
Journal of Nonlinear Mathematical 
Physics

ISSN (Online): 1776-0852 ISSN (Print): 1402-9251 
Journal Home Page: https://www.atlantis-press.com/journals/jnmp 

Toda–Heisenberg Chain: Interacting σ-Fields in Two Dimensions 

G. M. Pritula, V. E. Vekslerchik

To cite this article: G. M. Pritula, V. E. Vekslerchik (2011) Toda–Heisenberg Chain: 

Interacting σ-Fields in Two Dimensions, Journal of Nonlinear Mathematical Physics 18:3, 

443–459, DOI: https://doi.org/10.1142/S1402925111001702 

To link to this article: https://doi.org/10.1142/S1402925111001702 

Published online: 04 January 2021 

https://www.atlantis-press.com/journals/jnmp


September 21, 2011 10:34 WSPC/1402-9251 259-JNMP S1402925111001702

Article

Journal of Nonlinear Mathematical Physics, Vol. 18, No. 3 (2011) 443–459

c© G. M. Pritula and V. E. Vekslerchik
DOI: 10.1142/S1402925111001702

TODA–HEISENBERG CHAIN: INTERACTING σ-FIELDS
IN TWO DIMENSIONS

G. M. PRITULA∗ and V. E. VEKSLERCHIK†

Usikov Institute of Radiophysics and Electronics
12, Proskura st., Kharkov, 61085, Ukraine

∗galinapritula@yandex.ru
†vekslerchik@yahoo.com

Received 28 February 2011
Accepted 28 March 2011

We study a (2 + 1)-dimensional system that can be viewed as an infinite number of O(3) σ-fields
coupled by a nearest-neighbour Heisenberg-like interaction. We reduce the field equations of this
model to an integrable system that is closely related to the two-dimensional relativistic Toda chain
and the Ablowitz–Ladik equations. Using this reduction we obtain the dark-soliton solutions of our
model.
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1. Introduction

The model considered in this paper can be viewed as a generalization of the classical O(3)
σ-model in two dimensions, described by the Hamiltonian function

E = E [σ] =
∫

R2

dx dy(∇σ,∇σ) (1.1)

where σ is a three-component vector of unit length,

(σ,σ) = 1 (1.2)

and braces denote the standard scalar product. The energy of our system is given by

H =
∑
n

E [σn] + Hint (1.3)

with nearest-neighbour interaction

Hint =
1
2

∑
n

∑
p=n±1

Unp (1.4)
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of the Heisenberg type:

Unp = U [σn,σp] =
∫

R2

dx dy F ((σn,σp)). (1.5)

The models of this type can appear, for example, in the studies of the lamellar (graphite-
like) magnetics when the spin interaction inside one layer can be described in the framework
of the Landau–Lifshitz theory with effective Heisenberg interaction between adjacent layers.

The stationary structures of our system are governed by the (2+1)-dimensional equation

δH
δσn

= 0, (δσn,σn) = 0. (1.6)

In what follows we use a function F which is peculiar to integrable nonlinear mathematics
(see e.g. [1, 2]),

F (x) = g2 ln(1 + x). (1.7)

The resulting equations are given by

[∆σn,σn] =
g2

4

∑
p=n±1

fnp[σp,σn] (1.8)

where

fnp =
2

1 + (σn,σp)
. (1.9)

The factor g2 can be eliminated by rescaling the coordinates, so we take

g = 4 (1.10)

and write the central equation of our study as

1
4
[∆σn,σn] =

∑
p=n±1

fnp[σp,σn]. (1.11)

In the following sections, after re-parametrization of (1.11), we split it in Sec. 2 into a
first-order system, bilinearize it (Sec. 3) and derive the dark-soliton solutions (Sec. 4).

2. Parametrization and Splitting

Using the vector-matrix correspondence

σ = (s1, s2, s3)T → S =

(
s3 s1 − is2

s1 + is2 −s3

)
=

3∑
j=1

sjσ
j (2.1)

where σj (j = 1, 2, 3) are the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(2.2)

and introducing complex variables

z = x+ iy, z̄ = x− iy (2.3)
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one can rewrite Eq. (1.11) as

[∂∂̄ Sn,Sn] =
∑
p=n±1

fnp[Sp,Sn] (2.4)

with ∂ = ∂/∂z, ∂̄ = ∂/∂z̄ and

fnp =
2

1 + 1
2 tr SnSp

. (2.5)

In what follows we use the parametrization of the vectors σn based on the presentation of
the matrices Sn in the form

Sn = Ψ−1
n σ3Ψn. (2.6)

Using the invariance of this representation with respect to transformations Ψn → DnΨn

with arbitrary diagonal matrices Dn one can choose

Ψn =

(
1 Bn

Cn 1

)
(2.7)

which leads to

Sn =
1

1 −BnCn

(
1 +BnCn 2Bn
−2Cn −1 −BnCn

)
. (2.8)

Calculating ∂∂̄ Sn and fnp,

fnp =
(1 −BnCn)(1 −BpCp)
(1 −BnCp)(1 − CnBp)

, (2.9)

one comes to the following system of equations:{
AnLBn = Ȳn(Bn+1 −Bn) − Yn−1(Bn −Bn−1)

AnLCn = Yn(Cn+1 − Cn) − Ȳn−1(Cn −Cn−1)
(2.10)

where

An =
1

1 −BnCn
, (2.11)

LBn = ∂∂̄Bn + 2An(∂Bn)(∂̄Bn)Cn, (2.12)

LCn = ∂∂̄Cn + 2AnBn(∂Cn)(∂̄Cn) (2.13)

and

Yn =
1

1 −BnCn+1
, Ȳn =

1
1 −Bn+1Cn

. (2.14)

The crucial step of our proceeding is the following ansatz : we split the above system
into two first-order ones, {

iAn∂ Bn = Zn−1(Bn −Bn−1)

iAn∂ Cn = Zn(Cn+1 − Cn)
(2.15)
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and {
−iAn∂̄ Bn = Z̄n(Bn+1 −Bn)

−iAn∂̄ Cn = Z̄n−1(Cn − Cn−1).
(2.16)

By direct calculations one can show that this can be done provided we can find the func-
tions Zn and Z̄n that (i) make (2.15) and (2.16) compatible and (ii) lead to (2.10). It is
demonstrated in the appendix that the functions Zn and Z̄n that meet these conditions can
be chosen as

Zn = ζYn, Z̄n = ζ̄ Ȳn (2.17)

where ζ and ζ̄ are arbitrary constants related by

ζζ̄ = 1. (2.18)

To summarize, one can obtain a large number of solutions of (2.4) by solving the system
i∂Bn = ζ

1 −BnCn
1 −Bn−1Cn

(Bn −Bn−1)

i∂Cn = ζ
1 −BnCn

1 −BnCn+1
(Cn+1 − Cn)

(2.19)

and 
−i∂̄Bn = ζ̄

1 −BnCn
1 −Bn+1Cn

(Bn+1 −Bn)

−i∂̄Cn = ζ̄
1 −BnCn

1 −BnCn−1
(Cn − Cn−1).

(2.20)

Before proceed further, we would like to give some comments on this system. After
introducing new variables,

B̃n = 1/Cn. (2.21)

Equations (2.19), (2.20) can be cast into the Hamiltonian form
i∂Bn = (Bn − B̃n)2

∂H

∂B̃n

−i∂B̃n = (Bn − B̃n)2
∂H

∂Bn

(2.22)

with

H = ζ

∞∑
n=−∞

ln
Bn − B̃n

Bn − B̃n+1

(2.23)

and 
i∂̄Bn = (Bn − B̃n)2

∂H̄

∂B̃n

−i∂̄B̃n = (Bn − B̃n)2
∂H̄

∂Bn

(2.24)



September 21, 2011 10:34 WSPC/1402-9251 259-JNMP S1402925111001702

Toda–Heisenberg Chain 447

with

H̄ = ζ̄
∞∑

n=−∞
ln

Bn − B̃n

Bn − B̃n−1

(2.25)

and can be identified with the (X1, Y1) equations (with a(u, v) = (u− v)2) from the list of
the paper by Adler and Shabat [3].

At the same time both Bn and Cn solve the (2 + 1)-dimensional version of the
Ruijsenaars–Toda lattice [4, 5]

∂∂̄Un + (∂Un)(∂̄Un)
[

1
Un+1 − Un

− 1
Un − Un−1

]
= 0. (2.26)

Note that Eq. (2.26) are different from (and complementary to) the Ruijsenaars–Toda lattice
(R1) that appears in a natural way in the framework of [3].

Finally, calculating from Eqs. (2.15), (2.16) derivatives of the functions fn defined by

fn = fn,n+1 =
(1 −BnCn)(1 −Bn+1Cn+1)
(1 −BnCn+1)(1 −Bn+1Cn)

(2.27)

one can demonstrate that these functions satisfy

∂∂̄ ln fn = fn+1 − 2fn + fn−1. (2.28)

Thus one can see the relationship of the model discussed in this paper with the famous
two-dimensional Toda lattice.

3. Bilinearization

To bilinearize Eqs. (2.19), (2.20) we introduce ρ̌n, τ̌n, τ̂n and σ̂n by

Bn =
ρ̌n−1

τ̂n
, Cn = − σ̂n

τ̌n−1
(3.1)

and another set of tau-functions by{
iD ρ̌n−1 · τ̂n = α ρn−1τn

iD τ̌n−1 · σ̂n = α τn−1σn
(3.2)

and {−iD̄ ρ̌n−1 · τ̂n = ᾱ τn−1ρn

−iD̄ τ̌n−1 · σ̂n = ᾱ σn−1τn
(3.3)

where α and ᾱ are constants, D and D̄ are the Hirota’s bilinear differential operators,
Du · v = (∂u)v − u(∂v) and D̄ u · v = (∂̄u)v − u(∂̄v). Now, to finish the bilinearization of
our equations, we impose the restrictions{

ρ̌nτ̂n − ρ̌n−1τ̂n+1 = β ρnτn

τ̌nσ̂n − τ̌n−1σ̂n+1 = β τnσn
(3.4)
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and 
τ̌n−1τ̂n + ρ̌n−1σ̂n = γA τn−1τn

τ̌nτ̂n + ρ̌n−1σ̂n+1 = γB τ2
n

τ̌n−1τ̂n+1 + ρ̌nσ̂n = γC τ2
n

(3.5)

where β, γA, γB and γC are again some constants. It can be shown by direct calculations
that Eqs. (3.2)–(3.5) imply that Bn, Cn satisfy Eqs. (2.19), (2.20). Indeed, noting that
Eqs. (3.4) and (3.5) are nothing but

Bn+1 −Bn = β
ρnτn
τ̂nτ̂n+1

(3.6)

Cn+1 − Cn = β
τnσn
τ̌n−1τ̌n

(3.7)

and

1 −BnCn = γA
τn−1τn
τ̌n−1τ̂n

(3.8)

1 −BnCn+1 = γB
τ2
n

τ̌nτ̂n
(3.9)

1 −Bn+1Cn = γC
τ2
n

τ̌n−1τ̂n+1
, (3.10)

calculating fn,

fn =
(γA)2

γBγC
τn−1τn+1

τ2
n

, (3.11)

and substituting the above formulae into (3.2) and (3.3) one can obtain

i∂Bn = ΓB
1 −BnCn

1 −Bn−1Cn
(Bn −Bn−1) (3.12)

i∂Cn = ΓC
1 −BnCn

1 −BnCn+1
(Cn+1 − Cn) (3.13)

and

− i∂̄Bn = Γ̄B
1 −BnCn

1 −Bn+1Cn
(Bn+1 −Bn) (3.14)

−i∂̄Cn = Γ̄C
1 −BnCn

1 −BnCn−1
(Cn − Cn−1) (3.15)

where

ΓB =
γB

γA
α

β
, ΓC =

γB

γA
α

β
, Γ̄B =

γC

γA
ᾱ

β
, Γ̄C =

γC

γA
ᾱ

β
. (3.16)

Thus, to finish solution of our problem one has impose the condition

ΓB = ΓC = ζ, Γ̄B = Γ̄C = ζ̄ = 1/ζ. (3.17)
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In this way we have reduced Eqs. (2.19), (2.20), and hence Eq. (2.4), to the set of the
bilinear equations (3.2)–(3.5). An important question that arises now is the question about
compatibility of this system. We do not present here an explicit proof of the fact that
Eqs. (3.2)–(3.5) are compatible because (i) we present (in the next section) their explicit
solutions and (ii) show their relation to a well-known nonlinear compatible system — the
Ablowitz–Ladik hierarchy (ALH) [6]. To do the latter let us consider the matrix

Φn =
1

τn−1

(
τ̂n ρ̌n−1

−σ̂n τ̌n−1

)
. (3.18)

Calculating its determinant,

det Φn = γA
τn
τn−1

, (3.19)

and inverse one can obtain

Φn+1 = UnΦn (3.20)

with

Un =
1
γA

 γC β
ρn
τn

β
σn
τn

γB

 (3.21)

and

i∂Φn = VnΦn, i∂̄Φn = V̄nΦn (3.22)

with

Vn =


i∂ ln

τ̂n
τn−1

+
α

γA
ρn−1σ̂n
τn−1τ̂n

α

γA
ρn−1

τn−1

α

γA
σn
τn

i∂ ln
τ̌n−1

τn−1
− α

γA
ρ̌n−1σn
τ̌n−1τn

 . (3.23)

and

V̄n =


i∂̄ ln

τ̂n
τn−1

− ᾱ

γA
ρnσ̂n
τnτ̂n

− ᾱ

γA
ρn
τn

− ᾱ

γA
σn−1

τn−1
i∂̄ ln

τ̌n−1

τn−1
+

ᾱ

γA
ρ̌n−1σn−1

τ̌n−1τn−1

 . (3.24)

Inspecting (3.20)–(3.24) one can conclude, after eliminating the unnecessary constants,
introducing

qn =
σn
τn
, rn =

ρn
τn

(3.25)

and making some simple gauge transformations, that (3.20) with (3.21) is nothing but the
spectral problem of the ALH whereas Eqs. (3.22) with (3.23) and (3.24) describe its first



September 21, 2011 10:34 WSPC/1402-9251 259-JNMP S1402925111001702

450 G. M. Pritula & V. E. Vekslerchik

positive and negative flows. So, bilinear equations (3.2)–(3.5) belong to the ALH. This
leads to two important results: (i) they are compatible and (ii) we can use already known
solutions for the ALH to get solutions of our equations.

To expose the inner structure of Eqs. (3.2)–(3.5) and to make the following formulae
more readable it seems useful to introduce instead of the triplet ρn, τn and σn an infinite
set of tau-functions τmn ,

ρn = τ−1
n , τn = τ0

n, σn = τ1
n. (3.26)

In new terms equations (3.2)–(3.5) become

iD τ̌m−1
n−1 · τ̂mn = α τm−1

n−1 τ
m
n (3.27)

−iD̄ τ̌m−1
n−1 · τ̂mn = ᾱ τmn−1τ

m−1
n (3.28)

τ̌m−1
n τ̂mn − τ̌m−1

n−1 τ̂
m
n+1 = β τm−1

n τmn (3.29)

for m = 0, 1 and

τ̌mn−1τ̂
m
n + τ̌m−1

n−1 τ̂
m+1
n = γA τmn−1τ

m
n (3.30)

τ̌mn τ̂
m
n + τ̌m−1

n−1 τ̂
m+1
n+1 = γB (τmn )2 (3.31)

τ̌m−1
n τ̂m+1

n + τ̌mn−1τ̂
m
n+1 = γC (τmn )2 (3.32)

for m = 0. These equations are a part of the generalized ALH [7] and can be solved without
imposing restrictions on m, for −∞ < m <∞.

4. Dark Solitons

4.1. Dark solitons of the ALH

Here we would like to present some basic formulae describing the dark-soliton solutions of
the ALH that we then use to obtain solutions of our problem.

The dark solitons for the AL equations were obtained in [8] using the inverse scattering
method. In [9] these solutions were derived, using purely algebraic method based on the Fay-
like identities for the determinants of some special matrices. Here we use notation slightly
different from one of [9], which makes the following formulae more simple and clear.

The key objects behind the dark-soliton solutions of the ALH are the determinants

ω(A) = det |I +A| (4.1)

with matrices A satisfying

LA−AR = |�〉〈a|. (4.2)

Here I is the N ×N unit matrix, L and R are constant diagonal matrices,

L = diag(L1, . . . , LN ),
R = diag(R1, . . . , RN ),

(4.3)

|�〉 is a constant N -column, |�〉 = (�1, . . . , �N )T , and 〈a| is a N -row depending on the
coordinates describing the ALH flows: in our case 〈a| = 〈a(z, z̄)| = (a1(z, z̄), . . . , aN (z, z̄)).
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In what follows we use “shifted” determinants

ωζ = Tζ ω, ωξη = TξTη ω (4.4)

where

T
l
ζ ω = ω(AH l

ζ), l = ±1 (4.5)

with

Hζ = (L− ζI)(R − ζI)−1. (4.6)

An important property of these determinants, that we repeatedly use below, is the Fay’s
identity

(ξ − η)ωζωξη + (η − ζ)ωξωηζ + (ζ − ξ)ωηωζξ = 0 (4.7)

which can be proved directly.
Using the limit procedure one can introduce differential operators ∂ζ as

T
−1
ζ Tζ+δ ω = ω + iδ ∂ζω +O(δ2) (4.8)

or

i∂ζA = AXζ (4.9)

where

Xζ = (L−R)(L− ζI)−1(R− ζI)−1. (4.10)

One can obtain from (4.7) many differential Fay’s identities of the following type:

i(ζ − α)(ζ − β) Dζ ωα · ωβ = (α− β)[(T−1
ζ ωαβ)(Tζω) − ωαωβ] (4.11)

where

Dζ ωα · ωβ = (∂ζωα)ωβ − ωα(∂ζωβ). (4.12)

The matrices L and R used in the ALH context are not independent: they are related by

(L− κI)(R − κI) = −ρ2
I (4.13)

with constant parameters κ and ρ. Relations of this kind play crucial role in the construction
of dark solitons for the ALH, so it seems useful introduce the notion of “duality”: two
complex numbers ξ and ξ∗ are said to be dual if

(ζ − κ)(ζ∗ − κ) = −ρ2 (4.14)

which leads to an alternative definition

HζHζ∗ = Hκ, κ = const. (4.15)
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Many Fay-like formulae can be simplified when rewritten in terms of dual numbers. In
particular, Eq. (4.11) leads to

iDζ ωα · ωα∗ =
α− α∗

(ζ − α)(ζ − α∗)
[(T−1

ζ ωκ)(Tζω) − ωαωα∗ ]. (4.16)

Given some fixed number µ and its dual, which will be denoted by ν, ν = µ∗, one can
construct an doubly infinite set of matrices/determinants

ωmn = ω(Amn ) (4.17)

where

Amn = AHm
µ H

n
ν (4.18)

and derive from (4.7) a lot of lattice Fay’s identities the most important of which is

(ωmn )2 = ρ2
µω

m−1
n ωm+1

n + ρ2
νω

m
n−1 ω

m
n+1 (4.19)

with

ρµ =
√
µ− κ

µ− ν
, ρν =

√
κ− ν

µ− ν
. (4.20)

In order to ensure the involution τmn = τ−mn (where overline stands for the complex
conjugation) which appears in physical applications of the Ablowitz–Ladik model one has
to restrict himself to the case of real κ, µ and ν,

ν < κ < µ (4.21)

(which leads to Im ρµ = Im ρν = 0) and to choose the matrices L to be of the form

L = µ+
√
µ− ν

√
µ− κE, E = diag(eiψj ) (4.22)

with real angles ψj (compare with the parametrization (2.27) of the eigenvalues of the
scattering problem for the ALH used in [8]).

Calculating R from (4.22) and (4.13) one can verify that in this case

Hµ = H−1
µ , Hν = Hν (4.23)

and

Amn = A−m
n (4.24)

provided

A = A. (4.25)

The last condition can be met by choosing properly the constants �j and aj in (4.2). By
straightforward algebra one can get

Lj −Rk = (µ− ν)
ei(ψj+ψk) + ρµ(eiψj + eiψk) + 1

1 + ρ−1
µ eiψk

(4.26)
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and rewrite the matrix A, after eliminating excessive constants, as

A(z, z̄)jk = Djkck(z, z̄) (4.27)

where

Djk =
[
cos
(
ψj + ψk

2

)
+ ρµ cos

(
ψj − ψk

2

)]−1

(4.28)

and ck(z, z̄) are some real functions.

4.2. Dark soliton solutions of (3.27)–(3.32)

After we have established the relation of our model with the ALH and knowing the structure
of the ALH dark solitons, we can reformulate the ansatz we use as follows: all tau-functions
are related by the T-shifts (Tν , Tµ and Tξ∗ for some given ξ). The sequence ρ → τ → σ is
generated by Tµ, the sequence τ̌ → τ → τ̂ is generated by Tξ∗, as is depicted in Fig. 1, while
the nodes n and n + 1 are related by Tν . Thus we can say that our tau-functions occupy
sites of a three-dimensional lattice. However in what follows we do not use the three-indices
and adhere to the τmn notation.

To find solutions of (3.27)–(3.32) we look for our tau-functions in the form

τmn = ρm
2

µ ρn
2

ν u
mvnωmn (4.29)

with similar formulae for τ̌mn and τ̂mn

τ̌mn = ρm
2

µ ρn
2

ν ǔ
mv̌nω̌mn (4.30)

τ̂mn = ρm
2

µ ρn
2

ν û
mv̂nω̂mn (4.31)

where ω̌mn and ω̂mn are related to ωmn by means of T
±1
ξ∗ shifts:

ω̌mn = Tξ∗ω
m
n , ω̂mn = T

−1
ξ∗ ω

m
n (4.32)

or

ω̌mn = T
−1
ξ ωm+1

n+1 , ω̂mn = Tξω
m−1
n−1 . (4.33)

ρ̌� τ̌� σ̌��Tµ �Tµ

�
Tξ∗

�
Tξ∗

�
Tξ∗

ρ� τ� σ��Tµ �Tµ

�
Tξ∗

�
Tξ∗

�
Tξ∗

ρ̂� τ̂� σ̂��Tµ �Tµ

Fig. 1. Tµ-Tξ∗ lattice of tau-functions (for n = constant).



September 21, 2011 10:34 WSPC/1402-9251 259-JNMP S1402925111001702

454 G. M. Pritula & V. E. Vekslerchik

Taking ξ, η, ζ in (4.7) being equal to different triples from {µ, ν, κ, ξ, ξ∗} one can conclude
that restrictions(

ρµ
û

u

)2

= − ξ − µ

ξ∗ − µ
,

(
ρν
v̂

v

)2

=
ξ − ν

ξ∗ − ν
,

(
ρµρν

û

u

v̂

v

)2

= − ξ − κ

ξ∗ − κ
(4.34)

lead to (3.29)–(3.32) with

β =
ξ∗ − ξ

ξ∗ − ν

û

u
(4.35)

γA =
ξ∗ − ξ

ξ∗ − µ

v̂

v
(4.36)

γB =
ξ∗ − ξ

ξ∗ − κ
(4.37)

γC =
(ξ∗ − ξ)(µ− ν)
(ξ∗ − µ)(ξ∗ − ν)

. (4.38)

Considering the dependence on z and z̄ it can be shown that to meet (3.27) and (3.28) one
has to take

i∂A = AX, −i∂̄A = AX̃ (4.39)

where

X = const ·Xκ, X̃ = const ·Xν (4.40)

We will write the explicit value of the corresponding constants later, after discussing the
involution (complex conjugation) and reality requirement.

4.3. Complex conjugation and parametrization

Recalling the definitions of our tau-functions we can present Bn and Cn as

Bn = B0
n, Cn = C0

n (4.41)

where

Bm
n =

1
uv

(
µ− ξ∗

ξ − µ

)m− 1
2
(
ξ∗ − ν

ξ − ν

)n− 1
2 ω̌m−1

n−1

ω̂mn
(4.42)

Cmn = −uv
(
ξ − µ

µ− ξ∗

)m+ 1
2
(
ξ − ν

ξ∗ − ν

)n− 1
2 ω̂m+1

n

ω̌mn−1

. (4.43)

The involution that ensures reality of σn and that is consistent with the ALH is

Bm
n = −C−m

n (4.44)

where overline stands for complex conjugation. A simple analysis of (4.42), (4.43) and (4.18)
leads to the restrictions

Im
ξ∗ − µ

ξ − µ
= 0,

∣∣∣∣ξ∗ − ν

ξ − ν

∣∣∣∣ = 1 (4.45)
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and

HξHξ = Hν (4.46)

that should be added to the restriction Amn = A−m
n discussed above.

The family of ξ and ξ∗ that satisfy (4.14), (4.46) and (4.45) can be parametrized as

ξ = ν + aei(φ+θ)

ξ∗ = ν + aei(φ−θ)
(4.47)

where

a =
√
µ− ν

√
κ− ν =

ρ

ρµ
(4.48)

and the angles φ and θ are related by

cosφ = ρν cos θ. (4.49)

Using another parametrization of the matrices L and R, stemming from (4.22) and (4.13),

Lj = ν + a exp(χj + iφj)

Rj = ν + a exp(−χj + iφj)
(4.50)

where the quantities χj and φj are defined by

exp(χj + iθj) =
1
ρν

(ρµ + eiψj ) (4.51)

one can obtain

Hξ = −diag(eχj−iγ+
j ), Hξ∗ = −diag(eχj−iγ−j ) (4.52)

with

γ±j = φ− φj ± θ − 2 arg[eχj − ei(φ−φj±θ)]. (4.53)

4.4. Dark solitons of the Toda–Heisenberg chain

Now we have all necessary to write dark soliton solutions of the Toda–Heisenberg chain.
Their structure is given by (4.42) and (4.43). The dependence on z and z̄ enters through
the matrices A and the factor uv,

i∂A = AX, −i∂̄A = AX̃ (4.54)

where

X = − λρ2

µ− ν
Xκ, X̃ = λ−1(κ− ν)Xν (4.55)

or, explicitly,

X =
λ

µ− ν
(L−R), X̃ =

λ−1

µ− ν
(L−R). (4.56)
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This dependence of A, as follows from the differential Fay’s identity (4.11), leads to

iD ωα∗ · ωα =
λ(α∗ − α)
µ− ν

[ω ωκ − ωα∗ωα] (4.57)

iD̄ ωα∗ · ωα =
λ−1(α∗ − α)

µ− ν
[ωµων − ωα∗ωα] (4.58)

and hence to

iD ω̌m−1
n−1 · ω̂mn =

λ(ξ∗ − ξ)
µ− ν

[ωm−1
n−1 ω

m
n − ω̌m−1

n−1 ω̂
m
n ] (4.59)

iD ω̂m+1
n · ω̌mn−1 =

λ(ξ∗ − ξ)
µ− ν

[ω̌mn−1 ω̂
m+1
n − ωmn−1 ω

m+1
n ] (4.60)

and

iD̄ ω̌m−1
n−1 · ω̂mn =

λ−1(ξ∗ − ξ)
µ− ν

[ωm−1
n ωmn−1 − ω̌m−1

n−1 ω̂
m
n ] (4.61)

iD̄ ω̂m+1
n · ω̌mn−1 =

λ−1(ξ∗ − ξ)
µ− ν

[ω̌mn−1 ω̂
m+1
n − ωmn ω

m+1
n−1 ]. (4.62)

The extra terms in the right-hand sides of the above formulae can be eliminated by taking

uv = const × eiϕ (4.63)

with

ϕ = λ
ξ∗ − ξ

µ− ν
z + λ−1 (ξ∗ − ξ)

µ− ν
z̄. (4.64)

It is easy to verify that all reality conditions are met provided

|λ| = 1. (4.65)

Now one can check that tau-functions τmn satisfy Eqs. (3.27) and (3.28) with

α = λ
ξ∗ − ξ

µ− ν

ûv̂

uv
, ᾱ = −λ−1 (ξ∗ − ξ)

µ− ν

ûv̂

uv
. (4.66)

Gathering all constants, one comes to the conclusion that for m = 0 the quantities Bn, Cn
solve Eqs. (3.12)–(3.15) with

ΓB = ΓC = −λ e2i arg(ξ∗−ξ) (4.67)

and

Γ̄B = Γ̄C = −λ−1 e−2i arg(ξ∗−ξ). (4.68)

Finally, calculating from (4.47) and (4.50) the coefficients that describe the z-, z̄-
dependence,

Lj −Rj
µ− ν

= 2ρµ cos θj eiφj (4.69)
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and
ξ∗ − ξ

µ− ν
= −2iρν sin θ eiφ, (4.70)

one can present Bn and Cn as follows:

Bn(x, y) = B∗ exp{−2inθ − iϕ(x, y)}∆+
n (x, y)

∆−
n (x, y)

(4.71)

and

Cn(x, y) = −Bn(x, y). (4.72)

Here

B∗ =
1
ρµ

|1 − ρν exp(iψ)|, (4.73)

∆±
n (x, y) = det |δjk −Djk exp{2nχk + ak(x, y) + iγ±k }|, (4.74)

with the coefficients Djk and γ±k being defined in (4.28), (4.53). The phase ϕ and the
functions ak are given by

ϕ(x, y) = 4ρν sin θ(x sinα0 + y cosα0) + ϕ(0) (4.75)

with

α0 = φ+ arg λ (4.76)

and

ak(x, y) = 4ρµ cos θk(x sinαk + y cosαk) + a
(0)
k (4.77)

with

αk = φk + arg λ (4.78)

where ϕ(0) and a(0)
k are arbitrary real constants.

These formulae, together with the vector-matrix correspondence (2.1), lead to the dark
soliton solutions of the Toda–Heisenberg chain:

σn =
1

1 + |Bn|2

 2ReBn
−2 ImBn

1 − |Bn|2

. (4.79)

5. Conclusion

We have studied the (2+1)-dimensional system that was reduced to the integrable Ablowitz–
Ladik equations. Using this reduction we have derived its soliton solutions. It is clear that
using this approach one can also derive a wide range of other solutions starting from the
ones already known for the ALH. Thus Eqs. (1.11), (1.9) possess a set of solutions that are
typical for the integrable systems (solitons, algebro-geometric solutions etc.). At the same
time it is not clear whether this model is integrable or we deal with another example of
soliton equation that is not integrable (see, e.g., [10]), which can occur in multidimensions,
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contrary (as is presumed) to the (1 + 1)-dimensional case. However, this very interesting
question, as well as other related questions (such as, e.g., the Painlevé test, the symmetry
analysis), is out of the scope of this paper and may constitute the subject of the subsequent
studies.

Appendix A

Rewriting the ansatz (2.15), (2.16) in the form{
i∂ Bn = ζn−1Yn−1(1 −BnCn)(Bn −Bn−1)

i∂ Cn = ζnYn(1 −BnCn)(Cn+1 − Cn)
(A.1)

and {
−i∂̄ Bn = ζ̄nȲn(1 −BnCn)(Bn+1 −Bn)

−i∂̄ Cn = ζ̄n−1Ȳn−1(1 −BnCn)(Cn − Cn−1)
(A.2)

one can calculate ∂∂̄ Bn as

∂∂̄ Bn = i∂(−i∂̄ Bn) = i∂ ζ̄nȲn(1 −BnCn)(Bn+1 −Bn) (A.3)

which leads, after repeated usage of (A.1) to

AnLBn = (i∂ζ̄n + ζnζ̄n)Ȳn(Bn+1 −Bn) − ζn−1ζ̄nYn−1(Bn −Bn−1). (A.4)

Interchanging the ∂ and ∂̄ derivatives, ∂∂̄ Bn = −i∂̄(i∂ Bn), one can obtain

AnLBn = ζn−1ζ̄nȲn(Bn+1 −Bn) − (i∂̄ζn−1 + ζn−1ζ̄n−1)Yn−1(Bn −Bn−1). (A.5)

Similar calculations for ∂∂̄ Cn lead to

AnLCn = (−i∂̄ζn + ζnζ̄n)Yn(Cn+1 − Cn) − ζnζ̄n−1Ȳn−1(Cn − Cn−1) (A.6)

= ζnζ̄n−1Yn(Cn+1 − Cn) + (i∂ζ̄n−1 − ζn−1ζ̄n−1)Ȳn−1(Cn −Cn−1). (A.7)

Comparing the right-hand sides of the above equations with each other and with the right-
hand sides of Eq. (2.10) one can conclude that conditions

ζn±1 = ζn, (A.8)

ζ̄n±1 = ζ̄n, (A.9)

∂ζn = ∂̄ζn = ∂ζ̄n = ∂̄ζ̄n = 0 (A.10)

and

ζnζ̄n = 1 (A.11)

validate the ansatz (2.19), (2.20).
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