we can prove (4.74).
From (3.24), (4.17), (4.73), (4.74), and use Theorems 4.3–4.5, we deduce that

∂tmρj(n, tm) =
N∑

l=1

N∑
k=1

−Cjlµ
l−1
k (n)∏N

i=1
i�=k

(µk(n) − µi(n))

×
(
β

m2−1∑
m=0

C
(m)
m,−(n)µ−m2−m

k + α

m1∑
m=0

C
(m)
m,+(n)µm1−m

k

)

= −2α
m1∑
l=0

γm1−lCjN−l + 2

2N+2∏
j=1

zj

− 1
2

β

m2−1∑
l=0

γ̂lCjm2−l. (4.76)

This completes the proof of the theorem.
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In what follows, we shall discuss the straightening out of the discrete flow. Consider the
fundamental solution matrix of (2.1) by

Mn = (χ̂n, χ̃n) =

(
p(1)(n) p(2)(n)

q(1)(n) q(2)(n)

)
, M0 =

(
1 0

0 1

)
, (4.77)

which can be expressed explicitly as

Mn+1 = UnUn−1 · · ·U0. (4.78)

By mathematical induction, we have

M1 =
1

a(0)

(
0 −a2(0)

1 λ− λ−1b(0)

)
,

M2 =
1

a(0)a(1)

(
−a2(1) −λa2(1) + λ−1a2(1)b(0)

λ− λ−1b(1) λ2 − (a2(0) + b(0) + b(1)) + λ−2b(0)b(1)

)
,

(4.79)

p(1)(n) =
a2(n− 1)∏n−1

j=0 a(j)

×

−λn−2 + λn−4

n−3∑
j=1

a2(j) +
n−2∑
j=1

b(j)

 − · · · + (−1)n−1λ−n+2
n−2∏
j=1

b(j)

 ,

p(2)(n) =
a2(n− 1)∏n−1

j=0 a(j)

×

−λn−1 + λn−3

n−3∑
j=0

a2(j) +
n−2∑
j=0

b(j)

 − · · · + (−1)nλ−n+1
n−2∏
j=0

b(j)

 ,

(4.80)

q(1)(n) =
1∏n−1

j=0 a(j)

×

λn−1 − λn−3

n−2∑
j=1

a2(j) +
n−1∑
j=1

b(j)

 + · · · + (−1)n+1λ−n+1
n−1∏
j=1

b(j)

 ,

(4.81)

q(2)(n) =
1∏n−1

j=0 a(j)

×

λn − λn−2

n−2∑
j=0

a2(j) +
n−1∑
j=0

b(j)

 + · · · + (−1)nλ−n
n−1∏
j=0

b(j)

 . (4.82)

The discrete commutative equation, Wn+1Un − UnWn = 0, is the key to straighten
out of the discrete flow, which means that the solution space of the linear equation (2.1),
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Eχn = Unχn, is invariant under the action of Wn. Let α0,+z
−N2� and χn be the eigenvalue

and eigenfunction, respectively, of Wn in the solution space. Then they satisfy

Eχn = Unχn, Wnχn = α0,+z
−N2�χn. (4.83)

It is easy to see that det(α0,+z
−N2� −Wn) = α2

0,+z
−2N2�2 − G2(n) − λ2F (n)H(n), which

yields to the algebraic curve KN . There are two eigenvalues �± = ±�, and

� = α−1
0,+z

N2
√
G2(n) + λ2F (n)H(n). (4.84)

The eigenfunctions of the Lax matrix Wn are called the Baker functions after some kind of
normalization, which can be taken as

χ±(n) = c±χ̂n + χ̃n (4.85)

with

c± =
G(0) ± α0,+z

−N2�

λH(0)
. (4.86)

Proposition 4.7. Let q±(n, λ) be the second component of the Baker function χ±(n, λ).
Then

q+(n, λ)q−(n, λ) =
H(n)
H(0)

=
N∏

j=1

z − µj(n)
z − µj(0)

. (4.87)

Proof. Using (4.78) and the first expression of (3.2), we have

WnMn = MnW0, (4.88)

from which we can derive (4.87) through some direct calculations.

Using (4.84), (4.86) and (3.11), we obtain

� = λ2(N+1){1 + α1(z)λ−2 +O(λ−4)},

c+ = −a2(−1)λ−1{1 +O(λ−2)},

c− = −λ{1 +O(λ−2)}.

(4.89)

Substituting (4.81) and (4.82) and the second expression of (4.89) into
q+(n, λ) = c+q(1)(n) + q(2)(n), we obtain

q+(n, λ) =
λn∏n−1

j=0 a(j)
{1 +O(λ−2)} (4.90)

for λ→ ∞. Using (3.87) and (3.90), we have

q−(n, λ) =
n−1∏
j=0

a(j)λ−n{1 +O(λ−2)} (4.91)

for λ→ ∞. According to (4.86) and (4.89), it is easy to see that λc+ and λc− are analytic
functions of z, which can be viewed as the values of the single-valued function [λc](P ) on
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the upper and lower sheets of KN , respectively. Moreover, it is obvious that the function
λn−1q(1)(n) and λnq(2)(n) are (n− 1)th and nth order polynomials of z = λ2, respectively.
Therefore, the expressions

q±(2k, λ) = (λc±)
{

1
λ
q(1)(2k)

}
+ q(2)(2k),

λq±(2k + 1, λ) = (λc±)q(1)(2k + 1) + λq(2)(2k)
(4.92)

determine two meromorphic functions of z on KN : q(2k, P ) and [λq](2k+1, P ). In the local
coordinates ζ = z−1, ξ̂ = z−N−1y, the equation of KN near infinity is written as

ξ̂2 −R∗(ζ) = 0, R∗(ζ) =
2N+2∏
j=1

(1 − zjζ). (4.93)

On KN there are two infinities and two zeros

P∞± = (ζ = 0, ξ̂ = ∓1), P0,± =

z = 0, y = ±

√√√√2N+2∏
j=1

zj


which are located on the upper (P∞−, P0, +) and lower (P∞+, P0,−) sheets, respectively. By
(4.89) and (4.90), the principal asymptotic terms of the two meromorphic functions near
P∞− are

q(2k, P ) ∼ zk∏2k−1
j=0 a(j)

, [λq](2k + 1, P ) ∼ zk+1∏2k
j=0 a(j)

(4.94)

and their principal asymptotic terms nears P∞+ are

q(2k, P ) ∼
2k−1∏
j=0

a(j)z−k, [λq](2k + 1, P ) ∼
2k∏

j=0

a(j)z−k. (4.95)

Similarly, for λ→ 0 we obtain

� = α0,− + α1,−λ2 +O(λ4), c− =
a2(−1)
b(−1)

λ{1 +O(λ2)},

q−(n, λ) = (−1)n
n−1∏
j=0

b(j)
a(j)

λ−n{1 +O(λ2)},

q+(n, λ) = (−1)n
b(0)
b(n)

n−1∏
j=0

a(j)
b(j)

λn{1 +O(λ2)}.

(4.96)

Therefore, the principal asymptotic terms nears P0,+ are

q(2k, P ) ∼ b(0)
b(2k)

2k−1∏
j=0

a(j)
b(j)

zk, [λq](2k + 1, P ) ∼ − b(0)
b(2k + 1)

2k∏
j=0

a(j)
b(j)

zk+1, (4.97)
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and their principal asymptotic terms near P0,− are

q(2k, P ) ∼
2k−1∏
j=0

a(j)
b(j)

z−k, [λq](2k + 1, P ) ∼ −
2k∏

j=0

a(j)
b(j)

z−k. (4.98)

Based on the formula (4.87), and through an elementary analysis, it is easy to prove the
following facts.

Proposition 4.8. The Baker function q(2k, P ) has the following properties:

(1) N simple poles at µ1(0), . . . , µN (0) and two poles of kth order at P∞− and P0,−;
(2) N simple zeros at µ1(2k), . . . , µN (2k) and two zeros of kth order at P∞+ and P0,+.

The Baker function [λq](2k + 1, P ) is of the properties:

(1) N simple poles at µ1(0), . . . , µN (0) and a pole of (k + 1)th order at P∞− and a pole of
kth order at P0,−;

(2) N simple zeros at µ1(2k + 1), . . . , µN (2k + 1) and a zero of kth order at P∞+ and a
zero of (k + 1)th order at P0,+.

Theorem 4.9 (Straightening out of the discrete flow).

ρ(2k + 1) − ρ(0) = 2kΩ(0) + �+, (mod J ), (4.99)

ρ(2k) − ρ(0) = 2kΩ(0), (mod J ) (4.100)

or

ρ(n) − ρ(0) = Ω(0)n+
1 − (−1)n

4
(�+ + �−), (mod J ), (4.101)

where

Ω(0) =
1
2
(�+ − �−), �± =

∫ P∞∓

P0,±
ω. (4.102)

Proof. For n = 2k + 1, we introduce the meromorphic differential on KN :

ω(2k + 1) =
{
d

dz
ln[λq](2k + 1, P )

}
dz, (4.103)

which has poles at µj(0) and µj(2k+ 1) with the residues −1 and 1, respectively, and poles
at P∞+, P∞−, P0,−, P0,+ with the residues k, −(k + 1), −k, k + 1, respectively. Let Ω be
the Abel differential of the second kind, and ω(P,Q) be the normal Abel differential of the
third kind with the residue 1, −1 at P , Q, respectively, and the properties∫

aj

ω(P,Q) = 0,
∫

bj

ω(P,Q) = 2π
√
−1

∫ P

Q
ωj. (4.104)

Here ωj is the normalized Abel differential of the first kind given by (4.12). Then differential
(4.103) can be written as a linear combination of Ω, ω(P,Q) and ωj in view of the poles,
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that is

ω(2k + 1) = Ω + kω(P∞+, P∞−) + kω(P0,+, P0,−) + ω(P0,+, P∞−)

+
N∑

j=1

ω(µj(2k + 1), µj(0)) +
N∑

j=1

ejωj, (4.105)

where ej are some complex numbers. The integral of (4.105) along al gives el = 2πnl

√
−1,

while the integral of (4.105) along bl yields

N∑
j=1

∫ µj(2k+1)

µj(0)
ωl = k

(∫ P∞−

P0,+

−
∫ P∞+

P0,−

)
ωl +

∫ P∞−

P0,+

ωl +ml −
N∑

j=1

njτjl, (4.106)

where nl and ml are certain integers. Therefore, (4.99) holds. For n = 2k, we consider the
meromorphic differential on KN

ω(2k) =
{
d

dz
ln q(2k, P )

}
dz

= Ω + kω(P∞+, P∞−) + kω(P0,+, P0,−) +
N∑

j=1

ω(µj(2k), µj(0)) +
N∑

j=1

êjωj. (4.107)

Similar treatments lead to the proof of (4.100).

Now we have a clear evolution picture of the continuous flow and discrete flow through
the Abel–Jacobi coordinates: (1) they are straightened out; (2) they commute each other.
Therefore, the compatible solution of various flows are obtained simply by a linear super-
position. Specifically, for the relativistic Toda hierarchy we have

ρ(n, tm) = Ω(0)n+ Y (m)tm +
1 − (−1)n

4
(�+ + �−) + ρ0, (4.108)

where

ρ0 =
N∑

k=1

∫ P (µk(0))

P0

ω.

5. Quasi-Periodic Solutions

Equation (4.108) gives the explicit solution of the relativistic Toda hierarchy in the
Abel–Jacobi coordinate ρ(n, tm). In order to get the explicit solutions of the relativis-
tic Toda hierarchy in the original coordinates a(n) and b(n), we discuss the asymptotic
properties of the fundamental meromorphic function φ(P, n, tm) on KN . Based on the divi-
sor of φ(P, n, tm) and the properties of the normalized Abel differential of the third kind,
we derive the explicit Riemann theta function representations of the meromorphic function
φ(P, n, tm), from which explicit Riemann theta function representations of solutions for the
relativistic Toda hierarchy are obtained in the original coordinates. The class of solutions
given by the Riemann theta function is quasi-periodic because the Riemann theta function
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is multivariable and periodic for each variable, but usually it is not a periodic function for
all the variables.

Let us consider the hyperelliptic curve KN : y2 −α−2
0,+z

2N2R(z) = 0 and the fundamental
meromorphic function φ(P, n, tm) on KN

φ(P, n, tm) =
α0,+z

−N2y −G(n, tm)
F (n, tm)

=
zH(n, tm)

α0,+z−N2y +G(n, tm)
,

where P = (z, y) ∈ KN\{P∞+, P∞−, P0,+, P0,−}. The divisor of φ(·, n, tm) gives by

(φ(·, n, tm)) = Dµ̂(n,tm) −Dµ̂−(n,tm) + P0,+ − P∞−

with

µ̂(n, tm) = {µ̂1(n, tm), . . . , µ̂N (n, tm)}, µ̂−(n, tm) = {µ̂−1 (n, tm), . . . , µ̂−N (n, tm)}.

Next we turn to asymptotic properties of φ in a neighborhood of P∞± and P0,±.

Lemma 5.1. Suppose that a(n, tm) and b(n, tm) satisfy the hierarchy of relativistic Toda
equations (2.9). Let zj ∈ C\{0}, (1 ≤ j ≤ 2N + 2), and P = (z, y) ∈ KN\{P∞+, P∞−,
P0,+, P0,−} and (n, tm) ∈ Z × R. Then

φ(P ) =
ζ→0


−1 +O(ζ), as P → P∞+,

− 1
(a−)2

ζ−1 +O(1), as P → P∞−;
ζ =

1
z
, (5.1)

φ(P ) =
ζ→0


1
b
ζ +O(ζ2), as P → P0,+,

b−

(a−)2
+O(ζ), as P → P0,−.

ζ = z. (5.2)

Proof. Introducing the local coordinate ζ = z−1 near P∞± and ζ = z near P0,±, from
(3.5), (3.11) and (4.9), we have

G =
ζ→0


ζ−N1−1(g0,+ + g1,+ζ + g2,+ζ

2 + g3,+ζ
3 +O(ζ4)), as P → P∞±,

ζ−N2(g0,− +O(ζ)), as P → P0,±,
(5.3)

F−1 = − zN2

2α0,+(a−)2

N∏
j=1

(z − µ−j )−1

=
ζ→0


− ζN1

2α0,+(a−)2

N∏
j=1

(1 − µ−j ζ)
−1, as P → P∞±,

(−1)N+1zN1

2α0,+(a−)2
∏N

j=1 µ
−
j

N∏
j=1

(1 − (µj
−)−1)−1, as P → P0,±,
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=
ζ→0



− ζN1

2α0,+(a−)2

1 +
N∑

j=1

µ−j ζ +O(ζ2)

 , as P → P∞±,

− ζN1b−

2α0,−(a−)2

1 +
N∑

j=1

(µj
−)−1ζ +O(ζ2)

 , as P → P0,±,
(5.4)

y =
ζ→0



∓ζ−N−1
2N+2∏
j=1

(1 − zjζ)
1
2 =

ζ→0
∓ζ−N−1

∞∑
k=0

αk(z)ζk, as P → P∞±,

2N+2∏
j=1

zj


1
2 2N+2∏

j=1

(1 − z−1
j ζ)

1
2 =

ζ→0
±α0,−
α0,+

∞∑
k=0

αk(z−1)ζk, as P → P0,±,

(5.5)

where z = (z1, . . . , z2N+2), z−1 =
(
z−1
1 , . . . , z−1

2N+2

)
,

α0(z±1) = 1,

αk(z±1) =
k∑

j1,...,j2N+2=0
j1+···+j2N+2=k

(2j1)! · · · (2j2N+2)!z
±j1
1 · · · z±j2N+2

2N+2

22k (j1!)
2 · · · (j2N+2!)

2 (2j1 − 1) · · · (2j2N+2 − 1)
, k ∈ N.

(5.6)

Then according to the definition of φ in (4.9), we finally obtain that

φ(P, n, tm) =
(
α0,+z

−N1y −G
)
× F−1

=
ζ→0



[
∓α0,+(1 + α1(λ)ζ + α2(λ)ζ2 + α3(λ)ζ3 +O(ζ4))

− (g0,+ + g1,+ζ + g2,+ζ
2 + g3,+ζ

3 +O(ζ4))
]

×

1 +
N∑

j=1

µ−j ζ +O(ζ2)

 −1
2α0,+(a−)2

ζ−1, as P → P∞±,

− [±α0,−(1 +O(ζ)) − (g0,− +O(ζ))]
b−

2α0,−(a−)2
(1 +O(ζ)), as P → P0,±,

=
ζ→0



−1 +O(ζ) as P → P∞+,

− 1
(a−)2

ζ−1 +O(1), as P → P∞−,

1
b
ζ +O(ζ2), as P → P0,+,

b−

(a−)2
+O(ζ), as P → P0,−,

which proves (5.1) and (5.2).
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Next, we shall derive the representation of φ, a2(n) and b(n) in terms of the Riemann
theta functions. Let ω(3)

P0, +,P∞− be the normal differential of the third kind holomorphic on
KN\{P0,+, P∞−} with simple poles at P0, + and P∞−, corresponding residues 1 and −1,
respectively, which can be expressed as

ω
(3)
P0, +,P∞− =

y + y0,−
2z

dz

y
+

1
2y

N∏
j=1

(z − βj)dz, P0,− = (0, y0,−), (5.7)

where βj ∈ C, j = 1, . . . , N, are constants that are determined by∫
aj

ω
(3)
P0,+,P∞− = 0, j = 1, . . . , N.

If the local coordinate near P∞± is given by ζ = z−1, then we have the asymptotic expan-
sions of ω(3)

P0,+,P∞− near P∞±:

ω
(3)
P0,+,P∞−(P ) =

ζ→0

{
0

−ζ−1

}
dζ ±

 ∞∑
q=0

(q + 1)ω∞
q+1ζ

q

 dζ, as P → P∞,± (5.8)

and similarly (using the local coordinate ζ = λ near P0,±)

ω
(3)
P0,+,P∞−(P ) =

ζ→0

{
ζ−1

0

}
dζ ±

 ∞∑
q=0

(q + 1)ω0
q+1ζ

q

 dζ, as P → P0,±. (5.9)

In particular,∫ P

P0

ω
(3)
P0,+,P∞− =

ζ→0

{
0

− ln(ζ)

}
+ ω∞±

0 ± ω∞
1 ζ +O(ζ2), as P → P∞,±, (5.10)

∫ P

P0

ω
(3)
P0,+,P∞− =

ζ→0

{
ln(ζ)

0

}
+ ω0±

0 ± ω0
1ζ +O(ζ2), as P → P0,±. (5.11)

Given these preparations, the theta function representations for φ(P, n, tm), a2(n, tm),
b(n, tm) then read as follows.

Theorem 5.2. Let P = (z, y) ∈ KN\{P∞+, P∞−, P0, +, P0,−}, (n, tm) ∈ Z × R, Suppose
a(n, tm), b(n, tm) satisfy the hierarchy of relativistic Toda equations (2.9), and assume that
zj, 1 ≤ j ≤ 2N+2, in (4.2) satisfy zj ∈ C\{0} and zj �= zk as j �= k. Moreover, suppose that
Dµ̂(n, tm) is nonspecial for each (n, tm) ∈ Z×R. Then φ admits the following representation

φ(P, n, tm) = −exp(−ω∞+
0 )

θ(P∞+, Dµ̂−(n, tm))θ(P, Dµ̂(n, tm))

θ(P∞+, Dµ̂(n, tm))θ(P, Dµ̂−(n, tm))
exp

(∫ P

P0

ω
(3)
P0, +, P∞−

)
,

(5.12)
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Finally, a2(n, tm), b(n, tm) are of the form

a2(n, tm) = exp(ω∞+
0 − ω∞−

0 )
θ(P∞+, Dµ̂+(n, tm))θ(P∞−, Dµ̂(n, tm))

θ(P∞+, Dµ̂(n, tm))θ(P∞−, Dµ̂+(n, tm))
, (5.13)

b(n, tm) = −exp(ω∞+
0 − ω0+

0 )
θ(P∞+, Dµ̂(n, tm))θ(P0, +, Dµ̂−(n, tm))

θ(P∞+, Dµ̂−(n, tm))θ(P0, +, Dµ̂(n, tm))
. (5.14)

Proof. To prove (5.12), we denote its right-hand side by φ̃. From (4.6), one can conclude
that it has simple zeros at P0,+ and µ̂k(n, tm), k = 1, . . . , N, and simple poles at P∞−
and µ̂−k (n, tm), k = 1, . . . , N . On the other hand, by (5.10), (5.11) and the expression of φ̃,
we know that φ̃ shares the same properties with φ. Then, according to the Riemann–Roch

theorem,
φ̃

φ
= c for some constant c ∈ C. Using (5.10) and the first expression of (5.1), we

can infer that

φ̃

φ
=

ζ→0

(−1 +O(ζ))(1 +O(ζ))
−1 +O(ζ)

=
ζ→0

1 +O(ζ), (5.15)

hence c = 1. This proves (5.12).
Next, we turn to the proof of (5.13). First, if the local coordinate ζ = 1

z is introduced
near P∞±, we can conclude from the definition (4.12) of the normalized basis ωj that

ω = (ω1, . . . , ωN ) = ∓
N∑

l=1

C lz
l−1dz∏2N+2

j=1 (z − zj)
1
2

= ±
N∑

l=1

Clζ
N−jdζ∏2N+2

j=1 (1 − zjζ)
1
2

=
ζ→0

±(CN +O(ζ))dζ, as P → P∞±. (5.16)

Hence, the Abel map

A(P ) =
∫ P

P0

ω =
∫ P∞±

P0

ω +
∫ P

P∞±
ω

= A(P∞±) +
∫ P

P∞±
ω

= A(P∞±) ± CNζ +O(ζ2). (5.17)

Therefore, expanding the ratios of Riemann theta functions in (5.12), we obtain

θ(P,Dµ̂(n,tm))

θ(P∞−,Dµ̂(n,tm))
=

ζ→0

θ(. . . ,Λj −A(P∞−) + CNζ +O(ζ2) + ρj , . . .)
θ(P∞−,Dµ̂(n,tm))

=
ζ→0

1 +

∑N
j=1CjN∂ωjθ(Λj −A(P∞−) + ω + ρ)|ω=0

θ(P∞−,Dµ̂(n,tm))
ζ +O(ζ2)

=
ζ→0

1 +
N∑

j=1

CjN∂ωj ln θ(P∞−,Dµ̂(n,tm))ζ +O(ζ2) as P → P∞−, (5.18)
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and the same formula for the theta function ratio involving Dµ̂−(n,tm), that is

θ(P,Dµ̂−(n,tm))

θ(P∞−,Dµ̂−(n,tm))
=

ζ→0
1 +

N∑
j=1

CjN∂ωj ln θ(P∞−,Dµ̂−(n,tm))ζ

+O(ζ2) as P → P∞−. (5.19)

Finally, from the representation (5.12) of φ, we get

φ =
ζ→0

−exp(ω∞−
0 − ω∞+

0 )
θ(P∞+,Dµ̂−(n,tm))θ(P∞−,Dµ̂(n,tm))

θ(P∞+,Dµ̂(n,tm))θ(P∞−,Dµ̂−(n,tm))
ζ−1

+O(1) as P → P∞−, (5.20)

which together with the second expression of (5.1), shows that

a2(n− 1, tm) = exp(ω∞+
0 − ω∞−

0 )
θ(P∞+,Dµ̂(n,tm))θ(P∞−,Dµ̂−(n,tm))

θ(P∞+,Dµ̂−(n,tm))θ(P∞−,Dµ̂(n,tm))
. (5.21)

Therefore,

a2(n, tm) = exp(ω∞+
0 − ω∞−

0 )
θ(P∞+,Dµ̂+(n,tm))θ(P∞−,Dµ̂(n,tm))

θ(P∞+,Dµ̂(n,tm))θ(P∞−,Dµ̂+(n,tm))
, (5.22)

which proves (5.13). If we introduce the local coordinate ζ = z near P0,+, in the similar
way, from the representation (5.16) of φ, we get

φ =
ζ→0

−exp(ω0+
0 − ω∞+

0 )
θ(P∞+,Dµ̂−(n,tm))θ(P0,−,Dµ̂(n,tm))

θ(P∞+,Dµ̂(n,tm))θ(P0,+,Dµ̂−(n,tm))
ζ

+O(ζ2) as P → P0,+, (5.23)

together with the first expression of (5.2), this shows that

b(n, tm) = −exp(ω∞+
0 − ω0,+

0 )
θ(P∞+,Dµ̂(n,tm))θ(P0,+,Dµ̂−(n,tm))

θ(P∞+,Dµ̂−(n,tm))θ(P0,+,Dµ̂(n,tm))
, (5.24)

which proves (5.14).
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