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In this paper several kinds of exact solutions to lattice Boussinesq-type equations are constructed
by means of generalized Cauchy matrix approach, including soliton solutions and mixed solutions.
The introduction of the general condition equation set yields that all solutions contain two kinds
of plane-wave factors.
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1. Introduction

The first example of the lattice Boussinesq (BSQ) equation is given in [1], being a straight
dimensional reduction of the Hirota bilinear KP equation [5]. In [11], Nijhoff et al. presented
a lattice BSQ equation on two-dimensional lattice (see also [6, 8, 14]):

p3 − q3

p − q + sn+1,m+1 − sn+2,m
− p3 − q3

p − q + sn,m+2 − sn+1,m+1

= (p − q + sn+1,m+2 − sn+2,m+1)(2p + q + sn,m+1 − sn+2,m+2)

− (p − q + sn,m+1 − sn+1,m)(2p + q + sn,m − sn+2,m+1), (1.1)

which appeared as the first higher-rank case of the so-called “lattice Gel’fand–Dikii (GD)”
hierarchy, whose bottom member is the lattice potential KdV equation. Equation (1.1) is

1250031-1 524

http://dx.doi.org/10.1142/S1402925112500313


December 29, 2012 17:2 WSPC/1402-9251 259-JNMP 1250031

W. Feng, S.-L. Zhao & D.-J. Zhang

defined on 9-point stencil as follows:
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The notation employed in (1.1) is illustrated in this figure: s = sn,m denotes the dependent
variable of the lattice points labeled by (n,m) ∈ Z

2; p and q are continuous lattice param-
eters associated with the grid size in the directions of the lattice given by the independent
variables n and m, respectively. For the sake of clarity we prefer to use notations with
elementary lattice shifts denoted by

s = sn,m �→ s̃ = sn+1,m, s = sn,m �→ ŝ = sn,m+1,

in terms of which we also have

̂̃s = sn+1,m+1,
̂̃̃
s = sn+2,m+1,

̂̂̃
s = sn+1,m+2,

̂̃̃̂
s = sn+2,m+2.

Together with the lattice BSQ equation, also the lattice modified BSQ (MBSQ) equation [8,
11, 14], the lattice Schwarzian BSQ (SBSQ) equation [7, 14] and lattice BSQ analogue of
the (Q3)0 [9, 19] have been presented in the form of 9-point equations and defined on the
above stencil.

Besides the scalar representations, the lattice BSQ-type equations can also be expressed
as three-component forms defined on an elementary square [13, 14], possessing three-
dimensional consistency property. Recently, by considering lattice equations defined on
edges of the elementary square with some constraints, Hietarinta gave a classification of
the BSQ-like multi-component lattice equations via the property of multidimensional con-
sistency [2], where four BSQ-like three-component lattice equations and two BSQ-like two-
component lattice equations were obtained. The four BSQ-like three-component lattice
equations (after some point transformations on the dependent variables) are related to more
general types of dispersion relations, which were studied systematically in [19] by using the
direct linearization (DL) method. Up to now, various methods have been developed to con-
struct exact solutions to the lattice BSQ-type equations, such as DL method [11, 13, 14, 19],
Hirota bilinear method [3, 4], generalized Cauchy matrix method [20].

In recent years, the study of various kinds of exact solutions to the integrable partial
difference equations (P�Es) becomes a hot topic and some significant progress has been
made. With the help of the property of multidimensional consistency, generalized solutions
to H1 equation [17] and rational solutions to H3 equation and Q1 equation [12] were carried
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out by using Hirota bilinear method. Meanwhile, Cauchy matrix approach [10] was also
extended to study the exact solutions for ABS lattice equations [18] and lattice BSQ-type
equations [20]. In [20], Zhang et al. derived soliton solutions, Jordan block solutions and
mixed solutions for the lattice BSQ-type equations by introducing the following condition
equations set (CES)

− ωMK + KM = r tc, (1.2a)

(pI − K)r̃ = (pI − ωK)r, (qI − K)r̂ = (qI − ωK)r, (1.2b)

(pI − K)M̃ = (pI − ωK)M, (qI − K)M̂ = (qI − ωK)M, (1.2c)

where parameter ω �= 1 is a cubic root of unity. Since just parameter ω was involved in the
CES (1.2), only one plane-wave factor was contained in these solutions.

Motivated by the earlier works [3, 19], in this paper, we will start by introducing a more
general CES which is comprised of ω and ω2 to establish exact solutions for the lattice
BSQ-type equations by means of generalized Cauchy matrix approach. As an upshot of the
extension for the CES, two kinds of plane-wave factors will be involved in these solutions.
The outline of this paper is as follows. In Sec. 2, the more general CES will be set up, from
which the dynamical properties of M will be obtained. To establish the lattice BSQ-type
equations, we will introduce several objects and consider their relationships. In Sec. 3, a
deformed CES and corresponding objects will be introduced by taking the canonical form
Γ of matrix K in the original CES. Finally, due to the forms of Γ, we will get several kinds
of solutions besides soliton solutions.

2. Generalized Cauchy Matrix Approach of Lattice BSQ-type Equations

2.1. CES and recurrence structure

To begin, we consider the following CES

KM + MK ′ = r ts, (2.1a)

r̃ = (pI + K)r, r̂ = (qI + K)r, (2.1b)
ts̃ = ts(pI − K′)−1, tŝ = ts(qI − K′)−1, (2.1c)

M̃(pI − K ′) = (pI + K)M , M̂(qI − K′) = (qI + K)M , (2.1d)

where p, q ∈ C are lattice parameters; I = diag(IN1 , IN2) is the (N1 + N2) × (N1 + N2)
unit matrix; K = diag(K1,K2), K′ = diag(−ωK1,−ω2K2) with ω2 + ω + 1 = 0; K1 is a
N1 × N1 complex matrix, whose two arbitrary eigenvalues k

(1)
i , k

(1)
j satisfy k

(1)
i − ωk

(1)
j �=

0 (i, j = 1, 2, . . . , N1), and a is a fixed constant chosen such that det(aIN1 +K1) �= 0; K2 is
a N2×N2 complex matrix, whose two arbitrary eigenvalues k

(2)
i , k

(2)
j satisfy k

(2)
i −ω2k

(2)
j �=

0 (i, j = 1, 2, . . . , N2), and b is a fixed constant chosen such that det(bIN2 + K2) �= 0; here
we also assume k

(1)
i − ω2k

(2)
j �= 0, (i = 1, 2, . . . , N1, j = 1, 2, . . . , N2); M , r and ts are,

respectively, undetermined matrix, column vector and row vector, which are dependent on
discrete variables n and m. Here and hereafter ts does not mean transpose of s but just a
notation, transpose is represented by sT .
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Obviously, the tilde-equation in (2.1d) can be rewritten as

KM̃ + M̃K ′ = (pI + K)(M̃ − M). (2.2)

Taking ˜-shift of (2.1a) and making use of the equations (2.1b) and (2.2), we get

M̃ − M = r ts̃. (2.3)

Replacing ˜-shift by ̂-shift in (2.3), we obtain

M̂ − M = r tŝ. (2.4)

Equations (2.3) and (2.4) can be viewed as the dynamical properties of matrix M w.r.t.
the discrete variables n and m.

The introduction of the following quantities involving the matrix M leads to exact
solutions for the lattice BSQ-type equations:

u(i)(b) = (I + M)−1(bI + K)ir, (2.5a)

tu(j)(a) = ts(aI + K′)j(I + M )−1, (2.5b)

S(i,j)(a, b) = ts(aI + K′)j(I + M )−1(bI + K)ir (2.5c)

for i, j ∈ Z. Then the latter objects can also be written as

S(i,j)(a, b) = ts(aI + K′)ju(i)(b) = tu(j)(a)(bI + K)ir, (2.6)

which are not symmetric w.r.t. the interchange of the pairs (i, b) and (j, a), i.e. S(i,j)(a, b) �=
S(j,i)(b, a) (cf. [20]).

Taking ˜-shift and ˜-shift (backward direction) of (2.5a), respectively, and using (2.3)

and (2.4), we obtain

ũ(i)(b) = (p − b)u(i)(b) + u(i+1)(b) − S̃(i,0)(a, b)u(0)(b), (2.7a)

 3∏
h=1

(ωhpI + K)u(i)(b)

 =

 2∏
h=1

(p + ωh(E1 − b))ũ(i)(b)


−

2∑
l=1

ωl

 l∏
h=2

(p + ωh−1(a − E2))S(i,0)(a, b)


·
 2∏

h=l+1

(p + ωh(E1 − b))ũ(0)(b)

, (2.7b)

where operators E1, E2 are defined by their actions on the indices i and j as: E1u
(i)(b) =

u(i+1)(b), E2S
(i,j)(a, b) = S(i,j+1)(a, b). Replacing p by q and ˜-shift by ̂-shift, we derive

û(i)(b) = (q − b)u(i)(b) + u(i+1)(b) − Ŝ(i,0)(a, b)u(0)(b), (2.7c)
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h=1

(ωhqI + K)u(i)(b)

 =

 2∏
h=1

(q + ωh(E1 − b))û(i)(b)


−

2∑
l=1

ωl

 l∏
h=2

(q + ωh−1(a − E2))S(i,0)(a, b)


·
 2∏

h=l+1

(q + ωh(E1 − b))û(0)(b)

. (2.7d)

These equations constitute the dynamical properties of u(i)(b) w.r.t. discrete variables n

and m. In quite a similar fashion, we obtain a system of recurrence relations for the objects
tu(j)(a):

tu(j)(a) = (p − a)tũ(j)(a) + tũ(j+1)(a) + S(0,j)(a, b)tũ(0)(a), (2.8a)

[
tũ(j)(a)

3∏
h=1

(ωhpI − K ′)

]
=

 2∏
h=1

(p − ωh(E3 − a))tu(j)(a)


+

2∑
l=1

ωl

 2∏
h=l+1

(p − ωh(E3 − a))tu(0)(a)


·
 l∏

h=2

(p − ωh−1(b − E4))S̃(0,j)(a, b)

, (2.8b)

tu(j)(a) = (q − a)tû(j)(a) + tû(j+1)(a) + S(0,j)(a, b)tû(0)(a), (2.8c)

[
tû(j)(a)

3∏
h=1

(ωhqI − K′)

]
=

 2∏
h=1

(q − ωh(E3 − a))tu(j)(a)


+

2∑
l=1

ωl

 2∏
h=l+1

(q − ωh(E3 − a))tu(0)(a)


·
 l∏

h=2

(q − ωh−1(b − E4))Ŝ(0,j)(a, b)

, (2.8d)

where operators E3, E4 satisfy E3
tu(j)(a) = tu(j+1)(a), E4S

(i,j)(a, b) = S(i+1,j)(a, b).
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Furthermore, multiplying (2.7c) from the left by the row vector ts(aI + K′)j , we have
the recurrence relations for S(i,j)(a, b):

(p + a)S̃(i,j)(a, b) − S̃(i,j+1)(a, b) = (p − b)S(i,j)(a, b) + S(i+1,j)(a, b)

− S̃(i,0)(a, b)S(0,j)(a, b), (2.9a)

 2∏
h=1

(p + ωh(a − E2))S(i,j)(a, b)

 =

 2∏
h=1

(p + ωh(E4 − b))S̃(i,j)(a, b)


−

2∑
l=1

ωl

 l∏
h=2

(p + ωh−1(a − E2))S(i,0)(a, b)


·
 2∏

h=l+1

(p + ωh(E4 − b))S̃(0,j)(a, b)

, (2.9b)

(q + a)Ŝ(i,j)(a, b) − Ŝ(i,j+1)(a, b) = (q − b)S(i,j)(a, b) + S(i+1,j)(a, b)

−Ŝ(i,0)(a, b)S(0,j)(a, b), (2.9c)

 2∏
h=1

(q + ωh(a − E2))S(i,j)(a, b)

 =

 2∏
h=1

(q + ωh(E4 − b))Ŝ(i,j)(a, b)


−

2∑
l=1

ωl

 l∏
h=2

(q + ωh−1(a − E2))S(i,0)(a, b)


·
 2∏

h=l+1

(q + ωh(E4 − b))Ŝ(0,j)(a, b)

, (2.9d)

which can also be obtained from the dynamic system (2.8) by multiplying the column vector
(bI + K)ir from the right side.

In order to construct closed-form equations from the relations (2.9), we introduce the
objects:

va := S(0,−1)(a, 0) − 1, wb := S(−1,0)(0, b) − 1, (2.10a)

sa := S(1,−1)(a, 0) − a, tb := S(−1,1)(0, b) − b, (2.10b)

ra := S(2,−1)(a, 0) − a2, zb := S(−1,2)(0, b) − b2, (2.10c)

and

sa,b = S(−1,−1)(a, b). (2.11)
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For convenience, we denote S(i,j)(0, 0) = S(i,j) and S(0,0) = s. Then for S(i,j) and the objects
defined in (2.10), (2.11), we have the following relations

pS̃(i,j) − S̃(i,j+1) = pS(i,j) + S(i+1,j) − S̃(i,0)S(0,j), (2.12a)

p2S(i,j) + pS(i,j+1) + S(i,j+2) = p2S̃(i,j) − pS̃(i+1,j) + S̃(i+2,j)

+ pS(i,0)S̃(0,j) − S(i,0)S̃(1,j) + S(i,1)S̃(0,j), (2.12b)

as well as

1 − (p + a)s̃a,b + (p − b)sa,b = vaw̃b, (2.13a)

(p − a + b) + p(1)
a sa,b − p

(2)
b s̃a,b = ṽatb − s̃awb + pṽawb, (2.13b)

and

sa = (p + a)ṽa − (p − s̃ )va, (2.14a)

t̃b = (p + s)w̃b − (p − b)wb, (2.14b)

and

ra = −psa + (p + a)s̃a + vaS̃
(1,0), (2.15a)

z̃b = pt̃b − (p − b)tb + w̃bS
(0,1), (2.15b)

and

r̃a = p(1)
a va + (p + s)s̃a − (p(p + s) + S(0,1))ṽa, (2.16a)

zb = p
(2)
b w̃b − (p − s̃ )tb − (p(p − s̃ ) + S̃(1,0))wb, (2.16b)

where p
(1)
a and p

(2)
b are defined as

p(1)
a =

G(p, a)
p + a

, q(1)
a =

G(q, a)
q + a

, p
(2)
b =

G(p,−b)
p − b

, q
(2)
b =

G(q,−b)
q − b

,

G(a, b) = a3 + b3. (2.17)

All relations (2.12)–(2.16) also hold for their hat-q counterparts obtained by replacing the˜-shift by the ̂-shift whilst replacing the parameter p by q.
From Eqs. (2.12a), (2.14a), (2.16a) and their hat-q counterparts, a set of further relations

can be derived (
p + q + s −

̂̃sẫva

)
(p − q + ŝ − s̃ ) = p(1)

a
v̂ẫva

− q(1)
a

ṽẫva

, (2.18a)

p − q + ŝ − s̃ = (p + a)
ṽa

va
− (q + a)

v̂a

va
. (2.18b)

Similarly, the utilization of the relations (2.12a), (2.14b), (2.16b) and their hat-q counter-
parts yields (

p + q − ̂̃s +
tb
wb

)
(p − q + ŝ − s̃ ) = p

(2)
b

w̃b

wb
− q

(2)
b

ŵb

wb
, (2.19a)
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p − q + ŝ − s̃ = (p − b)
ŵb̂̃wb

− (q − b)
w̃b̂̃wb

. (2.19b)

2.2. Lattice BSQ-type equations

From the relations (2.12)–(2.19) one can construct the lattice BSQ-type equations (see
also [13, 14, 19, 20]). To get the lattice BSQ equation we take i = j = 0 in (2.12) and its
hat-q counterpart and get

ps̃ − S̃(0,1) = ps + S(1,0) − ss̃, qŝ − Ŝ(0,1) = qs + S(1,0) − sŝ, (2.20a)

p2s + pS(0,1) + S(0,2) = p2s̃ − pS̃(1,0) + S̃(2,0) + pss̃ − sS̃(1,0) + S(0,1)s̃, (2.20b)

q2s + qS(0,1) + S(0,2) = q2ŝ − qŜ(1,0) + Ŝ(2,0) + qsŝ − sŜ(1,0) + S(0,1)ŝ. (2.20c)

Let us focus on (2.20b) and (2.20c). By subtraction one can delete S(0,2), and to delete
S(2,0) from the remains, one can make use of (2.9a) where we take i = 1, j = 0. Then, after
some algebra we can reach to

̂̃
S

(1,0)

+ S(0,1) = pq − (p + q − ̂̃s )(p + q + s) +
G(p,−q)

p − q + ŝ − s̃
. (2.21)

This equation together with (2.20a) composes of the three-component lattice BSQ equation.
Making use of relations (2.13)–(2.19), one can give rise to the three-component lattice

MBSQ/SBSQ equation (cf. [19]). In fact, from (2.13b)̂ deleting ̂̃sa by using (2.18a) and t̂b
by using the hat-q version of (2.14b) and also making use of (2.18b), one has

(q − b)̂̃vawb =
p
(1)
a v̂a − q

(1)
a ṽa

(p + a)ṽa − (q + a)v̂a
vaŵb − p(1)

a ŝa,b + p
(2)
b
̂̃sa,b +

p
(1)
a − p

(2)
b

a + b
. (2.22)

This equation can also be rewritten in a compact form

̂̃vawb = va

p
(1)
a

p − b
v̂aw̃b − q

(1)
a

q−b ṽaŵb

(p + a)ṽa − (q + a)v̂a
− G(a, b)

(p − b)(q − b)

(̂̃sa,b − 1
a + b

)
. (2.23)

The system composed of (2.23), (2.13a) and its hat-q version can be viewed as a modified
version of the three-component lattice MBSQ/SBSQ equation (cf. [2, 19]).

The elimination of tb from (2.13b) by using (2.19a) and s̃a by using the hat-q version
of (2.14a) and the usage of (2.18b) and (2.13a) deduce an alternative form of (2.23) (cf. [19]).
This alternative form together with (2.13a) and its q-hat counterpart composes another form
of the modified version of three-component lattice MBSQ/SBSQ equation.

The limit of the modified version of three-component lattice MBSQ/SBSQ equation as
a → 0, b → 0 leads to the usual three-component lattice MBSQ/SBSQ equation, i.e.

1 − ps̃0,0 + ps0,0 = v0w̃0, 1 − qŝ0,0 + qs0,0 = v0ŵ0, (2.24a)

̂̃v0w0 = v0
pv̂0w̃0 − qṽ0ŵ0

pṽ0 − qv̂0
. (2.24b)
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From the above three-component BSQ-type systems, one-component lattice BSQ equation
(s), lattice MBSQ equation (v0 or w0), lattice SBSQ equation (s0,0) [7, 8, 11, 14] and
BSQ-type NQC equation (sa,b) [19] can be obtained by removing the other two variables.

3. Explicit Solutions of CES

3.1. Simplification of the CES

Analogous to the earlier analysis [18, 20], we just need to discuss general solutions for the
CES (2.1) according to the coefficient matrix K which is in canonical forms. We replace
K1 by matrix Γ1 which is similar to K1, i.e. K1 = T−1

1 Γ1T 1, and K2 by matrix Γ2 which
is similar to K2, i.e. K2 = T−1

2 Γ2T 2. Then the CES (2.1) becomes

ΓM1 + M 1Γ′ = r1
ts1, (3.1a)

r̃1 = (pI + Γ)r1, r̂1 = (qI + Γ)r1, (3.1b)
ts̃1 = ts1(pI − Γ′)−1, tŝ1 = ts1(qI − Γ′)−1, (3.1c)

M̃1(pI − Γ′) = (pI + Γ)M 1, M̂ 1(qI − Γ′) = (qI + Γ)M 1, (3.1d)

where Γ = diag(Γ1,Γ2), Γ′ = diag(−ωΓ1,−ω2Γ2) and M1 = TMT−1, r1 = Tr, ts1 =
tsT−1 with T = diag(T 1,T 2). Now, we turn to the new CES (3.1), from which we can
define the following objects:

u
(i)
1 (b) = (I + M1)−1(bI + Γ)ir1, (3.2a)

tu
(j)
1 (a) = ts1(aI + Γ′)j(I + M1)−1, (3.2b)

S
(i,j)
1 (a, b) = ts1(aI + Γ′)j(I + M1)−1(bI + Γ)ir1. (3.2c)

In fact, (3.2) and (2.5) are related by

u
(i)
1 (b) = Tu(i)(b), tu

(j)
1 (a) = tu(j)(a)T−1, S

(i,j)
1 (a, b) = S(i,j)(a, b). (3.3)

Obviously S
(i,j)
1 (a, b) = ts1(aI + Γ′)ju(i)

1 (b) = tu
(j)
1 (a)(bI + Γ)ir1. Equation (3.3) implies

that K and its canonical from Γ lead to the same S(i,j)(a, b) for the lattice BSQ-type
equations.

Summarizing the above results, we have the following statement.

Proposition 3.1. Suppose that Γ = TKT−1, Γ′ = TK′T−1. Then M = T−1M1T , r =
T−1r1 and ts = ts1T provide general solutions to the CES (2.1), where M1, r1 and ts1

are the general solutions to the deformed CES (3.1).

3.2. Solutions relate to Γ

Since equation (3.1d) can be deduced from (3.1a) and (3.1b) (cf. [18, 20]), we just give
explicit expressions of r1, ts1 and M 1 in (3.1a)–(3.1c), where Γ takes different canonical
forms of the (N1 + N2) × (N1 + N2) constant matrix K, which corresponds to K having
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different kinds of eigenvalues. Generally speaking, Γi, (i = 1, 2) are of forms

Γi = diag
(
Γ

i,[D,h
(1)
i ]

, Γ
i,[J ;h

(2)
i ]

, . . . ,Γ
i,[J ;h

(k)
i ]

)
,

k∑
j=1

h
(j)
i = Ni, (i = 1, 2), (3.4)

where Γ
i,[D,h

(1)
i ]

(i = 1, 2) represent h
(1)
i × h

(1)
i diagonal matrices; Γ

i,[J ;h
(j)
i ]

(i = 1, 2, j =

2, . . . , k) are h
(j)
i × h

(j)
i Jordan-blocks. With the above form of Γ one can derive general

mixed solutions to the lattice BSQ-type equations (see also [18]).
In the following we only discuss three forms of the canonical matrix Γ:

Case 1 Case 2 Case 3

Γ1 diagonal diagonal Jordan block

Γ2 diagonal Jordan block Jordan block

The case 1 leads to the soliton solutions and the latter two cases yield mixed solutions.

Case 1.

Γ = diag(Γ1,[D;N1], Γ2,[D;N2]), Γ′ = diag(−ωΓ1,[D;N1],−ω2Γ2,[D;N2]), (3.5a)

Γi,[D;Ni] = diag(ki,1, ki,2, . . . , ki,Ni), (i = 1, 2). (3.5b)

In this case, r1 in (3.1b) is given by

r1 = diag(ρ1,[D;N1], ρ2,[D;N2]) · (I
(1)T

N1
, I

(1)T

N2
)T , I

(1)
Ni

= (1, 1, . . . , 1)TNi
, (3.6a)

ρi,[D;Ni] = diag(ρi,1, ρi,2, . . . , ρi,Ni), ρi,l = (p + ki,l)n(q + ki,l)mρ0
i,l, (i = 1, 2), (3.6b)

where {ρ0
i,l} are complex constants. From (3.1c) we deduce

ts1 = (I(1)T

N1
, I

(1)T

N2
) · diag(S1,[D;N1], S2,[D;N2]), (3.7a)

Sj,[D;Nj] = diag(σj,1, σj,2, . . . , σj,Nj ), σj,h = (p + ωjkj,h)−n(q + ωjkj,h)−mσ0
j,h, (j = 1, 2),

(3.7b)

where {σ0
j,h} are complex constants. Substituting (3.6) and (3.7) into (3.1a), then we get

M 1 = diag(ρ1,[D;N1], ρ2,[D;N2]) ·
G

(1,1)
[D,D] G

(1,2)
[D,D]

G
(2,1)
[D,D] G

(2,2)
[D,D]

 · diag(S1,[D;N1], S2,[D;N2]), (3.8)

where

G
(i,j)
[D,D] =

(
1

ki,l − ωjkj,h

)
l,h

, (i, j = 1, 2). (3.9)

Obviously, {G(i,j)
[D,D]} are Cauchy matrices. In this case, the corresponding solutions

S(i,j)(a, b) generate soliton solutions to the lattice BSQ-type equations in light of S(i,j) =
S(i,j)(0, 0), (2.10) and (2.11).
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In particular, when N1 = N2 = 1 and k1,1 = k2,1 = k, we obtain the 1-soliton solution
for the three-component lattice BSQ equation

s =
k(ω2 − 1)(�1 + �2)

k(ω2 − 1) + ω2�1 − �2
, (3.10a)

S(1,0) = ks, S(0,1) =
k2(1 − ω)(�1 + ω�2)

k(ω2 − 1) + ω2�1 − �2
, (3.10b)

where �i = ( p+k
p+ωik

)n( q+k
q+ωik

)m�0
i with �0

i = ρ0

σ0
i
, i = 1, 2 are two discrete plane-wave factors.

From (2.10) and (2.11), 1-soliton solution for the modified version of three-component lattice
MBSQ/SBSQ equation can be described as

va =
−k(ω2 − 1) +

(a − k)
(k2 + ak + a2)

[ω(k − aω)�1 + (a − kω)�2]

k(ω2 − 1) + ω2�1 − �2
, (3.11a)

wb =
s

b + k
− 1, sa,b =

1
b + k

(va + 1), (3.11b)

where s is given by (3.10a). Whilst the limit of (3.11) as a → 0 and b → 0 gives 1-soliton
solution of equation (2.24)

v0 =
−k(ω2 − 1) − ω(�1 − �2)
k(ω2 − 1) + ω2�1 − �2

, w0 =
s

k
− 1, s0,0 =

1
k
(v0 + 1). (3.12)

Case 2.

Γ = diag(Γ[D;N1], Γ[J ;N2](k)), Γ′ = diag(−ωΓ[D;N1], − ω2Γ[J ;N2](k)), (3.13)

where Γ[D;N1] = Γ1,[D;N1] satisfies (3.5) and

Γ[J ;N2](k) =


k 0 0 · · · 0 0
1 k 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 k


N2×N2

, (3.14)

where k �= 0 is a complex constant.
In this case, r1 in (3.1b) is of form

r1 = diag(ρ[D;N1], ρ[J ;N2](k)) · (I(1)T

N1
, I

(2)T

N2
)T , I

(2)
N2

= (1, 0, . . . , 0)TN2
, (3.15)

where ρ[D;N1] = ρ1,[D;N1], I
(1)
N1

are given by (3.6) and

ρ[J ;N2](k) =



ρ 0 0 · · · 0

ρ(1) ρ 0 · · · 0

ρ(2)

2!
ρ(1) ρ · · · 0

· · · · · · · · · · · · · · ·
ρ(N2−1)

(N2 − 1)!
ρ(N2−2)

(N2 − 2)!
ρ(N2−3)

(N2 − 3)!
· · · ρ


N2×N2

, ρ(j) = ∂j
kρ, (3.16)
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with ρ = (p + k)n(q + k)mρ0. From (3.1c) we also have

ts1 = (I(1)T

N1
, I

(2)T

N2
) · diag(S[D;N1], S[J ;N2](k)), (3.17)

where S[D;N1] = S1,[D;N1] is given by (3.7) and

S[J ;N2](k) =



σ(N2−1)

(N2 − 1)!
· · · σ(2)

2!
σ(1) σ

σ(N2−2)

(N2 − 2)!
· · · σ(1) σ 0

σ(N2−3)

(N2 − 3)!
· · · σ 0 0

· · · · · · · · · · · · · · ·

σ · · · 0 0 0


N2×N2

, σ(j) = ∂j
kσ, (3.18)

with σ = (p + ω2k)−n(q + ω2k)−mσ0. Set

M 1 = diag(ρ[D;N1], ρ[J ;N2](k)) ·

G
(1,1)
[D,D] G

(1,2)
[D,J ]

G
(2,1)
[D,J ] G

(2,2)
[J,J ]

 · diag(S[D;N1], S[J ;N2](k)). (3.19)

Then (3.1a) becomes

Γ[D;N1]G
(1,1)
[D,D]−ωG

(1,1)
[D,D]Γ[D;N1] = I

(1)
N1

I
(1)T

N1
, (3.20a)

Γ[D;N1]G
(1,2)
[D,J ]−ω2G

(1,2)
[D,J ]Γ

T
[J ;N2]

(k) = I
(1)
N1

I
(2)T

N2
, (3.20b)

Γ[J ;N2](k)G(2,1)
[D,J ]−ωG

(2,1)
[D,J ]Γ[D;N1] = I

(2)
N2

I
(1)T

N1
, (3.20c)

Γ[J ;N2](k)G(2,2)
[J,J ] −ω2G

(2,2)
[J,J ]Γ

T
[J ;N2]

(k) = I
(2)
N2

I
(2)T

N2
, (3.20d)

where G
(1,1)
[D,D] is given by (3.9). G

(1,2)
[D,J ],j and G

(2,2)
[J,J ],j denote the jth row vectors of G

(1,2)
[D,J ]

and G
(2,2)
[J,J ], respectively. From (3.20b), we obtain the following system for {G(1,2)

[D,J ],j}

k1,jG
(1,2)
[D,J ],j − ω2G

(1,2)
[D,J ],jΓ

T
[J ;N2]

(k) = I
(2)T

N2
, j = 1, 2, . . . , N1, (3.21)

which yield

G
(1,2)
[D,J ],j = I

(2)T

N2
(k1,jIN2 − ω2ΓT

[J ;N2]
(k))−1, j = 1, 2, . . . , N1. (3.22)

From (3.20d) we arrive at a system for {G(2,2)
[J,J ],j}

kG
(2,2)
[J,J ],1 − ω2G

(2,2)
[J,J ],1Γ

T
[J ;N2]

(k) = I
(2)T

N2
, (3.23a)

G
(2,2)
[J,J ],j−1 + kG

(2,2)
[J,J ],j − ω2G

(2,2)
[J,J ],jΓ

T
[J ;N2]

(k) = 0T
N2

, (3.23b)
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where 0N2 is the N2-order zero column vector. From (3.23) we easily get

G
(2,2)
[J,J ],j = (−1)j−1I

(2)T

N2
(kIN2 − ω2ΓT

[J ;N2]
(k))−j , j = 1, 2, . . . , N2. (3.24)

Comparing (3.20b) with (3.20c), we have G
(2,1)
[D,J ] = −ω2G

(1,2)T

[D,J ] .
Define

r[D,J ] = diag(A,B)r1,
ts[D,J ] = ts1diag(A,B),

M [D,J ] = diag(A,B)M1diag(A,B), (3.25)

where A is an arbitrary N1 × N1 constant diagonal matrix and B is an arbitrary N2 × N2

constant lower triangular Toeplitz matrix (commute with Jordan block (cf. [15, 16])). It is
readily to see that ρ[J ;N2](k) and ĪS[J ;N2](k) are lower triangular Toeplitz matrices, where Ī

is the N2×N2 anti-diagonal unit matrix. Similar to [15], one can prove that (3.25) provides
general solutions to the CES (3.1) when Γ is (3.13) and (3.14).

Case 3.

Γ = diag(Γ[J ;N1](κ), Γ[J ;N2](k)), Γ′ = diag(−ωΓ[J ;N1](κ),−ω2Γ[J ;N2](k)), (3.26)

where nonzero constants κ and k satisfy κ − ω2k �= 0.
For this case r1 and ts1 are given by

r1 = diag(ρ[J ;N1](κ), ρ[J ;N2](k)) · (I(2)T

N1
, I

(2)T

N2
)T , (3.27a)

ts1 = (I(2)T

N1
, I

(2)T

N2
) · diag(S̄[J ;N1](κ), S[J ;N2](k)), (3.27b)

where ρ[J ;·](·), S[J ;N2](k) are, respectively, defined by (3.16) and (3.18). Here S̄[J ;N1](κ) is
of form

S̄[J ;N1](κ) =



θ(N1−1)

(N1 − 1)!
· · · θ(2)

2!
θ(1) θ

θ(N1−2)

(N1 − 2)!
· · · θ(1) θ 0

θ(N1−3)

(N1 − 3)!
· · · θ 0 0

· · · · · · · · · · · · · · ·

θ · · · 0 0 0


N1×N1

, θ(j) = ∂j
κθ, (3.28)

with θ = (p + ωκ)−n(q + ωκ)−mθ0, where θ0 is a constant. Let

M1 = diag(ρ[J ;N1](κ), ρ[J ;N2](k)) ·

G
(1,1)
[J,J ] G

(1,2)
[J,J ]

G
(2,1)
[J,J ] G

(2,2)
[J,J ]

 · diag(S̄[J ;N1](κ), S[J ;N2](k)).

(3.29)
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Plugging (3.29) into (3.1a) leads to

Γ[J ;N1](κ)G(1,1)
[J,J ] − ωG

(1,1)
[J,J ]Γ

T
[J ;N1]

(κ) = I
(2)
N1

I
(2)T

N1
, (3.30a)

Γ[J ;N1](κ)G(1,2)
[J,J ] − ω2G

(1,2)
[J,J ]Γ

T
[J ;N2]

(k) = I
(2)
N1

I
(2)T

N2
, (3.30b)

Γ[J ;N2](k)G(2,1)
[J,J ]

− ωG
(2,1)
[J,J ]

ΓT
[J ;N1]

(κ) = I
(2)
N2

I
(2)T

N1
, (3.30c)

Γ[J ;N2](k)G(2,2)
[J,J ] − ω2G

(2,2)
[J,J ]Γ

T
[J ;N2]

(k) = I
(2)
N2

I
(2)T

N2
, (3.30d)

where G
(2,2)
[J,J ]

is given by (3.24). The jth row vectors of G
(1,1)
[J,J ]

, G
(1,2)
[J,J ]

and G
(2,1)
[J,J ]

can be
described as

G
(1,1)
[J,J ],j = (−1)j−1I

(2)T

N1
(κIN1 − ωΓT

[J ;N1]
(κ))−j , j = 1, 2, . . . , N1, (3.31a)

G
(1,2)
[J,J ],j = (−1)j−1I

(2)T

N2
(κIN2 − ω2ΓT

[J ;N2]
(k))−j , j = 1, 2, . . . , N1, (3.31b)

G
(2,1)
[J,J ],j = (−1)j−1I

(2)T

N1
(kIN1 − ωΓT

[J ;N1]
(κ))−j , j = 1, 2, . . . , N2. (3.31c)

The comparison of (3.30b) and (3.30c) gives G
(1,2)
[J,J ] = −ωG

(2,1)T

[J,J ] . Hence, when Γ takes
(3.26), the general solutions of the CES (3.1) can be given out by defining

r[J,J ] = diag(A,B)r1,
ts[J,J ] = ts1diag(A,B),

M [J,J ] = diag(A,B)M1diag(A,B), (3.32)

where A and B are arbitrary N1 × N1 and N2 × N2 constant lower triangular Toeplitz
matrices, respectively.

4. Conclusion

The study of the discrete versions of soliton systems, i.e. systems given by integrable partial
difference equations, has attracted lots of attentions in recent years. Up to now, many
discrete integrable systems as well as their corresponding semi-discrete systems have been
proposed, such as ABS lattices, lattice BSQ-type equation, lattice GD hierarchy and lattice
KP-type equations. Subsequently, several constructive approaches have also been developed
to construct exact solutions for these systems. Cauchy matrix approach, which is deeply
connected to the DL method, was first used by Nijhoff et al. to study the soliton solutions
for ABS lattices [10] and generalized by Zhang et al. [18, 20] to construct more kinds of
exact solutions for ABS lattices and lattice BSQ-type equations. In present contribution,
we extended the Cauchy matrix approach to derive exact solutions for the lattice BSQ-
type equations. Comparing with the previous work [20], here a more general CES (2.1) was
introduced. Consequently, all the solutions listed in this paper contain two kinds of plane-
wave factors. Our treatments in this paper can also be applied to the extended lattice BSQ
systems [19] and lattice GD hierarchy [11]. For the semi-discrete BSQ-type systems, their
exact solutions can be derived through continuum limits of the discrete plane-wave factors,
i.e. replacing the discrete plane-wave factors by exponential functions.
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