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Necessary and sufficient conditions which allow a second-order stochastic ordinary differential equa-
tion to be transformed to linear form are presented. The transformation can be chosen in a way so
that all but one of the coefficients in the stochastic integral part vanish. The linearization criteria
thus obtained are used to determine the general form of a linearizable Langevin equation.
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1. Introduction

Physical phenomena of interest in science are very often simulated by means of models
which correspond to differential equations. These equations are in general nonlinear, and
their solutions difficult to obtain. In addition, many of these mathematical models are given
in terms of stochastic nonlinear differential problems. In chemistry and physics for example,
one frequently encounters models based on the second order equation

Ẍ = f(t,X, Ẋ) + g(t,X, Ẋ) Ẇ (1.1)

where Ẇ is white noise. The second order Langevin equation

Ẍ = f(t,X, Ẋ) + σẆ (1.2)

is the simplest of these, and it describes the motion of a particle in a noise-perturbed force
field. In particular, for the case of the harmonic oscillator,

f(t, x, ẋ) = −ν2x− βẋ,

427

http://dx.doi.org/10.1142/S1402925111001696


September 26, 2011 15:27 WSPC/1402-9251 259-JNMP S1402925111001696

428 S. V. Meleshko & E. Schulz

Eq. (1.2) becomes a linear second-order stochastic differential equation. The Langevin equa-
tion is also encountered frequently in the theory of lasers, chemical kinetics and population
dynamics.

While solving problems involving deterministic differential equations it is often expedient
to simplify an equation by a suitable change of variables. The simplest form of a second-
order ordinary differential equation

ẍ = f(t, x, ẋ)

is the linear form. Sophus Lie [7]a showed that this equation is linearizable by a change of
both the independent and dependent variables if, and only if, f is a polynomial of third
degree with respect to the first-order derivative,

ẍ+ aẋ3 + bẋ2 + cẋ+ d = 0,

where the coefficients a(t, x), b(t, x), c(t, x) and d(t, x) satisfy the conditions

L1 = 3att − 2btx + cxx − 3atc+ 3axd+ 2btb− 3cta− cxb+ 6dxa = 0,

L2 = btt − 2ctx + 3dxx − 6atd+ btc+ 3bxd− 2cxc− 3dta+ 3dxb = 0.
(1.3)

In addition, it is linearizable by a change of the dependent variable x only if, and only if,
a = 0 in which case conditions (1.3) become

L1 = (2f2t − f1x)x + f2(2f2t − f1x) = 0,

L2 = (f2t − 2f1x)t − f1(f2t − 2f1x) + 3(f0x − f2f0)x = 0,
(1.4)

where f0 = −d, f1 = −c, f2 = −b.
In the realm of stochastic ordinary differential equations, linear equations play a role

similar to that of linear equations in the classical theory of ordinary differential equations.
For example, the reduction of a stochastic ordinary differential equation to linear form
allows one to construct an exact solution of the original equation [5, 6, 12]. Hence, one can
state the linearization problem for stochastic ordinary differential equations: find a change
of variables which transforms a given equation to linear form.

In general, the change of variables in stochastic differential equations differs from that
in ordinary differential equations owing to the necessity of using the Itô formula instead of
the chain rule. The d-dimensional version of the Itô formula with one-dimensional Brow-
nian motion {Wt : t ≥ 0} can be stated as follows. Let X = (X1,X2, . . . ,Xd) be a d-
dimensional Itô process defined on a filtered probability space (Ω,F , P ), which has the
stochastic differentials

dXi = fi(t,X) dt + gi(t,X) dW, (i = 1, 2, . . . , d).

Here fi(t, x) and gi(t, x), (i = 1, 2, . . . , d) are deterministic functions. Suppose that the
function ϕ(t, x) has continuous derivatives ϕt, ϕxi , ϕxixj , (i, j = 1, 2, . . . , d). Then the

aSee [8] for details and references.
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process ϕ(t,X) has the stochastic differentialb

dϕ(t,X) =
(
ϕt + fiϕxi +

1
2
gigjϕxixj

)
(t,X) dt + (giϕxi)(t,X) dW.

To the authors’ knowledge the linearization problem for scalar second-order stochastic
ordinary differential equations has not yet been studied. Sections 3 and 4 of the present
manuscript discuss the solution of this task.

2. Linearization of First-Order Stochastic ODEs

Let us begin by reviewing the known linearization criteria for first-order equations.

2.1. Strong linearization

In [2, 5, 6] the Itô formula was applied to solving the linearization problem of a variety of
scalar first-order stochastic ordinary differential equations

dXt = f(t,X) dt + g(t,X) dW, (2.1)

and some particular criteria for the existence of a change of the dependent variable

y = ϕ(t, x) (2.2)

turning Eq. (2.1) into a linear equation

dYt = (a1(t)Y + a0(t)) dt + (b1(t)Y + b0(t)) dW (2.3)

were presented. For example, in [5] linearization criteria for autonomous (f = f(x) and
g = g(x)) equations were found and furthermore, conditions for reducibility to an explic-
itly integrable equation (a1 = 0 and b1 = 0) were obtained. Various examples of stochastic
ordinary differential equations satisfying these criteria are given in [5, 6]. Based on this anal-
ysis, the author of [2] developed a MAPLE package containing routines which return explicit
solutions of stochastic differential equations. General necessary and sufficient linearization
conditions were finally presented in [9] and [13], and can be summarized as follows.

Let us set

N = g−1

(
gt + fgx +

g2

2
gxx − gfx

)
.

Theorem 2.1. Suppose, the coefficients of stochastic differential equation (2.1) satisfy the
condition Nx = 0. Then the backward Kolmogorov equation corresponding to (2.1) is equiv-
alent to the heat equation, and Eq. (2.1) is reducible to the linear stochastic differential
equation

dYt = eJ dW

bThe usual convention on summation with respect to a repeated index is used here.
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where

J(t) =
∫
N dt.

The transition function y = ϕ(t, x) is found by integrating the compatible system of partial
differential equations

ϕt = eJ
(
gx

2
− f

g

)
, ϕx =

eJ

g
.

Theorem 2.2. Assume that Nx �= 0, and the function N satisfies equationsc

∂

∂x

(
(Nxg)x
Nx

)
= 0,

∂

∂t

(
(Nxg)x
Nx

)
−N

(Nxg)x
Nx

+Nxg = 0. (2.4)

Then the change

y = − β1e
J

β1t − β1N

transforms any solution of Eq. (2.1) to a solution of the linear stochastic differential equation

dYt = eJ dt+ β1Yt dW.

Here β1 = −N−1
x (Nxg)x, J(t) =

∫
q dt, and

q = β1(gx − β1)/2 + (gt − fβ1)/g +Ntx/Nx − 2Nxg/β1 −N.

Remark. For stochastic differential equations with fractional Brownian motion (fBm) W h

of Hurst parameter h ∈ (0, 1),

dX = f(t,X) dt + g(t,X) dW h,

similar linearization conditions were also obtained in [14], now with the function

N = g−1(gt + fgx + ht2h−1gxxg
2 − gfx).

Remark. Considering stochastic differential equation (2.1) as the system of stochastic
ordinary differential equations

dXt = f(t,Xt) dt + g(t,Xt) dW,

dZ = dW,

one may choose to include Brownian motion in the linearizing transformation,

Y = ϕ(t,X,Z).

cThe second of the conditions (2.4) is missing in [14]. This was corrected in [9].
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In this case, an investigation of linearizability leads to the study of the deterministic
overdetermined system of equations

ϕt + fϕx +
1
2
g2ϕxx + gϕxz +

1
2
ϕzz = α1ϕ+ α0,

gϕx + ϕz = β1ϕ+ β0,

where ϕ = ϕ(t, x, z). The analysis of these equations is similar to the proofs of Theorems 2.1
and 2.2 (using the Itô formula for a pair of stochastic processes) and shows that this exten-
sion to a wider class of transformations does not lead to a larger collection of linearizable
stochastic differential equations (2.1).

2.2. Weak linearization

Since transformation (2.2) does not change the Brownian motion, the linearization to
Eq. (2.3) may be called strong linearization. In contrast, the transformation of a stochastic
differential equation to a linear equation with changed Brownian motion may be called
weak linearization, similar to the definitions of strong and weak solutions. For example, the
random time change τ with time change rate h2(t, ω),

y = x, τ(t, ω) =
∫ t

0
h2(s, ω) ds, (2.5)

leads to the change of Brownian motion by the formula [11]

W̃t =
∫ α(t,ω)

0
h(s, ω) dWs,

where τ(α(t, ω), ω) = t. This type of transformation can be used to further simplify the
coefficients of a linear stochastic differential equation (2.3). For example, one of the functions
b1(t) or b0(t) of a diffusion coefficient can be reduced to one. Transformations of this type
were used in [1, 3, 4, 10] for defining fiber preserving admitted Lie groups of stochastic
differential equations.

In [13] it was proven that the generalization of (2.5)d,

τ(t) =
∫ t

0
η2(s,X(s)) ds, W̃t =

∫ α(t)

0
η(s,X(s)) dWs, (2.6)

also gives a transformation of the Brownian motion Ws to Brownian motion W̃t. Recall now
that any first-order deterministic ordinary differential equation can be mapped into the sim-
plest equation y′ = 0 by a suitable change of the dependent and independent variables. It
is not difficult to show that by virtue of its generality, transformation (2.6) renders the
weak linearization problem equally trivial: given any first-order stochastic differential equa-
tion (2.1), there exists a transformation of type (2.6) mapping it to the simplest equation

dYt = dW̃t.

dConsidering h = h(t, x, b), this generalization can be extended to include the Brownian motion W in the
transformation.
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Among other weak transformations one can also mention applications of the Girsanov
theorems.

3. The Linearization Problem for Second Order Equations

A scalar second-order stochastic ordinary differential equation (1.1) is written in differential
form as

dẊ = f(t,X, Ẋ) dt + g(t,X, Ẋ) dW. (3.1)

Here, the first term on the right-hand side represents a Riemann integral, and the second
term an Itô integral. The aim is to find a change of the dependent variable y = ϕ(t, x)
which transforms this equation to a linear stochastic differential equation

dẎ = (a1(t)Y + b1(t)Ẏ + c1(t)) dt + (a2(t)Y + b2(t)Ẏ + c2(t)) dW. (3.2)

Equation (3.1) can be rewritten as a system of first-order stochastic differential equations

dX = V dt,

dV = f(t,X, V ) dt + g(t,X, V ) dW.
(3.3)

Similarly, the linear system corresponding to (3.2) is

dY = Z dt,

dZ = (a1(t)Y + b1(t)Z + c1(t)) dt + (a2(t)Y + b2(t)Z + c2(t)) dW.
(3.4)

Just as with deterministic differential equations, a change of the dependent variable y =
ϕ(t, x) in (3.1) determines a corresponding change in the system of stochastic differential
equations (3.3),

y = ϕ(t, x), z = ϕ2(t, x, v),

where the function ϕ2(t, x, v) is defined by the formula

ϕ2 = ϕt + vϕx.

We assume here that ϕ is three times continuously differentiable, and that ϕx �= 0. Applying
the Itô formula to the system of stochastic differential equations (3.3), one obtains

dY = α(t,X, V ) dt + β(t,X, V ) dW,

dZ = f̃(t,X, V ) dt + g̃(t,X, V ) dW,
(3.5)

where

α(t, x, v) = ϕ2(t, x, v), β(t, x, v) = 0,

f̃(t, x, v) =
(
ϕ2t + ϕ2xv + ϕ2vf +

1
2
ϕ2vvg

2

)
(t, x, v), g̃(t, x, v) = (ϕ2vg)(t, x, v).
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Equating the integrands of the Riemann and Itô integrals in (3.4) and (3.5) one obtains the
two equations

ϕ2t + ϕ2xv + ϕ2vf +
1
2
ϕ2vvg

2 = a1ϕ+ b1ϕ2 + c1,

ϕ2vg = a2ϕ+ b2ϕ2 + c2.

After substituting the function ϕ2 into these, one has

ϕxxv
2 + (2ϕtx − ϕxb1)v + ϕtt − ϕtb1 + ϕxf − a1ϕ− c1 = 0, (3.6)

ϕxg = b2(ϕt + ϕxv) + a2ϕ+ c2. (3.7)

Thus, the pair of conditions (3.6) and (3.7) is necessary and sufficient for stochastic differ-
ential equation (3.1) to be linearizable.

4. Linearization Criteria

We now investigate in detail what type of coefficient functions f and g allow Eq. (3.1) to
be linearized. Differentiating (3.7) with respect to v, one obtains that gv = b2, hence the
function g(t, x) has to be of the form

g = b2v + ψ, (4.1)

where ψ = ψ(t, x). In particular, gxv = 0, gvv = 0. Differentiating (3.6) three times with
respect to v, by virtue of ϕx �= 0, one finds that fvvv = 0 or

f = f2v
2 + f1v + f0, (4.2)

where fi = fi(t, x) (i = 0, 1, 2). Notice that knowledge of the functions g(t, x) and f(t, x)
uniquely determines the functions b2(t), ψ(t, x) and fi(t, x).

Splitting Eq. (3.6) with respect to v, one obtains

ϕxx = −ϕxf2, ϕtx = ϕx(b1 − f1)/2, ϕtt = ϕtb1 − ϕxf0 + a1ϕ+ c1. (4.3)

Applying the identities (ϕtx)t − (ϕtt)x = 0 and (ϕtx)x − (ϕxx)t = 0 one has, respectively,

a1 = (2b1t + 4f0x − 2f1t − b21 − 4f0f2 + f2
1 )/4 (4.4)

and

f1x = 2f2t. (4.5)

Since a1 is independent of x, differentiation of (4.4) with respect to x leads to

f0xx = f0xf2 + f2tt − f2tf1 + f2xf0. (4.6)

Comparing the two conditions (4.5) and (4.6) with (1.4), one immediately obtains:

Theorem 4.1. If a second-order stochastic differential equation

dẊ = f(t,X, Ẋ) dt + g(t,X, Ẋ) dW,
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is linearizable, then the associated second-order ordinary differential equation

ẍ = f(t, x, ẋ)

is also linearizable, and by a change of the dependent variable only.

Suppose now, that Eq. (3.1) can be linearized. As the form of the coefficient g is known,
Eq. (3.7) becomes

ϕxψ − ϕtb2 − a2ϕ− c2 = 0. (4.7)

Differentiating this equation with respect to x, one finds

a2 = (2ψx − b1b2 + b2f1 − 2f2ψ)/2. (4.8)

By virtue of (a2)x = 0 and because of (4.5), one has

(ψx − f2ψ)x + f2tb2 = 0. (4.9)

Thus far, we have shown that identities (4.1), (4.2), (4.5), (4.6) and (4.9) are neces-
sary conditions for linearizability of Eq. (3.1). Conditions (4.1), (4.5) and (4.6) apply to
deterministic equations as well, while conditions (4.2) and (4.9) are specific to stochastic
equations. The value of the coefficient b2 is already determined by (4.1), while the coef-
ficients a1, a2 and b1 of the linearized equation are required to satisfy the relations (4.4)
and (4.8).

In order to obtain sufficiency conditions, assume that all the identities listed above are
satisfied. The two relations (4.4) and (4.8) leave three degrees of freedom for the choice of
coefficients of the linearized equation. Observe that Eqs. (3.6) and (3.7) are equivalent to
(4.3) and (4.7), respectively, and further analysis of compatibility of this overdetermined
system of equations depends on the value of b2 as determined by (4.1). In fact, we will show
that the nonlinear equation can be transformed to a linear equation with simple stochastic
part, provided the above conditions are satisfied.

4.1. Case b2 �= 0

Since b2 is nonzero, one finds ϕt from Eq. (4.7),

ϕt = (ϕxψ − a2ϕ− c2)/b2. (4.10)

Substituting ϕt into the second and third equations of (4.3), one obtains

ϕxλ+ pϕ+ u = 0, (4.11)

where

λ = (ψxψ − ψtb2 − b22f0 + ψ(b2t + b2f1 − f2ψ))/b22, p = −λx + f2λ,

u = (2c2tb2 + c2(2f2ψ − 2b2t − 2ψx − b1b2 − b2f1) + 2b22c1)/(2b
2
2).

In addition, the relations ux = 0 and px = 0 hold. There are now several possibilities to
consider.
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Suppose first that λ = 0. Then p = 0 and Eq. (4.11) reduces to u = 0, which constitutes
a linear first-order ordinary differential equation in the coefficient c2(t). Thus, the stochastic
differential equation (3.1) is linearizable. In fact, the coefficients of the linear equation (3.2)
are defined by Eqs. (4.4), (4.8) and u = 0, and the function ϕ(t, x) is obtained by integrating
the involutive system of partial differential equations consisting of Eq. (4.10) and the first
equation of (4.3).

Without loss of generality one may choose a2 = 0, c1 = 0, c2 = 0. Then the function
ϕ(t, x) is obtained by integrating the involutive system

ϕt = ϕxψ/b2, ϕxx = −ϕxf2,

and the remaining coefficients of the linear equation (3.2) are uniquely defined by the
functions f and g:

a1 = 0, b1 = f1 + 2(ψx − f2ψ)/b2, c1 = 0, a2 = 0, b2 = (g − ψ)/v, c2 = 0.

Observe that the linear equation obtained is of first order.
Next assume that λ �= 0. Solving Eq. (4.11) with respect to ϕx, the first-order derivatives

of the function ϕ(t, x) are all determined. The relation (ϕx)t − (ϕt)x = 0 gives

2ϕλ2 − wλ = 0, (4.12)

where

λ2 = λtp− ptλ+
p

b2
(ψxλ+ ψ(p − f2λ)),

w = 2ut + u(f1 − b1) − 2
b2λ

(c2pλ+ u(λtb2 + pψ)).

The functions λ2(t, x) and w(t, x) also satisfy the relations

λ2x = f2λ2, wx = −2uλ2/λ
2.

If λ2 = 0, then Eq. (4.12) leads to w = 0. Thus stochastic differential equation (3.1) is
linearizable, and the coefficients of the linear equation (3.2) must satisfy (4.4), (4.8) and
w = 0. The function ϕ(t, x) is obtained by integrating the involutive system of partial
differential equations consisting of the equations

ϕt = ϕ

(
−ψxλ+ ψ(p − f2λ)

b2λ
+

1
2
(b1 − f1)

)
− 1
b2λ

(c2λ+ uψ), ϕx = − 1
λ

(u+ pϕ).

If p �= 0 then one may choose a2 = 0, c1 = 0, c2 = 0. Consequently, u = 0 and

a1 = p, b1 = f1 + 2(ψx − f2ψ)/b2, c1 = 0, a2 = 0, b2 = (g − ψ)/v, c2 = 0,

while ϕ(t, x) is found by solving

ϕt = −ϕpψ/(b2λ), ϕx = −ϕp/λ.
If on the other hand p = 0, then one can only choose a2 = 0 and c2 = 0 as u �= 0 is required.
The linear equation (3.2) reduces to a first order equation, as its coefficients are

a1 = 0, b1 = f1 + 2(ψx − f2ψ)/b2, c1 = −ϕxλ, a2 = 0, b2 = (g − ψ)/v, c2 = 0,
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where ϕ(t, x) is an arbitrary solution of the involutive system of equations

ϕt = ϕxψ/b2, ϕxx = −ϕxf2

satisfying ϕx �= 0.
Finally, if λ2 �= 0, then (4.12) defines the function ϕ(t, x). Substituting this function into

Eq. (4.10), one obtains that w must satisfy

wt = (−4c2λλ2
2 − 4uψλ2

2 + wλ(−2ψxλλ2 − 2λtb2λ2 + 2λ2tb2λ− 2vψλ2

+ b1b2λλ2 − b2f1λλ2 + 2f2ψλλ2))/(2b2λ2λ2). (4.13)

Notice that the equations (4.11) and (wx)t − (wt)x = 0 are satisfied.
Thus, the stochastic differential equation (3.1) is linearizable, and the coefficients of the

linear equation (3.2) are determined by Eqs. (4.4), (4.8) and (4.13). Since it is assumed that
ϕx �= 0, then the coefficients also have to satisfy the condition 2uλ2 + wpλ �= 0. Without
loss of generality, one can choose a2 = 0, c2 = 0. Then the coefficients of the linear equation
(3.2) are

a1 = p, b1 = f1 + 2(ψx − f2ψ)/b2, c1 = −(ϕxλ+ ϕp), a2 = 0,

b2 = (g − ψ)/v, c2 = 0,

where the function ϕ(t, x) is any solution of the involutive system of equations

ϕt = ϕxψ/b2, ϕxx = −ϕxf2,

satisfying the condition ϕx �= 0.
We have thus shown that in case b2 �= 0 one can obtain a linear equation whose coeffi-

cients a2 and c2 vanish.

4.2. Case b2 = 0

The assumption b2 = 0 implies that gv = 0 and ψ = g. Hence the coefficient a2 is determined
by the functions f and g only,

a2 = gx − f2g,

and Eq. (4.9) guarantees that a2 = a2(t).
From (3.7) one finds

ϕx =
ϕa2 + c2

g
.

Substituting ϕx into the first and second equations of (4.3), one obtains

a2

(
ϕt − ϕ

(
gt

g
+
b1 − f1

2

))
+ a2tϕ+ c2t − c2

(
gt

g
+
b1 − f1

2

)
= 0. (4.14)

Suppose first that a2 = 0. Because of ϕx �= 0 one has c2 �= 0, and Eq. (4.14) becomes

c2t

c2
=

(
gt

g
+
b1 − f1

2

)
. (4.15)
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Thus, stochastic differential equation (3.1) is linearizable. The remaining coefficients of the
linear equation (3.2) are determined by Eqs. (4.4), (4.8) and (4.15), and the function ϕ(t, x)
is a solution of the involutive system of equations

ϕx = c2/g, ϕtt = ϕtb1 + a1ϕ+ c1 − c2f0/g.

Without loss of generality one may choose b1 = 0, c1 = 0. Then

a1 = f0x − f0f2 − (2f1t − f2
1 )/4, b1 = 0, c1 = 0, a2 = 0, b2 = 0,

and c2 is a nontrivial solution of Eq. (4.15).
If a2 �= 0, then Eq. (4.14) can be solved with respect to the derivative ϕt:

ϕt =
ϕṽa2 + ũ

2ga2
2

, (4.16)

where

ũ = −2c2tga2 + 2a2tc2g + ṽc2, ṽ = 2gta2 − 2a2tg + b1ga2 − f1ga2.

The functions ũ(t, x) and ṽ(t, x) satisfy the conditions

ũx = ũ

(
f2 +

a2

g

)
+ 2c2a2

(
a2t − gt

g
a2

)
, ṽx = ṽ

(
f2 +

a2

g

)
+ 2a2

(
a2t − gt

g
a2

)
.

Substitution of ϕt into the third equation of (4.3) gives

ϕλ3 + w̃ = 0, (4.17)

where

λ3 =
a2tt

a2
− gtt

g
−

(
2
a2t

a2
2

+
f1

a2

)(
a2t − gt

g
a2

)
+ f0x − f0

(
f2 +

a2

g

)
,

w̃ =
1

4g2a3
2

(−2ũtga2 + ũ(8a2tg − 2gta2 + 2f1ga2 + ṽ)) − c2
f0

g
+ c1.

Notice that (ϕt)x − (ϕx)t = 0 and λ3x = −a2λ3/g. In addition,

w̃x = −c2λ3/g. (4.18)

Assuming first that λ3 = 0, Eq. (4.17) implies that w̃ = 0. Thus, the stochastic dif-
ferential equation (3.1) is linearizable, and the coefficients of the linear equation (3.2) will
satisfy the conditions (4.4), (4.8) and w̃ = 0. The function ϕ(t, x) is found from the involu-
tive system of equations

ϕt =
ϕṽa2 + ũ

2ga2
2

, ϕx =
ϕa2 + c2

g
.

Without loss of generality one may choose b1 = 0, c1 = 0, c2 = 0. These assumptions imply
that ũ = 0, and

ṽ = 2gta2 − 2a2tg − f1ga2.
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Thus

a1 = f0x − f0f2 − (2f1t − f2
1 )/4, b1 = 0, c1 = 0, a2 = gx − f2g, b2 = 0, c2 = 0,

and in order to obtain the function ϕ(t, x) one has to integrate the involutive system of
equations

ϕt = ϕ
ṽ

2ga2
, ϕx = ϕ

a2

g
.

When λ3 �= 0 then one finds from (4.17) that

ϕ = −w̃/λ3,

and substitution into Eq. (4.16) yields

w̃t = w̃

(
λ3t

λ3
+

ṽ

2ga2

)
− ũ

λ3

2ga2
2

. (4.19)

Thus, stochastic differential equation (3.1) is linearizable, and the coefficients of the lin-
earized equation (3.2) need to satisfy (4.4), (4.8), (4.18) and (4.19). Because of the assump-
tion ϕx �= 0 the coefficients have to satisfy the condition c2λ3 − a2w̃ �= 0 as well. One can
therefore choose only two of the coefficients arbitrarily, say b1 = 0 and c2 = 0, which gives
ũ = 0, w̃ = c1 and

ṽ = 2gta2 − 2a2tg − f1ga2.

Then by (4.19), the coefficient c1(t) can be found by solving

c1t

c1
=
λ3t

λ3
+

ṽ

2ga2
.

The remaining coefficients are

a1 = (4f0x − 2f1t − 4f0f2 + f2
1 )/4, b1 = 0, a2 = gx − f2g, b2 = 0, c2 = 0.

Thus, in case b2 = 0 we are also able to obtain a linear equation where all but one of
the coefficients of the stochastic part vanish.

We summarize the above:

Theorem 4.2. A second-order stochastic differential equation

Ẍ = f(t,X, Ẋ) + g(t,X, Ẋ) Ẇ

is linearizable by a change of the dependent variables if and only if

f(t, x, v) = v2f2(t, x) + vf1(t, x) + f0(t, x), g(t, x, v) = vb2(t) + ψ(t, x),

where the functions fi, g, ψ and b2 satisfy the conditions

f1x = 2f2t, f0xx = f0xf2 + f2tt − f2tf1 + f2xf0, (ψx − f2ψ)x + f2tb2 = 0. (4.20)

5. Linearizable Langevin Equations

We illustrate our results by two examples.
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The first example furnishes the class of second order Langevin equations (1.2) which are
linearizable. By Theorem 4.2, these equations are necessarily of the form

Ẍ = f2(t,X)Ẋ2 + f1(t,X)Ẋ + f0(t,X) + σẆ , (5.1)

with σ �= 0.
We may assume that f2 �= 0, for otherwise conditions (4.20) ensure that this equation

is already linear. Since g = σ �= 0, Eqs. (4.20) reduce to

f2 = p(t), f1 = q(t) + 2p′(t)x, f0 = h(t)ep(t)x + α(t)x2 + β(t)x+ r(t),

where

α = (p′)2/p, β = (qp′ − p′′)/p+ 2(p′/p)2. (5.2)

This is the case b2 = 0, a2 �= 0 discussed in the previous section, with λ3 = hpepx.

If h = 0, then a linearizing transformation is given by

ϕ(t, x) =
ϕ0(t)
p(t)

e−p(t)x

where ϕ0(t) is a nontrivial solution of the equation

2ϕ′
0 + ϕ0q = 0,

yielding an equivalent linear stochastic differential equation

Ÿ = a1(t)Y − σp(t)Y Ẇ

where

a1 = β − pr − q′/2 + q2/4. (5.3)

On the other hand, if h �= 0, then a linearizing transformation is given by

ϕ(t, x) = − c1(t)
p(t)h(t)

e−p(t)x

where c1(t) is a nontrivial solution of the equation

c′1
c1

=
h′

h
− q

2
.

The equivalent linear stochastic differential equation is

Ÿ = a1(t)Y + c1(t) − σp(t)Y Ẇ ,

where a1 is again defined by formula (5.3).
Both cases may be combined to:

Theorem 5.1. A nonlinear Langevin equation is linearizable if, and only if, it is of the
form

Ẍ = p(t)Ẋ2 + [q(t) + 2p′(t)X]Ẋ + h(t)ep(t)X + α(t)X2 + β(t)X + r(t) + σẆ
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where α and β are as defined in (5.2). Any linearizable Langevin equation can be reduced to
the linear equation

Ÿ = a1(t)Y + c1(t) − σp(t)Y Ẇ ,

where a1 is given by (5.3) and

c1(t) = h(t) exp
(
−1

2

∫
q(t) dt

)
,

by means of the transformation

y = ϕ(t, x) =
−1
p(t)

exp
(
−1

2

∫
q(t) dt − p(t)x

)
.

A similar analysis can be applied to the following stochastic equation with multiplicative
noise,

Ẍ = f(t,X, Ẋ) + b2(t)ẊẆ , (5.4)

by using the discussion of the b2 �= 0 case of the previous section. Details are omitted as
they are easy to verify.

Theorem 5.2. Equation (5.4) is linearizable if, and only if, it is of the form

Ẍ = q(X)Ẋ2 + r(t)Ẋ + f0(t,X) + b2(t)ẊẆ

where

f0(t, x) =
1

β(x)

[
s(t) + h(t)

∫
β(x) dx

]

with

β(x) = e−
R

q(x) dx.

The transformation

y = ϕ(x) =
∫
β(x) dx

maps any linearizable equation to the equation

Ÿ = h(t)Y + r(t)Ẏ + s(t) + b2(t)Ẏ Ẇ .

Remark. All computations were initially performed using the REDUCE symbolic program,
but later carefully verified by hand.
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