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Standard (Arnold–Liouville) integrable systems are intimately related to complex rotations. One
can define a generalization of these, sharing many of their properties, where complex rotations
are replaced by quaternionic ones, and more generally by the action of a Clifford group. Such a
generalization is not limited to integrable systems but — in the quaternionic case — goes over to
a generalization of standard Hamilton dynamics.
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Introduction

Hamiltonian systems with compact energy manifolds which are integrable in the Arnold–
Liouville sense are intimately related to a combination of uniform rotations; passing to
action-angle variables, indeed, actions are constant and angle evolve with constant speed
(different, in general, for different angles). Passing to complex coordinates — which is always
possible locally, and also globally if the system is also Kahler — this is also seen as complex
rotations acting on different complex coordinates.

It is quite natural, from this point of view, to expect that not much will change if
complex rotations are replaced by quaternionic ones (when the phase space is of dimension
4n). Our task in this note will be to develop this point of view, and discuss how the systems
obtained in this way relate to — and differ from — standard Hamiltonian ones.

We will also use this point of view to go over to two further generalizations: first to use
any Clifford algebra in lieu of the quaternionic one, albeit several features will be such to
deny to these general systems the status of a true generalization of integrable Hamiltonian
systems; and second to show how a quaternionic — or more precisely, hyperkahler — gen-
eralization of standard Hamilton mechanics is not only possible [6, 18] but also naturally
obtained using these quaternionic integrable systems as a starting point.
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1. Hamiltonian Integrable Systems

We start by considering Hamiltonian systems in n degrees of freedom, with compact energy
manifolds, integrable in the Arnold–Liouville sense.

By definition, these can be mapped to an oscillators system, i.e.a

ṗk = −ωkqk, q̇k = ωkpk. (1.1)

As well known, Arnold–Liouville integrable systems with n degrees of freedom are inti-
mately related to symmetry under the group U(1) ⊗ · · · ⊗ U(1) = Tn.

If we pass to action-angle coordinates (I, ϕ) via the usual change of coordinates pk =√
Ik cos(ϕk), qk =

√
Ik sin(ϕk), the evolution equations (1.1) read simply

İk = 0, ϕ̇k = ωk(I), (1.2)

and the Tn symmetry is again immediately apparent.
We can also consider, instead of (I, ϕ), complex coordinates

zk =
√
Ike

iϕk = pk + iqk(k = 1, . . . , n); (1.3)

each of them evolves as

żk = iωkzk, (1.4)

which of course has solution zk(t) = eiωktzk(0).
The time evolution of an integrable system is thus given by a complex rotation (with

constant speed for given initial conditions) in each C1 subspace; the frequency ωk depends
in general on all the |zk|2 = Ik (k = 1, . . . , n).

It is natural to expect that not much would change if instead of a complex rotation we
had a quaternionic one.

It is instead rather surprising that one can develop a coherent theory of dynamical
systems which are in a way a quaternionic generalization of standard Hamiltonian systems.
These are more precisely related to hyperkahler structures [2, 4, 10, 12, 17], and thus will
be therefore called hyperhamiltonian [6, 18]. This hyperhamiltonian dynamics appears to
provide a natural description of dynamics related to spin degrees of freedom, as described
by the Pauli and the Dirac equations [8, 9].

It turns out that — albeit the quaternionic case is, in a way to be discussed below, the
only possible “full” generalization of standard Hamiltonian dynamics — other generaliza-
tions are related to Clifford algebras. In this case we do not have complete integrability,
but a “conditional” one, i.e. integrability on some (dynamically invariant) submanifold of
the whole phase space; this corresponds roughly speaking to a situation already known
to Levi-Civita (he referred to the constant of motion arising in this way as “invariant
relations”) [16] and studied by different authors also in modern times under the name of
“configurational invariants”, see e.g. [19, 20].

aHere and in the whole paper, no sum on repeated indices will be implied.
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2. Generalization: Clifford Integrable Systems

We want to write (1.1) in yet another, slightly different, form. We introduce k

two-dimensional real vectors ξk = (pk, qk) and denote by J the standard two-dimensional
symplectic matrix; then the evolution (1.1), or equivalently (1.4), reads

ξ̇k = ωk(|ξ1|, . . . , |ξn|)Jξk. (2.1)

When writing the dynamics in this way, its integration goes through the observations that
(i) |ξk| is constant (due to JT = −J), and (ii) J2 = −I; it follows from these two facts that
exp[ωkJ ] = cos(ωkt) + J sin(ωkt). Hence the solution ξk(t) = exp[ωkJt]ξk(0) to (2.1) reads
simply

ξk(t) = [cos(ωkt)I + sin(ωkt)J ] ξk(0). (2.2)

Once we have looked at oscillator dynamics in such an elementary way, it is easy to find
a direct (but not entirely trivial) generalization.

Consider now m-dimensional real vectors ξk ∈ Rm (k = 1, . . . , n) and write ρk = |ξk|2.
Introduce the evolution equations

ξ̇k =
p∑

α=1

νkαKαξk (2.3)

with νkα = νkα(ρ1, . . . , ρp) smooth functions, Kα (α = 1, . . . , p) m-dimensional matrices
satisfying

KT
α = −Kα; {Kα,Kβ} = −2δαβI. (2.4)

We will denote by K the Lie algebra spanned by the Kα; Eq. (2.4) states that K is a Clifford
algebra, with fundamental quadratic form −I [13, 15].

The ρk are conserved, due to KT
α = −Kα; thus we can consider the νkα, and hence the

whole right-hand side of (2.3), as constant on each trajectory of the system.

Remark 1. We could as well consider matrices Kα which depend on the ρi and satisfy, for
all values of the ρ, the conditions (2.4); in this case we should consider the (Clifford) module
generated by them. Note that, as the ρi are constant on the dynamics, these matrices will
however be constant on each realization of the dynamics. We will only consider constant
Kα, for ease of discussion.

The solution to (2.3) is of course ξk(t) = exp [νkαKαt] ξk(0). Writing

ωk =

(
p∑

α=1

ν2
kα

)1/2

, Ak :=
p∑

α=1

νkα

ωk
Kα, (2.5)

and denoting by I the identity matrix, we have at once that

ξk(t) = [cos(ωkt)I + sin(ωkt), Ak] ξk(0). (2.6)

Thus, to any Clifford algebra K we can associate a generalization of oscillator dynamics,
integrable (explicitly and elementarily solvable) by construction. We will also refer to these
as Clifford integrable systems.
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The ξk(t) have constant norm under this dynamics; the ρk play the role of action variables
Ik. In this scheme, angles are replaced by variables on Sm−1, and more precisely on the Lie
group K generated by K, i.e. the corresponding Clifford group.

Remark 2. It should be stressed that in general the space K(ξ) is a proper subspace of
TξS

m−1 (i.e. p < m + 1). This means that not all the directions of motion on Sm−1 are
allowed for a given initial position. In other words, if the configuration space is M = Rn·m,
the phase space will not be the whole tangent bundle TM , but a proper subspace of it: not
all the initial velocities are allowed, but (for any initial position ξ0 ∈ M) only those along
the directions identified by Kξ0.

Remark 3. In the framework described in the previous remark, in order to have a dynamics
defined on the whole of TM we should have some additional components of the dynami-
cal vector fields (not belonging to the Clifford algebra); the submanifolds on which these
vanish — assuming they are dynamically invariant — would lead to the appearance of
configurational invariants [19, 20], or invariant relations [16], as mentioned above.

The cases in which K(ξ) = TξS
m−1 (i.e. p = m−1) and all initial velocities are allowed,

correspond to the existence of a Clifford algebra of dimensionm−1 acting in Rm; a necessary
(but not sufficient) condition for this to happen is that the sphere Sm−1 is parallelizable.
This happens only for S1, S3, S7 [13, 15].

The case m = 2, S1 corresponds to standard Hamilton dynamics; in the case m = 4,
S3 we are dealing with S3 ⊂ R4 and with the Clifford algebra C�(2), isomorphic to the
quaternion algebra H; in the following we will concentrate on this case.

The case m = 8 has not been explored yet as for the corresponding extension of Hamilton
dynamics; note however that the corresponding Clifford algebra (C�(3) ≈ H⊕H) does not
parallelize S7.

Thus the quaternionic case is the only full extension of standard Hamilton integrable
dynamics (and, as we will mention in a moment, see Sec. 4, also non-integrable dynamics)
along the lines considered here.

3. Quaternionic Integrable Systems

The first extension of standard Hamiltonian integrable systems along the lines sketched
above would correspond to C�(2) � H, i.e. to quaternionic systems; we are going to deal in
some detail with this case.

We want to set our systems in the form (2.3), i.e. in R4n; we should hence give a
representation of the quaternionic imaginary units i, j, k over R. This is e.g. provided by
the matrices

K1 =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


, K2 =




0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


, K3 =




0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0


. (3.1)
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These are a real representation of the Pauli matrices and satisfy the quaternion relations

KαKβ = εαβγKγ − δαβI. (3.2)

In this case the evolution is given byb

ξ̇k =
3∑

α=1

ναk(ρ)Kαξk. (3.3)

The general solution, see (2.6), reads

ξk(t) = [cos(ωkt)I + sin(ωkt)K] ξk(0). (3.4)

For ξk(0) �= 0, this describes great circles S1 on the sphere S3 of radius
√
ρk = |ξk(0)|.

(This dynamics realizes the Hopf fibration S1 → S3 → S2.) Note that the Kα are constant,
and the dependence on the ξk (actually, on the ρk = |ξk|2) is only through the scalar
functions ναk.

We can rewrite (3.3) in a slightly different form; we will now set n = 1 for ease of
discussion. Introduce three functions Hα : R4 → R, with Hα = hα(ρ) ∈ F (where F is
some suitable space of smooth functions); now ∇Hα = fα(ρ)ξ, and we can rewrite (3.3) as

ξ̇ =
3∑

α=1

Kα∇Hα, (3.5)

which makes clear the relation with the Hamiltonian case.
The flow X described by (3.5) can be seen as the superposition of three Hamiltonian

flows Xα, each of them defined by the Hamiltonian Hα with the symplectic structure ωα

associated to Kα, see above. The Xα do not commute, but generate a module over F .

4. Hyperhamiltonian Dynamics

The Eq. (3.5) can be taken as the starting point for the extension of this setting to the
non-integrable case [6, 7], which we briefly recall for the sake of completeness. This can
be defined on an arbitrary Riemannian manifold (M,g) of dimension 4n equipped with
a hyperkahler structure {Y1, Y2, Y3} [2, 4, 10, 12, 17]. Here the Yα are almost complex
structures, covariantly constant under the Levi–Civita connection defined by the metric g,
satisfying the quaternionic relations YaYb = εabcYc − δabI.

The Kahler relations associates a symplectic form to each Yα,

ωα(v,w) := g(Yαv,w). (4.1)

Consider an ordered triple of arbitrary smooth functions Hα : M → R; we associate to
these a triple of vector fields by

Xα ωα = dHα (4.2)

bNote that the vector field defined by (3.3) does not belong to the Clifford algebra K, but instead to the
Clifford module [3] generated by it; however, as the ρk are constant on the flow, the vector field is in K for
any realization of the flow.
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and define the hyperhamiltonian vector field X on M associated to the triple {Hα} as the
sum of these,

X :=
3∑

α=1

Xα. (4.3)

In local coordinates, Xα = (Kα∇Hα)i∂i, and the hyperhamiltonian vector field is

X =


∑

α

∑
j

Kij
α ∂jHα


∂i. (4.4)

Hyperhamiltonian dynamics shares many properties with standard Hamilton dynamics;
in particular a variational formulation, based on maximal degree forms [6].

5. Hamiltonian Versus Hyperhamiltonian Dynamics

Two natural questions immediately arise after defining hyperhamiltonian dynamics: (i) is
this really more general than Hamiltonian one? (ii) are quaternionic integrable systems
more general than Hamiltonian ones? In this and the next section, we will try to briefly
answer these.

As for the first, we note that every Hamiltonian system is trivially hyperhamiltonian: in
the hyperhamiltonian framework, it suffices to set two of the three Hamiltonian functions
Hα equal to zero to recover the standard Hamiltonian case. On the other hand, there could
be systems which are hyperhamiltonian but cannot be written in Hamiltonian form with
respect to any symplectic structure. In order to show this, we recall a result by Giordano,
Marmo and Rubano [11]: Given a linear vector field X = Ai

jx
j∂i, if there is k ∈ N such

that Tr(A2k+1) �= 0, then X is not Hamiltonian with respect to any symplectic structure.
The vanishing of Tr(A) corresponds to the condition of zero divergence, which is also

satisfied by hyper-Hamiltonian flows. Thus we have to find an example where Hα =
(1/2)(Dα)ijxixj (with Dα symmetric matrices, and writing all indices as lower ones to
avoid confusion with powers) and A :=

∑
αKαDα satisfies Tr(A3) = 0. This is obtained

e.g. if H1 = (1/2)[(x1)2−(x2)2+(x3)2−(x4)2+2(x1x4−x2x3)], H2 = (1/2)|x|2 and H3 = 0.
Thus we have shown that: There are Hyperhamiltonian vector fields which are not Hamil-

tonian with respect to any symplectic structure.

6. Hamiltonian Versus Hyperhamiltonian Integrability

We would like to discuss the relation between hyperhamiltonian integrability and standard
Hamiltonian integrability for the class of systems considered here. It will be convenient to
mainly restrict to the case of dimension four, as this will suffice to make our point; see the
last subsection for higher dimension.

6.1. Quaternionic oscillators

It may be useful to first discuss the case given by H1 = |x|2/2, H2 = H3 = 0; this
corresponds to two uncoupled and identical harmonic oscillators with conserved energies
Ea = (1/2)[(x1)2 + (x2)2] and Eb = (1/2)[(x3)2 + (x4)2]. The solutions of nonzero energy
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E = Ea+Eb = r20/2 describe a circle S1 lying on the sphere S3 of radius r0. When Ea and Eb

are both nonzero (i.e. both oscillators are actually excited) these also lie on a torus T2 ⊂ S3,
and the circle S1 corresponding to the solution is a combination of the two fundamental
cycles of the torus. The cases {Ea = 0, Eb �= 0} and {Ea �= 0, Eb = 0} correspond to
degenerate situations in which the common level set of Ea and Eb is not a torus T2, but is
reduced to a circle T1 = S1, which is just the trajectory of the solution. Needless to say,
these two ways (hyperhamiltonian and standard Hamiltonian) of describing the situation
are immediately related, as it should be.

Remark 4. We have mentioned above the Hopf fibration of S3; it should be recalled that
this can indeed be described as a singular fibration of S3 in T2 tori, with two singular fibers,
corresponding to the special cases in which all the energy is on one oscillator and the other
is not excited.

6.2. General quaternionic integrable systems

Let us now consider the general (nonlinear) integrable case, with Hα = Hα(ρ) but with
possibly different functional dependence on ρ for the three Hamiltonians; on each S3 sphere
of radius r0 �= 0, i.e. on each nonzero level manifold (we can speak of energy level manifolds
as the three Hamiltonians depend on a single scalar function ρ) for the energy E = ρ we can
indeed reduce to a two-oscillators description. Such a system is integrable in the Arnold–
Liouville sense, since the set on which the fibration in tori is singular is of zero measure in
the phase space.

In this sense, when we restrict to a given invariant sphere, Hyperhamiltonian integrable
systems are not more general than standard Hamiltonian ones.

However, two points should be stressed, one local staying on a given sphere and the
other global.

6.2.1. Flow on an invariant sphere

The “local” point is that it should be noticed that in considering this system as an inte-
grable two-oscillator system, we are completely overlooking the quaternionic structure of
the system. In particular, this system is strongly degenerate if seen in terms of two oscil-
lators: indeed the two oscillators are in 1:1 resonance for all values of H, i.e. all values of
the action variables I1 = Ea and I2 = Eb. Such a degeneration is of course enforced by the
quaternionic structure, and thus generic in the frame of “quaternionic oscillators”.

On the other hand, if we recognize the quaternionic structure and the fact that we
need therefore only the global constant of motion ρ to guarantee integrability, we have at
once a much stronger information on the structure of the system and also need an easier
construction to guarantee integrability. The situation is similar to the one met when we
represent a quaternion by a pair of complex numbers (or a complex number by a pair of
real ones): this is possible and correct, but in this way we are overlooking an additional and
relevant structure, which we must then introduce by suitable relations between complex (or
real) quantities.

Thus, in order to guarantee integrability in the sense of standard Hamiltonian mechanics
we need two constants of motion and we have to construct a system of two action and two
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angle coordinates; using the quaternionic structure we only need one constant of motion,
i.e. ρ, and we have to construct a system of coordinates in which to the “action” coordinate
ρ are associated three coordinates on the sphere S3; as S3 � H1 � SU(2) (here H1 is
the set of quaternions of unit norm), these are of quaternionic nature. We call them spin
coordinates.c

6.2.2. Flow in the full phase space

The equivalence between the families of hyperhamiltonian and of Hamiltonian systems was
established only when we consider the restriction to a given invariant sphere.

We will now show, by means of an explicit (and very simple) example, that when we
consider the full phase space there are integrable hyperhamiltonian flows which cannot be
globally described in terms of Hamiltonian ones. In order to do so, we will consider R4 with
Euclidean metric, and the Hypercomplex structure given by the constant matrices (3.1). As
Hamiltonians, we choose

H1 = ρ, H2 = ρ2/2, H3 = 0; (6.1)

we will also write, for later reference, fα = (dHa/dρ); hence f1 = 1, f2 = ρ, f3 = 0. The
hyperhamiltonian flow is hence given by

X =
∑
α

Kα∇Hα =
∑
α

fαKα ξ = (K1ξ + ρK2ξ)i ∂i. (6.2)

As for the symplectic structure, we know it may be written as

ω =
1
2
Aij(x) dxi ∧ dxj (6.3)

for some antisymmetric matrix field A (subject to some further constraint as we should
require dω = 0; we will look at these later on). We thus have

X ω =
∑
α

(Kα)i�(∂�Hα)Aijdxj = −
∑
α

[fαAim(Kα)mjxj ]dxi := Widxi. (6.4)

If X is Hamiltonian with respect to the symplectic structure ω, we have X ω = dH
for some scalar function H; as we are in R4, the existence of such H is equivalent to

d(X ω) = 0. (6.5)

It follows from (6.4) that

d(X ω) =
1
2
(∂iWj − ∂jWi)dxi ∧ dxj, (6.6)

hence we are reduced to looking for solutions to the system of equations

∂iWj − ∂jWi = 0 ∀ i, j. (6.7)

cNotice that the evolutions along spin coordinates do not commute; thus the equivalent of the familiar
integrable Hamiltonian evolution equations İk = 0, ϕ̇k = ωk(I), related to the abelian group T2, is now
given by İ = 0 (I ≡ ρ), ψ̇ = α(I), where ψ represents coordinates on the group SU(2) � S3, and α(I) ∈ su(2)
is an element of the algebra su(2), constant on each level set of I ≡ ρ. This more involved (and not separable)
structure is unavoidable, due to the non-abelian nature of SU(2).
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Note the unknowns are here coded in the (antisymmetric) matrix function A. As we are
in dimension four, A can be described by means of six scalar functions ci(ξ), and we should
of course require these are not all zero. However, we know that A will be constant on each
sphere of radius ρ; we can therefore assume ci = ci(ρ).

We want now to show that with the specific choice of Hα, and hence of the fα, given
above the system (6.7) does not admit nontrivial solutions.d

In order to do so, we first write A in the form

A =




0 c1(ρ) c2(ρ) c3(ρ)

−c1(ρ) 0 c4(ρ) c5(ρ)

−c3(ρ) −c4(ρ) 0 c6(ρ)

−c3(ρ) −c5(ρ) −c6(ρ) 0


; (6.8)

with this we can explicitly compute the

Pij := (∂iWj − ∂jWi); (6.9)

note that now all the unknown functions depend on ρ alone. Other types of dependencies
on the xi are explicit, and we can proceed by requiring the coefficient of any polynomial in
the xi (other than ρ itself) to vanish.

Proceeding in this way, we first compute P12 (which we do not write explicitly). The
coefficient of x1x3 in it is just c′5(ρ), so we must require c5(ρ) = κ5 (we will always denote
by κi arbitrary constants, and omit from now on to indicate the dependence of the ci on ρ);
with this choice the coefficient of x2

1 in P12 reads κ5, i.e. we must have κ5 = 0 and hence
c5 = 0. Similarly, the coefficient of x2x4 in P12 reads now c′2, and upon setting c2 = κ2 the
coefficient of x2

2 in P12 reads κ2, so we get κ2 = 0 and hence c2 = 0. The coefficient of x2x3

reads now c1 + ρc′1 − c′3, which yields c3 = ρc1. The coefficient of x1x4 is c1 + ρc′1 − c′4 and
hence we get also c4 = ρc1. At this point we have P12 ≡ 0.

We pass to consider P14; the coefficient of x1x4 in it reads c′6 − c′1, and hence we have
c6 = c1 + κ6; with this, the coefficient of x1x2 is κ6, and hence we get c6 = κ6 = 0. At this
point we have P14 ≡ 0, and actually all of the Pij vanish identically.

The resulting antisymmetric matrix A is

A =




0 c1 0 ρc1

−c1 0 ρc1 0

0 −ρc1 0 c1

−ρc1 0 −c1 0


. (6.10)

This identifies a two-form ω via (6.3); more precisely, we get

ω = c1(ρ)[ω1 + ρω2]. (6.11)

Note that choosing a function c1 which is nowhere zero, e.g. c1(ρ) = 1, we are guaran-
teed ω is nondegenerate. The form ω satisfies, by construction, d(X ω) = 0 and hence

dA more elegant proof of the fact (6.7) does not always admit solutions surely exists, but as we are just
looking for an example showing this is the case we will be satisfied with a proof by explicit computation.
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d(X ω) = dH for some function H. However, we have not yet required that the ω built in
this way is a closed form — which is necessary for it to be a symplectic form — i.e. dω = 0.

It follows by tedious straightforward algebra that

dω = [x3 c
′
1 + x1 (c1 + ρc′1)] dx1 ∧ dx2 ∧ dx3

+ [x4 c
′
1 − x2 (c1 + ρc′1)] dx1 ∧ dx2 ∧ dx4

+ [x1 c
′
1 − x3 (c1 + ρc′1)] dx1 ∧ dx3 ∧ dx4

+ [x2 c
′
1 + x4 (c1 + ρc′1)] dx2 ∧ dx3 ∧ dx4;

recalling that c1 = c1(ρ), it is immediately clear that dω = 0 if and only if c1 = 0, i.e. if
and only if ω = 0.

We have thus shown that in this case the hyperhamiltonian vector field X in R4 cannot
be described in Hamiltonian terms, for any symplectic structure. In other words, there are
hyperhamiltonian integrable systems which are not Hamiltonian.

6.3. Higher dimension

We would finally like to briefly discuss the case of quaternionic oscillators in higher dimen-
sional spaces R4n (n > 1). In the standard Hamiltonian integrable case with m degrees of
freedom we have invariant Tm tori, and the solutions will cover densely Tk ⊂ Tm tori, with
k ≤ m depending on the rational relations between the frequencies; in the hyperhamilto-
nian integrable case (for n quaternionic oscillators) we have a similar situation, as we now
discuss.

First of all we remark that, since ρ = (ρ1, . . . , ρn) are constants of motion, the common
level sets of the ρp are invariant manifolds under the dynamics we are considering; these
level sets ρ−1(b1, . . . , bn) will be, when all the bp are nonzero, manifolds

Vn := S3 × · · · × S3 = (S3)×n;

these Vn represent a generalization of tori, in that in the same way as Tn is the topological
product of n (distinct) S1 factors, Vn is the topological product of n (distinct) S3 factors.
If k out of the n numbers bp are zero, the level set ρ−1(b1, . . . , bn) will be a Vn−k manifold.

Consider the trajectory with initial datum x(0). The previous discussion shows that the
projection of this to each R4 block, given by ξ(p)(t), will be periodic.

If m ≤ n degrees of freedom are excited and the m frequencies corresponding to bp �= 0
split in k ≤ m sets, each νp being rational with respect to frequencies in the same set and
irrational with respect to frequencies in different sets, the solutions γ will densely cover tori
Tk ⊂ Vm. We can always choose the generators S1 of these Tk so that each one lies in a
different factor S3 for Vm.

7. Example. The Pauli Spin Equation

We will now briefly discuss a physically relevant equation which can be set in hyperhamil-
tonian form, and which under suitable conditions (spatially homogeneous magnetic field)
corresponds to a quaternionic oscillator system.
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The nonrelativistic evolution equation for particles with spin one-half is provided by the
Pauli equation. Considering only the spin degrees of freedom, this is written as

dΨ
dt

= iκ(B · S)Ψ. (7.1)

Here κ = 4πµ/h is a dimensional constant (κ = 1 in the following), Ψ is a two-
components spinor,

Ψ =
(
ψ+

ψ−

)
, ψ±(t) ∈ C, ‖Ψ‖2 = 1,

the real vector B(t) is the magnetic field, and S is the vector spin operator with components
the Pauli σ matrices. The linear operator M := B · S is given by

M =
(

Bz Bx − iBy

Bx + iBy −Bz

)
.

To set (7.1) in R4, rewrite ψ± as ψ± = χ± + iζ±; representing a C1 number by an R2

vector, we get

ψ± =

(
χ±
ζ±

)
.

The operator of multiplication by i is represented in R2 by the standard symplectic matrix,
and we can use this to write iM as a real four-dimensional matrix (which we do in block
notation):

J =

(
0 −1

1 0

)
, iM ≈

(
BzJ ByI +BxJ

−ByI +BxJ −BzJ

)
.

Finally, the R4 representation of the Pauli equation is given by

dξ

dt
= Aξ, (7.2)

where

ξ =



χ+

ζ+

χ−
ζ−


, A =




0 −Bz By −Bx

Bz 0 Bx By

−By −Bx 0 Bz

Bx −By −Bz 0


. (7.3)

We can rewrite A in terms of the matrices K̂α as

A(t) = By(t)K̂1 +Bx(t)K̂2 +Bz(t)K̂3. (7.4)
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Therefore, from (7.3) and (7.4), the (R4 representation of the) Pauli equation can be
described as a hyperhamiltonian system, with

H1(ξ, t) = (1/2)By(t) ‖ξ‖2,

H2(ξ, t) = (1/2)Bx(t) ‖ξ‖2,

H3(ξ, t) = (1/2)Bz(t) ‖ξ‖2.

When dB/dt = 0 we have an integrable system. If B varies with t, we have explicitly time-
dependent Hamiltonians Hα(|ξ|2; t): the system is not integrable, but |ξ| is still constant.

A similar but more complex construction allows to describe the Dirac equation for a
particle in terms of (nonintegrable) hyperhamiltonian dynamics [8].

8. Higher Order Clifford Algebras

A generalization of Hamilton dynamics somehow similar to hyperhamiltonian dynamics
can be defined on Kahler–Clifford manifolds; that is, on Riemannian manifolds (M,g) of
dimension m equipped with k complex structures Yα which satisfy the relations of a Clif-
ford algebra, i.e. such that Y 2

α = −I (which is required by being complex structures) and
{Yα, Yβ} = 2δαβI. These have been studied by Joyce [14] building on previous investigations
by Atiyah, Bott and Shapiro [3]; see also [5].

In this case the Kahler relation again associates to each Yα a symplectic structure ωα,
and defining k Hamiltonian functions Hα : M → R, we have k Hamiltonian vector fields
Xα defined by Xα ωα = dHα. Then the Clifford–Hamilton flow would be defined as

X =
k∑

α=1

Xα; (8.1)

if the Yα are represented in local coordinates xi by matrices Kα, then the dynamics will be
described by

ẋi =
∑
α

(Kα)ij(∇jHα). (8.2)

This Clifford–Hamilton dynamics would share many of the properties of hyperhamilto-
nian (and hence standard Hamilton) dynamics; however the problems stressed in Remarks 2
and 3 are still present, and prevent from considering this as a meaningful generalization of
Hamilton dynamics.

9. Conclusions

We have introduced and characterized quaternionic integrable systems, discussing their
relations and differences with standard (Arnold–Liouville) Hamiltonian integrable systems.
We have also shown how these quaternionic integrable systems would be a natural starting
point for hyperhamiltonian dynamics [6].

It was also shown by a concrete example that — in the same way as not all the hyper-
hamiltonian systems are Hamiltonian — there are quaternionic integrable systems in R4

which cannot be set as Hamiltonian ones with respect to any symplectic structure, albeit
on any invariant sphere S3 a standard Hamiltonian description is possible.
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The possibility of such a quaternionic extension uses not only the SU(2) commutation
rules, but also relies essentially on the associative algebra structure of quaternions. We have
observed that similar extensions — both in the integrable and in the general case — can
be associated to any Clifford algebra [13, 15]; however this holds only formally, in that
the dynamics so defined concerns only certain submanifolds of the full phase space. In
particular, for the integrable case we would have a “conditional” integrability if the system
in the full phase space is written in Clifford form on these (invariant) submanifolds.

Finally, we note that it would be quite interesting to find examples in which the structure
investigated here holds for an infinite dimensional system, i.e. examples of quaternionic
integrability for PDEs.
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