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Starting with the semidiscrete integrable nonlinear Schrodinger system on a zigzag-runged ladder
lattice we have presented the generalization and an essentially off-diagonal enlargement of its spec-
tral operator which in the framework of zero-curvature equation allows to generate at least two
new types of semidiscrete integrable nonlinear systems. The two types of evolutionary operators
consistent with the extended spectral operator are proposed. In order to fix arbitrary sampling
functions in each type of evolution operators we have to rely upon a restricted collection of lowest
local conservation laws whose local densities are independent on the type of admissible evolution
operators. For this purpose the modified procedure of seeking the infinite hierarchy of local conser-
vation laws based upon several distinct generating functions has been developed and some lowest
local conservation laws have been explicitly obtained.

Keywords: Zero-curvature equation; fourth-order spectral operator; generating functions; local
conservation laws.

PACS Number(s): 02.30.1k, 11.10.Lm, 45.05.4+x

1. Introduction

The nonlinear Schrodinger equations on one-dimensional or quasi-one-dimensional lattices

are known to describe a number of phenomena in regular optical [1, 2], semiconducting [3, 4]

and electric [5] superstructures as well as in the regular macromolecular structures of both
natural [6, 7] and synthetic [8, 9] origin. In this context the integrable versions of such
equations are able to give us the first and sometimes crucial hint how to handle the real
physical problem both qualitatively [10] and quantitatively [11-13].

In our previous papers [14-16] we have managed to extend the standard integrable non-

linear Schrodinger system [17-19] by complicating the geometrical configuration of primary

lattice

from purely uniform structure with just a single site in the unit cell to the nonuniform

(but regular) structure with several sites in the unit cell.
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The main source for such sort of activity was the simple but important fact that even
in linear limit the behavior of system embedded into the nonuniform lattice is controlled
by the splitted zone structure of elementary excitations in contrast to the uniform lattice
where the zone splitting is principally prohibited. Thus, it was reasonable to expect that
the dynamics of nonlinear system on regular nonuniform lattice should be more rich and
interesting in comparison with purely uniform case. As an example we would like to mention
the soliton dynamics in nonlinear Schrédinger system on a zigzag-runged ladder lattice
[14, 15]. The lattice of above geometrical configuration is typical of the (1,1) armchair
boron nanotube [20].

Naturally, it would be interesting to enrich the early obtained integrable systems [14-16]
by some nonstandard degrees of freedom simultaneously preserving the integrability of new
(enriched) ones.

In this and two forthcoming articles we will present the series of semidiscrete integrable
nonlinear systems constructed in the framework of zero-curvature representation and char-
acterized by the specific off-diagonal enlargement of the spectral operator generalized and
augmented in comparison to the spectral operator for the nonlinear Schrédinger system on a
zigzag-runged ladder lattice [14, 15]. We will classify the possible integrable systems propos-
ing two principally distinct types of admissible evolution operators on the one hand and
choosing the fixation of initially arbitrary sampling functions within the evolution operator
of each type on the other. The most proper versions of sampling fixations will be stipulated
by certain restricted collection of first local conservation laws associated with the adopted
(enlarged) spectral operator. Thus, it looks reasonable that the essential part of the first
article should be devoted to the extraction of these and some other local conservation laws
from the infinite hierarchy.

2. Enlarged Spectral Operator and Zero-Curvature Equation

The spectral operator L(n|z) giving rise to the semidiscrete integrable Schrédinger system
on a zigzag-runged ladder lattice [14, 15] looks as follows

z  igi(n) z  ig-(n)
L(n|z) = 2.1
(nlz) (ir+(n) z71 ) <i7“_(n) 271 ) 1)

where the quantities ¢4 (n), r+(n) and g_(n), r—(n) are supposed to be functions of the
discrete space variable n and continuous time variable 7 and might be treated as the so-
called nearly probability amplitudes while the letter z stands for the time independent
spectral parameter.

The most natural generalization of above spectral operator (2.1) can be written in the
form

Lin]s) = (rﬂ(n)% + tgo(n) s93(n)z + qu(n)z—1> 22)

s32(n)z +uga(n)z™t taz(n) + vsz(n)z 2
which in the framework of zero-curvature equation [21]

L(n|z) = A(n + 1]|2)L(n|z) — L(n|2)A(n|2) (2.3)



Semidiscrete Integrable Nonlinear Systems: Local Conservation Laws 403

enables to produce an alternative representation for the integrable ladder system with
background-controlled intersite resonant couplings [16] provided the ansatz for the evo-
lution operator A(n|z) is taken to be

An]z) = <a22 (n)22 + co2(n) bas(n)z + d23(n)z—1>

bsa(n)z + dsa(n)z=!  c33(n) + ess(n)z2 (2.4)

and the proper parametrization for the prototype field functions ros(n), toa(n), soz(n),
ug3(n) and s32(n), usa(n), tsz(n), vsz(n) is chosen. The dot written over the spectral operator
in the left-hand side of zero-curvature equation (2.3) denotes the derivative with respect to
time 7.

The main question of the present work was to enlarge the generalized spectral operator
(2.2) in order to enrich the previous models [14-16] by the additional degrees of freedom
or even to generate principally new semidiscrete integrable nonlinear models potentially
suitable for the physical applications to the multifield systems on quasi-one-dimensional
lattices.

In order to guarantee the determinant of enlarged spectral operator being independent
on the spectral parameter z and to achieve a rare opportunity in constructing admissible
evolution operators, i.e., evolution operators consistent with the zero-curvature equation
(2.3), we postulate the enlarged spectral operator as the nonsingular 4 x 4 matrix defined
by the formula

0 t12(n) uig(n)z~! 0
| tan) r22(n)z% +taa(n)  s23(n)z +us(n)z™! sau(n)z
L(n|2) = 31 (77,)2:_1 53 (T'I,)Z + uss (T'I,)Z_l t33 (n) + v33 (n)z_2 t34 (n) (25)

O 542 (n)z t43 (n) 0

Thus, in comparison to the initial spectral operator (2.2) given by 2 x 2 matrix the new
spectral operator (2.5) is seen to be extended to 4 x 4 matrix by eight nonzero off-diagonal
elements so that now we have sixteen prototype field functions t12(n), uiz(n), to1(n), rea(n),
tgg (n), 823(’0), UQg(Tl), 524(n), u31 (n), 532 (n), us2 (n), t33(n), V33 (n), t34(n), 5492 (n), t43(n).

Alternatively, we may formally construct the proposed spectral operator (2.5) from the
spectral operator

L(n|z)
r11(n)2% +ti(n)  ria(n)z? +tia(n)  s13(n)z +uz(n)z™t siu(n)z + ugg(n)z !
B ro1(n)2% + tor(n)  roa(n)z? 4 tag(n)  so3(n)z + ugz(n)z™t sou(n)z + uog(n)z~!
s31(n)z +uzr(n)z=! s3a(n)z 4+ usa(n)z™! taz(n) +wvss(n)z=2  taa(n) 4+ vsa(n)z~
s41(n)z +ug1(n)z™ sgo(n)z + uga(n)z™t taz(n) +vaz(n)z=2  taa(n) + vga(n)z™

by imposing rather serious constraints ri;(n) = 0, t11(n) = 0, r2(n) = 0, s13(n) = 0,
814(?7,) = 0, u14(n) = 0, 7“21(71) = 0, UQ4(’I7,) = 0, 831(71) = 0, v34(n) = 0, 841(?7,) = 0,
ug1(n) =0, usz(n) =0, vaz(n) = 0, taa(n) = 0, vaa(n) = 0.
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Evidently both of described procedures giving rise to the new spectral operator (2.5)
are in some sense the heuristical ones and practically have little to do with those based
upon the matrix or tensor products of already known spectral operators (presumably of
Ablowitz-Ladik type). Indeed, the spectral properties of new spectral operator (2.5) turn
out to be essentially distinct from those of its small (2.2) and large (2.6) ancestors already
due to a simple fact that only the determinant of new operator (2.5) does not depend on
the spectral parameter z.

3. Two Types of Admissible Evolution Operators and Arbitrariness
of Their Sampling Functions

Considering the general matrix structure of enlarged spectral operator (2.5) and taking
into account the zero-curvature equation (2.3) we are able to propose two types of admis-
sible evolution operators attributed to two types of ansitze, namely to obverse ansatz and
verso ansatz. The etymology of terms “obverse” and “verso” will be clear when compar-
ing the matrix structure of resepctive ansatz with the matrix structure of basic spectral
operator (2.5).

Thus the matrix structure of observe evolution operator should be sought by the ansatz

0 012(77,) dlg(n)z_l 0
Aln]z) = co1(n) ag(n)z? + caa(n)  bag(n)z +doz(n)z=t  boy(n)z | 51)
d3z1(n)z7! b3a(n)z 4+ dza(n)z™!  e33(n) +es3(n)z=2  cau(n)
0 bso (n)z C43 (n) 0

Conversely, the matrix structure of verso evolution operator should be sought by the

ansatz
all(n)z2 + cll(n) Clg(n) blg(n)z b14(n)z + d14(n)z_1
Co1 (n) 0 0 doy (n)z_l
A(n|2) a b31 (n)z 0 0 034(?7,) ' (3.2)

bii(n)z +du(n)z=t daa(n)z=t  ciz3(n)  caa(n) +eaa(n)z2

Looking at the matrix elements of observe (3.1) and verso (3.2) ansétze we clearly see the
crucial distinctions between two admissible types of evolution operators. As a consequence
the zero-curvature equation (2.3) might inevitably produce at least two principally distinct
sets of semidiscrete integrable nonlinear equations segregated according to the type of chosen
evolution operator (3.1) or (3.2). Here we will not write down either of these sets but merely
inform that in each of two claimed cases the evolution equations can be uniquely isolated
with almost all matrix elements of respective evolution operator being specified through
the field functions entering into the matrix elements of the spectral operator (2.5).
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For example, the specified functions involved into the obverse evolution operator (3.1)
are as follows

c12(n) = t1a2(n — 1)agy /roa(n — 1) (3.3)
dis(n) = wrs(n — 1)ess fvss(n — 1) (3.4)
ca1(n) = azator(n)/raa(n) (3.5)
an(n) = (3.6)
baz(n) = 22823( )/r22(n) (3.7)
daz(n) = ugs(n — 1)egs/vsz(n — 1) (3.8)
baa(n) = agnsa(n)/raz(n) (3.9)
ds1(n) = eszuzi(n)/vs3(n) (3.10)
bsa(n) = sz2(n — 1)agz/raa(n — 1) (3.11)
ds2(n) = eszus2(n)/vs3(n) (3.12)
es3(n) = (3.13)
cza(n) = 33t34( )/v33(n) (3.14)
biz(n) = saz(n — 1)aga/roz2(n — 1) (3.15)
ca3(n) = tas(n — )ess fvss(n — 1). (3.16)

)

The only unspecified functions remain to be co2(n), c33(n) for the observe ansatz (3.1
and c11(n), cga(n) for the verso ansatz (3.2). We call these arbitrary functions as the sam-
pling ones. The similar situation with an unfixed sampling arises also in other integrable
models [16, 22] and can be resolved either empirically or relying upon the local conservation
laws dictated by the matrix structure of proposed spectral operator. We will consider the
problems of sampling fixation in our forthcoming works using the collection of lowest local
conservation laws listed in the fifth section of the present paper and found by means of
approach outlined in the next section.

4. Generating Functions of Local Densities and Local Currents

There are two sorts of approaches how to qualify the conservation laws associated with
integrable nonlinear systems.

The first one considers the conservation laws as the integrals of motions which strictly
speaking should be referred to as the global conservation laws. Usually this approach is
based upon the time independence of diagonal elements of a reduced monodromy matrix
and relies on the relationships of these elements with the envelope Jost functions [17, 19, 21].

The second approach deals with the local conservation laws which strictly speaking
should be referred to as the continuity equations. Usually this approach is based upon
the generating continuity equation and relies on some auxiliary function governed by the
nonlinear equation of Riccati type with respect to the spatial coordinate variable [23-29].
The form of Riccati equation is dictated exclusively by the form of the spectral operator,
while the Riccati equation itself permits to be solved recursively in powers of the spectral
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parameter. Remarkably however that the auxiliary function allows one to reconstruct the
generating functions both for the local densities and the local currents via the simple alge-
braic operations with the additional use of matrix elements of the spectral and evolution
operators respectively.

In the case when the left L™ (2) = lim,__o L(n|z) and the right LT(2) =
lim,, oo L(n|2) limiting spectral operators coincide L™ (z) = L™ (z) the two above men-
tioned standpoints onto the treatment of conservation laws was proven to have the one-
to-one correspondence [27]. On this account we are always able to eliminate all feasible
discrepancies between the two approaches by means of an appropriate preliminary gauge
transformation, which equalizes the left and the right limiting values of transformed spectral
operator.

In this section we will modify the technique dealing with the reconstruction of local
conservation laws (i.e., continuity equations) in such a way as to introduce a collection
of several distinct generating equations supported by a set of auxiliary Riccati equations
instead of a single generating equation and a single auxiliary Riccati equation typical of the
traditional considerations [26-29].

To proceed with this plan we relinquish any attempts to concretize the relationship
between the left L~ (z) and the right L™ (z) limiting spectral operators and remind that the
zero-curvature equation (2.3) is nothing but the compatibility condition between the two
linear equations

Ix(n +1]z)) = L(n|z)|x(n[2)) (4.1)
%IX(TLIZ)) = A(n|2)|x(nl2)) (4.2)

where |y(n|z)) is assumed to be an arbitrary column-matrix function of n and 7 with
the elements (j|x(n|z)), whose total number coincides with the rank R of chosen spectral
operator L(n|z). In particular, for the spectral operator given by nonsingular 4 x 4 matrix
(2.5) the number of such elements must be four.

First of all we introduce the set of auxiliary functions

o k)
Lk (n|2) kx(n]2)) (4.3)
with the evident property
Dji(n|)Tik(nl2) = Dju(nl2) (1.4)

saying that only R — 1 functions among R? — R nontrivial ones are independent. Here the
term “trivial” refers to any auxiliary function with equal indices insofar as I';j;(n|z) = 1.
Due to their quotient structure (4.3) the functions I'j;(n|2) unable to contain the systematic
coordinate dependent factors akin to those observable, e.g. in asymptotics of Jost functions.
For this reason the functions I'j;(n|z) are expected to be sufficiently accommodated for the
purposes of their serial representations in powers of one or another combination of complex
spectral parameter z.

Now manipulating with the component-wise version of spectral equation (4.1) we readily
derive the following set of equations

Ljk(n + 1|2) My (n|z) = Mj;(n]2)Ljr(n|2) (4.5)
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for the quantities I'j;(n|2) where the shorthand notations

R

Mji(nl2) = 3 Lii(n]2)Tig(n]2) (4.6)
=1

are implied while the functions L;,(n|z) being reserved for the matrix elements of spectral
operator L(n|z). By virtue of identity I';;(n|z) = 1 the obtained Eq. (4.5) are essentially
nonlinear ones and can be thought as the set of Riccati-type equations allowing to be solved
recursively in powers of z or 1/z with coefficients given in terms of prototype field functions.
The time in such a procedure plays the role of implicit parameter and has no influence on
the structure of desired solution.

The next step requires the proper manipulations with the component-wise version of
evolution equation (4.2). As a result we come to the set of equations

I'jk(n]z) = Bjj(n|2)l'jk(n|z) — T'jk(n|2) Brk(n|2), (4.7)

where the shorthand notations

R
Bj(nlz) =Y Aji(n|z)Ti(nlz) (4.8)

i=1

are used with the functions Ajj(n|z) being reserved for the matrix elements of evolution
operator A(n|z). Although the obtained Eq. (4.7) are evolutionary ones but only in combi-
nation with the zero-curvature equation (2.3) and the purely spatial Riccati equations (4.5)
they are able to produce the basic continuity equations

d
- In Mj;(n]2) = Bisln +112) = Bj;(nl2) (4.9)

suitable to generate the infinite hierarchy of local conservation laws based on the serial
representations of preliminary found auxiliary functions I'j,(n|z). Here we would like to
stress that the quantities In Mj;(n|z) are determined exclusively by the spectral operator
(through I'j,(n|z) and Lji(n|z)) and should be treated as the generating functions of local
densities. Conversely, the quantities —Bj;(n|z) are determined both by the spectral operator
L(n|z) (through I';i(n|z)) and the evolution operator A(n|z) (through Aj;;(n|z)) and should
be treated as the generating functions of local currents.

As the matter of fact the true sense of basic continuity equations (4.9) consists not in the
finding of auxiliary functions I'j;(n|z) (which is the prerogative of spatial Riccati equations
(4.5)) but in correct combination of expansion terms into infinite collection of continuity
equations referred to as the hierarchy of local conservation laws. For this reason we shall
call the Eq. (4.9) as the generating ones.

We conclude this section paying attention on an alternative derivation of basic generating
equations (4.9) with the use of identities

4G+ 112) e+ 1) /dr  dilx(nlz)/dr (410)

dr— (jlx(nl2)) (glx(n +1[2)) (7lx(n[2))

as the starting point. In order to obtain the required generating equations (4.9) we must

rewrite the quantities (j|x(n+1|z)) in the left-hand sides of identities (4.10) by invoking the
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spectral equation (4.1). Simultaneously we must rewrite the quantities d(j|x(n + 1|2))/dr
and d(j|x(n|z))/dr in the right-hand sides of identities (4.10) by invoking the evolution
equation (4.2). In due course of above substitutions the initial identities (4.10) acquire the
status of generating equations (4.9) in as much as both of invoked formulas (4.1) and (4.2)
are by no means the identities but the equations.

5. The Lowest Local Conservation Laws

The most systematic way to seek the admissible expansions for the ratios I';,(n|z) appears
to be that relying upon the truncated Laurent-type series with respect to inverse eigenvalues
1/¢i(z) related to either of the spectral limiting operators L™ (z) or L*(z). However, such
eigenvalues (;(z) turn out to be essentially dependent on the peculiarities of spatial bound-
ary conditions imposed onto the field amplitudes what inevitably leads to the technical
inconveniences in overall consideration.

Another way is more empirical and assumes to look over possible realizations of expan-
sions for the collection of ratios I'j(n|z) directly in powers of z or 1/z so that each real-
ization must be consistent with the set of spatial Riccati equations (4.5) by ensuring the
recursive recovery of involved expansion coefficients. Although this method has no guar-
antee in revealing all feasible realizations but the mere course of above reasoning has the
right to be tested inasmuch as the spectral operator characterized by more than two dis-
tinct eigenvalues gives rise to rather sophisticated subdivision into the regularity domains
of envelope Jost vectors in the plane of complex spectral parameter z [16, 30, 31] and as
a result may produce several sectors of regularity with the common vertex located in the
initial |z| = 0 or the infinitely distant |z| = co point. In this context we can expect the prin-
cipal possibility to fasten the particular admissible realization for the collection of I';(n|z)
to the particular sector in the plane of complex spectral parameter z.

In general the enlarged spectral operator L(n|z) given by formula (2.5) must be treated
as the spectral operator of fourth order inasmuch as its limiting spectral operator L™ (z)
or Lt (2) yields four distinct eigenvalues. For this reason the argumentations of previous
paragraph prompt us to seek as least four distinct realizations for the collection of ratios
Dja(nl2).

Indeed, analyzing the set of Riccati equations (4.5) for the ratios I';,(n|z) and assuming
the spectral operator L(n|z) as the spectral operator of our main interest (2.5) we have man-
aged to select four distinct collections of ansétze supporting four distinct noncontradictive
recursive procedures in the framework of above-mentioned Riccati equations (4.5).

Thus at |z| — 0 we can count upon two distinct collections of ansétze, namely

(0.]

T'a(n|z) me n|i|0)z> To1(nlz) =Y y21(nil0)2* (5.1)
=0

F23 n\ 21‘23 n\ ‘0 2i+1 F32 n\ Zygz n| |0 2i—1 (5.2)

F34 n\ 21‘34 n\ ‘0 2i=2 F43 n\ Zy43 n| |0 2i+2 (5.3)
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and
Flg n\ Zyu n| |0 Fgl n\ 21‘21 n\ ‘0 (5.4)
F23 n\ Zygg n| |0 2i—1 F32 n\ 21‘32 n\ ‘0 2i+1 (5.5)
i .
Taa(n|z) =) yaa(n]i[0)z**? Ly3(n|2) 23743 n|i|0)z%2, (5.6)
i=0

Similarly, at |z| — oo the two distinct collections of ansétze are as follows

[y (n|z) Zm (n)i|oo)z~2+2 Tia(n|z) Zym (n)iloo)z =22 (5.7)

[33(n|z) Z:cgg (n|ioo)z=21 To3(n2) st (n|i]oo)z =21 (5.8)

P43 n| Zx43 n| |OO —2 P34 n| Zy34 n| |OO —2 (59)
and

'y (n|2) Zm (n]i|oo)z =22 Tio(n|z) Zm (n]i|oo)z~2+2 (5.10)

Isa(n|z) Zygg (n|ijoo)z~ 21 [os(n|z) = ZZL‘Qg nlijoc)z =21 (5.11)

Ty3(n|z) Zy43 (n)iloo)z ™2 [34(n|z) = ZZL‘34 nliloo)z ™. (5.12)

According to our previous arguing each collection of ansétze must be associated with
some particular sector near the initial or the infinite distant point in the plane of complex
spectral parameter z. However, the strict specifications of these sectors turns out to be
unessential for the purely formal recurrent calculations of expansion coefficients in either of
four selected realizations (5.1)-(5.3), (5.4)-(5.6); (5.7)-(5.9), (5.10)-(5.12).

In view of the identity I'jz(n|2)I'y;(n|z) = 1 the left column expansion and the right
column expansion in each of formulas (5.1)-(5.12) can be referred to as the basic and the
complementary ones. One can readily verify that the expansion coefficients in each pair of
basic and complementary expansions are subjected to one of the two groups of relations

Z zjk(nli —1[0)yr; (n|1]0) = b (5.13)
=0
or

=0



410 O. O. Vakhnenko

depending on whether the expansions are taken at |z| — 0 or at |z| — oo, respectively.
Although the above relationships (5.13) and (5.14) do facilitate the actual calculations of
expansion coefficients for the ratios I'j;(n|z) within each of four groups of ansitze (5.1)-
(5.3), (5.4)—(5.6) and (5.7)—(5.9), (5.10)—(5.12), respectively, but the details of each particu-
lar recurrence procedure remain to be rather combersome and we omit them for the brevity
sake.

Relying upon the spatial Riccati equation (4.5) we have found several lowest expansion
terms for the ratios I'j;(n|z) within each of their four realizations (5.1)—(5.3), (5.4)—(5.6);
(5.7)-(5.9), (5.10)(5.12) and have applied them to isolate several lowest local conservation
laws

pi(n) = Jiu(nln —1) — Ji1(n + 1jn) (5.15)
pao(n) = Jao(n|n — 1) — Jao(n + 1|n) (5.16)
p33(n) = Jag(njn — 1) — Jsg(n + 1|n) (5.17)
paa(n) = Jyu(nn — 1) — Jya(n + 1|n) (5.18)
p3a(n) = Jps(nln — 1) = Jph(n + 1|n) (5.19)
sm(n) = Ja(nln — 1) = J(n + 1jn) (5.20)
pz(n) = Jgs(nln — 1) = J5(n + 1|n) (5.21)
F(n) = Jiz(nln — 1) — Jg(n + 1/n) (5.22)
in the framework of basic generating equations (4.9) with formulas
4
Mjj(n|z) = Lji(n|2)Tij(n|2) (5.23)
i=1
and
4
Bjj(nlz) = > Aji(n|2)T;(n|z) (5.24)
i=1

having been taken into account. According to the general rule the local densities p11(n),

paz(n), ps3(n), paa(n) and pip(n), pyy(n), paz(n), psz(n) are absolutely insensitive to the
type of evolution operator (obverse (3.1) or verso (3.2) ) and are given by the expressions

p11(n) = Infti2(n)ta1(n)vss(n) + uiz(n)usi (n)iz(n)
—t12(n)ugg(n)ugy(n) — uiz(n)usz(n)tar (n)] (5.25)
p22(n) = Inreg(n) (5.26)
p33(n) = Inwvsz(n) (5.27)

paa(n) = In[tyg(n)tss(n)raz(n) + saa(n)sa(n)tss(n)
—t43(n)s32(n)s24(n) — s42(n)sag(n)tss(n)] (5.28)

and

ot (n) = tao(n) n so3(n + 1)ss2(n) n soa(n + 1)sg2(n) (5.29)

roa(n)  roa(n + 1)roa(n) — rea(n + 1)rea(n)
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taa(n) | s3(n)ssa(n —1) | s2(n)saa(n —1)

P () = et s = 1) T raa(m)raa(n — 1) (5:30)
t33(n) U32( + 1|’I7,)UQ3(’I7,) u31(n + 1)U13 (n)

pia(n) = v3z(n)  w3z(n+ 1)vss(n) v3z(n + 1)vssz(n) (5:31)
t33 (77,) us32 (n)u23 (n — 1) us31 (n)u13 (n — 1)

Paa() = ) T s (m)oss(n = 1) T vs3(n)oss(n — 1) (5:32)

In contrast the local currents Jij(njn — 1), Jaa(n|n — 1), Jaz(n|n — 1), Jaa(njn — 1) and
Jh(nln —1), Jy(n+1|n), Jaz(nln — 1), Jiz(n+ 1|n) are essentially dependent on the type
of evolution operator. In this paper we restrict ourself only to the case of obverse evolution
operator (3.1) and obtain

Jll(n|n — 1) = —022(77,) — 033(77,) (533)
— n) — a22823(n)832(n — 1) B a22524(n)842(n — 1)

Jaa(n|n —1) = —cga(n) o2 (W)raa(n — 1) 2 ()rma(n —1) (5.34)
- ¢ n) — 633U32(ﬂ)ﬂ23(n — 1) _ €33U31(71)U13(n — 1)

Jas(nin = 1) = ~css(n) v33(n)vsz(n — 1) v3z(n)vsz(n — 1) (5.35)

Jya(n|n — 1) = —caa(n) — c33(n) (5.36)

and
Jop(nln — 1)
_ a22523(n + 1)832 (n)823(n)832(n — 1) a22824(n + 1)842 (n)823(n)832 (n — 1)
7”22(’0 + 1)7“22 (n)TQQ (77,)7‘22 (n — 1) 292 (n + 1)7“22 (77,)7‘22 (n)TQQ (n — 1)

(I22823(n + 1)832 (n)324(n)842 (n — 1) a22524(n =+ 1)842 (n)824(n)342 (n — 1)
799 (n + 1)7“22 (n)TQQ (n)’l“Qg (n — 1) ?“22(?7, + 1)?“22 (n)’l“Qg (n)TQQ (n — 1)

_apla(n)hiz(n —1)  agusz(n)ssa(n —1)  sa3(n)eszusa(n)
799 (n)’l“Qg (n — 1) 799 (n)’l“Qg (n — 1) T9292 (n)vgg (n)

_ a22823(n + 1)t33(n)532(n — 1) _ a22524(n + 1)t43(n)832(n — 1)

7929 (n + 1)7‘22 (77,)7‘22 (n — 1) 7”22(’0 + 1)7”22 (n)TQQ (n — 1)
i a99t99 (n)823(n)832(n — 1) _ a22823(n + 1)t34 (n)842 (n — 1)
7929 (77,)7‘22 (n)TQQ (n — 1) 22 (n + 1)7”22 (77,)7‘22 (n — 1)

(I22t22 (n)824 (n)542 (n — 1)
799 (n)TQQ (n)’l“Qg (n — 1)

(5.37)

Jy(n+1ln)

_ a22523(n + 1)832 (n)823(n)832(n — 1) a22824(n + 1)842 (n)823(n)832 (n — 1)
7”22(’0 + 1)7“22 (n)TQQ (77,)7‘22 (n — 1) 292 (n + 1)7“22 (77,)7‘22 (n)TQQ (n — 1)
(I22823(n + 1)832 (n)324(n)842 (n — 1) a22524(n =+ 1)842 (n)824(n)342 (n — 1)

799 (n + 1)7“22 (n)TQQ (n)’l“Qg (n — 1) ?“22(?7, + 1)?“22 (n)’l“Qg (n)TQQ (n — 1)
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- (1221521(’0 + 1)1512(’0) _ (122823(’0 + 1)U32 (77,) - ’U,23(n)€33832 (77,)
roo(n + 1)rga(n) roo(n + 1)rea(n) v33(n)raa(n)

_ a44523(n + 1)t33 (n)532(n — 1) a22824(n + 1)t43 (n)832 (n — 1)

7929 (n + 1)7‘22 (n)TQQ (n — 1) 292 (n + 1)7”22 (77,)7‘22 (n — 1)
a22523(n + 1)832 (n)tQQ (n) _ a922523 (n -+ 1)t34(n)342 (n — 1)
799 (n + 1)7“22 (n)’l“Qg (n) 799 (n + 1)7“22 (n)TQQ (n — 1)
a22524(n + 1)s42(n)t2(n)
799 (n + 1)7“22 (n)’l“Qg (n) (538)
Ji5(nln — 1)
. €33U32 (n + 1)u23 (n)udg (n)uzg(n — 1) €33U31 (Tl + 1)U13 (n)U32 (n)u23 (n — 1)
vaz(n + 1)vsz(n)vss(n)vsg(n — 1) v3z(n + 1)vsz(n)vss(n)vss(n — 1)

€33U32 (n =+ 1)UQ3(’I7,)U31(’I7,)U13 (n — 1) €33U31 (n -+ 1)U13 (n)U31(n)U13(n — 1)
’033(71 + 1)1133 (n)vgg(n)vgg(n — 1) V33 (n + 1)1133 (n)vgg (n)vgg (n — 1)

_eggtaa(n)taz(n —1)  eszsza(n)usz(n —1)  uga(n)asesss(n)

v33(n)vsz(n)l) v33(n)vsz(n)l) v33(n)roz(n)

- €33U32 (n + 1)t22 (n)u23 (n — 1) _ €33U31 (n + 1)t12(ﬂ)U23 (n — 1)

033(’0 + 1)1)33(’0)1)33(’0 — 1) 033(’0 + 1)1)33(’0)1)33 (n — 1)
633t33 (n)u;:,g (n)u23 (n — 1) _ €33U32 (n + 1)t21 (n)ulS(n — 1)
v3z(n)vzs(n)vsz(n — 1) vaz(n + 1)vsz(n)vss(n — 1)

_ €33t33(n)U31 (n)ulg(n — 1)
v33(n)vss(n)uss(n — 1)
Jas(n+1ln)

(5.39)

o €33U32 (n + 1)u23 (n)udg (n)uzg(n — 1) €33U31 (Tl + 1)U13 (n)U32 (n)u23 (n — 1)
~ wgz(n + 1)vsz(n)vsz(n)vss(n — 1) v3z(n + 1)vsz(n)vss(n)vss(n — 1)

€33U32 (Tl + 1)u23(n)U31 (n)u13 (n — 1) €33U31 (n + 1)U13(n)U31 (n)ulg(n — 1)
v3z(n + 1)vsz(n)vss(n)vss(n — 1) vaz(n + 1)vsz(n)vss(n)vsg(n — 1)

eggtaa(n+ Dtaz(n)  esguza(n +1)sa3(n)  ssa(n)asouss(n)

v33(n + 1)vsz(n) v33(n + 1)vzs(n) ra2(n)vss(n)
B €33U32 (n =+ 1)t22 (n)U23 (n — 1) o €33U31 (n -+ 1)t12 (n)’LL23 (n — 1)
’033(?2 + 1)’033(?7,)1)33(?7, - 1) V33 (n + 1)1133 (n)vgg(n)vgg(n — 1)

€33U32 (Tl + 1)u23(n)t33 (n) _ €33U32 (n + 1)t21 (n)ulS(n — 1)
V33 (Tl + 1)1)33 (n)vgg (n) V33 (n + 1)1133 (n)vgg (n — 1)

€33U31 (n + 1)u13(n)t33 (n)
V33 (n + 1)1133 (n)vgg (n — 1) '

We complete this section by presenting the local conservation law

(5.40)

% In [det L(n|z)] = Sp A(n + 1|z) — Sp A(n|z) (5.41)
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which follows directly from the zero-curvature equation (2.3) by virtue of the identity
: d
Sp [L—l(n\z)L(n\z) = —In[det L(n]2)] (5.42)
T

Using the explicit form (2.5) of spectral operator L(n|z) we can define the basic on-cell
local density p(n) by the formula

p(n) = In[det L(n|z)]
= 111{[U13 (n)542 (n) — t12 (n)t43 (n)][u;ﬂ (n)324(n) — t21 (n)t34 (n)]} (5.43)

On the other hand, choosing the evolution operator A(n|z) to be the obverse one (3.1) the
respective local current J(n|n — 1) acquires the form

J(njn — 1) = —coa(n) — c33(n) (5.44)
in as much as
SpA(n + 1]z) — SpA(n|z) = c22(n+ 1) + c33(n + 1) — c22(n) — c33(n). (5.45)
Here it is worthwhile to mention that namely the local conservation law
p(n)=J(nln—1) — J(n+ 1|n) (5.46)

had already been used in order to write two previously listed local conservation laws (5.15)
and (5.18) in their final concise forms.

6. Conclusion

In this article we have proposed the new fourth order spectral operator allowing to generate
two types of semidiscrete integrable nonlinear systems in the framework of zero-curvature
representation. The first type is associated with observe evolution operator whose matrix
elements contain the same powers of the spectral parameter as the respective matrix ele-
ments of the spectral operator. The second type is associated with the verso evolution
operator whose matrix elements contain the powers of the spectral parameter organized
according to the mnemonic rule [21, 32] borrowed from the theory of Toda lattices.

The next step in concretizing the evolution operators and consequently the admissible
semidiscrete integrable nonlinear systems can be made relying upon the on-cell local con-
servation laws. In order to implement this plan we have developed the modified recurrence
procedure of finding the local conservation laws based upon a collection of four density
generating functions and four current generating functions. Each generating function was
shown to permit at least four distinct expansions linked to the distinct sectors in the com-
plex plane of spectral parameter. In the framework of modified recurrence approach we have
obtained a number of lowest local conservation laws some of which will be suitable for the
motivated fixations of sampling functions as well as for the considerable reduction in the
number of model field variables.

We intend to accomplish the problem of sampling fixation in our future publications
and as a consequence to give a detailed classification of semidiscrete integrable nonlinear
systems initiated by the proposed spectral operator.
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