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We report wide class of exact solutions of the modified Gross–Pitaevskii equation (GPE) in “smart”
Jacobian elliptic potentials, in the presence of external source. Solitonlike solutions, singular solu-
tions, and periodic solutions are found using a recently developed fractional transform in which
all the amplitude parameters are nonzero. These results generalize those contained in (T. Paul,
K. Richter and P. Schlagheck, Phys. Rev. Lett. 94 (2005) 020404.) for nonzero trapping potential.
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1. Introduction

In a mean-field approximation, the dynamics of a dilute-gas Bose–Einstein condensate
(BEC) can be captured by the cubic nonlinear Schrödinger equation (NLSE) with a trap-
ping potential [1–3]. The various traps which are used to contain the BEC have spurred
the solutions of the NLSE with new potentials [4, 5]. We consider the mean-field model of
a quasi-one-dimensional BEC trapped in a “smart” potential in the presence of an external
source [6]

i
∂ψ

∂t
=

[
−1

2
∂2

∂x2
+ V (ξ) + g|ψ|2

]
ψ +Kexp(iχ(ξ) − iωt), (1.1)

where ψ(x, t) represents the macroscopic wave function of the condensate and V (ξ) is an
experimentally generated macroscopic potential. The parameter g indicates the strength
of atom-atom interactions and it alone decides whether Eq. (1.1) is attractive (g = −1,
focussing nonlinearity) or repulsive (g = 1, defocusing nonlinearity). Here, K and ω are

367

http://dx.doi.org/10.1142/S1402925111001659


September 21, 2011 10:42 WSPC/1402-9251 259-JNMP S1402925111001659

368 T. S. Raju & P. K. Panigrahi

real constants related to the source amplitude and the chemical potential, respectively,
and χ(ξ) is a real function of ξ = α(x − vt), α and v being two real parameters. In the
field of nonlinear optics, Eq. (1.1) may describe the evolution of the local amplitude of
an electromagnetic wave in the spatial domain, in a two-dimensional waveguide where t
becomes the propagation distance and x becomes the retarded time, and the system is
driven by an external plane pump wave. The Jacobian elliptic potential may describe a
transverse modulation of the refractive index in the waveguide.

As is well known, Eq. (1.1) is not integrable if KV 0 �= 0, where V0 indicates the height
of the potential barrier. And only small classes of explicit solutions can most likely exist for
this case. For V (ξ) = 0, Eq. (1.1) is a cubic NLSE with a source, and exact rational solutions
using a fractional transform are found in [7]. And in [11] periodic solutions of Eq. (1.1),
without source have been reported. More recently, in [8], a class of exact solutions of Eq. (1.1)
for V (ξ) = −V0 sn2(ξ,m) have been reported. In particular, the rational solutions of the
fractional transform: ρ(ξ) = A+Bf2

1+Df2 , where f = sn have been reported for B = 0. This is
due to the form of the trapping potential. Nonetheless, in the present paper we find rational
solutions of the type ρ(ξ) = A+Bf2

1+Df , where f being the respective Jacobian elliptic function
with all the amplitude parameters A, B, and D nonzero. These results generalize those
contained in [6] for nonzero trapping potential. However, there is an important difference
between the source term considered in [6] and ours. The former one is spatially localized
indicating injection of atoms into the waveguide at one specific point in space, while the
latter one is a spatially homogeneous source. The choice of a smart potential V (ξ) allows
one to construct a large class of exact solutions, as done in a number of works for the
cubic GP equations [9–11]. In the present work, we consider three different potentials in
the GP equation: V (ξ) = −V0 sn(ξ,m), V (ξ) = −V0 cn(ξ,m), and V (ξ) = −V0 dn(ξ,m) in
the presence of external source, and find exact travelling wave solutions of Eq. (1.1) with
K �= 0. The choice of these three different “smart” potentials is motivated by the following
facts. Firstly, the potential V (ξ) = −V0 sn(ξ,m) in the limit m → 0 is V (ξ) = −V0 sin(ξ)
which is similar to the standard optical lattice potential [12, 13]. Secondly, the choice of
the potential V (ξ) = −V0 dn(ξ,m) in GP equation mimics [14] the harmonic potential that
was used to achieve BEC experimentally. The third potential, we hope it is relevant to the
available experimental conditions to achieve BEC.

2. Exact Solutions of the GPE in “Smart” Periodic
Potential with Source

The traveling wave solutions of Eq. (1.1) with potential V (ξ) are taken to be of the form
ψ(x, t) = ρ(ξ)eiχ[α(x−vt)]−iωt. Inserting this expression for ψ(x, t) in Eq. (1.1) and separating
the real and imaginary parts, and integrating the imaginary part, one gets

χ′ =
v

α
+

C

αρ2
, (2.1)

where C is a constant of integration. In order that the external phase be independent of ψ,
we consider only solutions with C = 0, to obtain

ρ′′ +
(
v2 + 2ω
α2

)
ρ− 2g

α2
ρ3 − 2V (ξ)

α2
ρ− 2K

α2
= 0. (2.2)
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Below we consider three different “smart” Jacobian elliptic potentials [15] and find exact
solutions.

Case (I):- V (ξ) = −V0 sn(ξ,m). Equation (2.2) reads as

ρ′′ +
(
v2 + 2ω
α2

)
ρ− 2g

α2
ρ3 +

2V0

α2
snρ− 2K

α2
= 0. (2.3)

Substituting

ρ(ξ) = A1 +B1sn(ξ,m) (2.4)

in Eq. (2.3) and equating the coefficients of equal powers of sn(ξ,m) result in relations
among the solution parameters A1, and B1, and the equation parameters V0, g, K, α,
and ω. We find that

α2 =
2ω + v2

1 +m
, (2.5)

A1 =
V0

3α
√
gm

, B1 =

√
mα2

g
. (2.6)

From Eq. (2.6) it follows that V0 > 0 and g > 0 implying the GPE with repulsive
nonlinearity.

Case (II):- V (ξ) = −V0 cn(ξ,m). Equation (2.2) reads as

ρ′′ +
(
v2 + 2ω
α2

)
ρ− 2g

α2
ρ3 +

2V0

α2
cnρ− 2K

α2
= 0. (2.7)

Substituting

ρ(ξ) = A2 +B2cn(ξ,m) (2.8)

in Eq. (2.7) and equating the coefficients of equal powers of scn(ξ,m) result in relations
among the solution parameters A2, and B2, and the equation parameters V0, g, K, α, and ω.
We find that

α2 =
2ω + v2

1 − 2m
, (2.9)

A2 =
V0

3α
√−gm, B1 =

√
−mα2

g
. (2.10)

From the positivity of α2 we conclude that cn solutions exist for V0 > 0 and g < 0. The
condition g < 0 corresponds to the GPE with attractive nonlinearity.

Case (III):- V (ξ) = −V0 dn(ξ,m). Equation (2.2) reads as

ρ′′ +
(
v2 + 2ω
α2

)
ρ− 2g

α2
ρ3 +

2V0

α2
dnρ− 2K

α2
= 0. (2.11)



September 21, 2011 10:42 WSPC/1402-9251 259-JNMP S1402925111001659

370 T. S. Raju & P. K. Panigrahi

Substituting

ρ(ξ) = A3 +B3 dn(ξ,m) (2.12)

in Eq. (2.11) and equating the coefficients of equal powers of dn(ξ,m) result in relations
among the solution parameters A3, and B3, and the equation parameters V0, g,K, α, and ω.
We find that

α2 =
2ω + v2

m− 2
, (2.13)

A3 =
V0

3α
√−g , B3 =

√
−α2

g
. (2.14)

Here we conclude that dn solutions exist only for V0 > 0 and g < 0.

3. Rational Solutions

In order to obtain Lorentzian-type of solutions of Eq. (2.2) we use a fractional transform

ρ(ξ) =
A+Bf2

1 + Df
(3.1)

where f is the respective Jacobian elliptic functions. Again we obtain the Lorentzian-type
of solutions of Eq. (2.2) for three different “smart” potentials.

Case (I): −V (ξ) = −V0 sn(ξ,m). Equation (2.2) reads as

ρ′′ +
(
v2 + 2ω
α2

)
ρ− 2g

α2
ρ3 +

2V0

α2
snρ− 2K

α2
= 0. (3.2)

Substituting

ρ(ξ) =
A4 +B4 sn2(ξ,m)
1 +D1 sn(ξ,m)

(3.3)

in Eq. (3.2) and equating the coefficients of equal powers of sn(ξ,m) will yield the following
consistency conditions.

2B4 + 2A4D
2
1 + ΓA4 − 2g

α2
A3

4 −
2K
α2

= 0, (3.4)

2mB4D
2
1 −

2g
α2
B3

4 = 0, (3.5)

6mB4D1 +
2V0

α2
B4D

2
1 = 0, (3.6)

6mB4 +B4D
2
1(Γ −m− 1) − 6g

α2
A4B

2
4 +

4V0

α2
B4D1 = 0, (3.7)

−2mA4D1 +B4D1(2Γ − 3m− 3) +
2V0

α2
A4D

2
1

2V0

α2
B − 2K

α2
D3

1 = 0, (3.8)
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−4B4(1 +m) +A4D
2
1(Γ −m− 1) + ΓB4 − 6g

α2
A2

4B4 +
4V0

α2
A4D1 − 6K

α2
D2

1 = 0, (3.9)

A4D1(2Γ +m+ 1) +
2V0

α2
A4 − 6K

α2
D1 = 0. (3.10)

From the above consistency conditions we obtain the following relations.

A4 =
18mK

3m(m+ 1)α2 + 6mΓα2 − 2V 2
0

α2

, (3.11)

B4 = −3α3m3/2

V0g1/2
, D1 =

−3mα2

V0
, (3.12)

where Γ = v2+2ω
α2 . Here, we would like to emphasize that these results generalize those

contained in [6], for nonzero trapping potential. This stems from the fact that the constant
B4 in expression (3.12) is nonzero, which follows from the choice of our “smart” potential
in Eq. (1.1).

Case (II): −V (ξ) = −V0 cn(ξ,m). Equation (2.2) reads as

ρ′′ +
(
v2 + 2ω
α2

)
ρ− 2g

α2
ρ3 +

2V0

α2
cnρ− 2K

α2
= 0. (3.13)

Substituting

ρ(ξ) =
A5 +B5 cn2(ξ,m)
1 +D2 cn(ξ,m)

(3.14)

in Eq. (3.13) and equating the coefficients of equal powers of cn(ξ,m) will yield the following
consistency conditions.

2B5(1 −m) + 2A5D
2
2(1 −m) + ΓA5 − 2g

α2
A3

5 −
2K
α2

= 0, (3.15)

−2mB45D
2
2 − 2g

α2
B3

5 = 0, (3.16)

−6mB5D2 +
2V0

α2
B5D

2
2 = 0, (3.17)

−6mB5 +B5D
2
2(Γ + 2m− 1) − 6g

α2
A5B

2
5 +

4V0

α2
B5D2 = 0, (3.18)

2mA5D2 +B5D2(2Γ + 6m− 3) +
2V0

α2
A5D

2
2 +

2V0

α2
B5 − 2K

α2
D3

2 = 0, (3.19)

−4B5(1 − 2m) +A5D
2
2(Γ + 2m− 1) + ΓB5 − 6g

α2
A2

5B5 +
4V0

α2
A5D2 − 6K

α2
D2

2 = 0, (3.20)

A5D2(2Γ − 2m+ 1) +
2V0

α2
A5 − 6K

α2
D2 = 0. (3.21)
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From the above consistency conditions we obtain the following relations

A5 =
18mK

3m(1 − 2m)α2 + 6mΓα2 + 2V 2
0

α2

, (3.22)

B5 =
3α3m

V0

√
−m
g
, D2 =

3mα2

V0
. (3.23)

Case (III):- V (ξ) = −V0 dn(ξ,m). Equation (2.2) reads as

ρ′′ +
(
v2 + 2ω
α2

)
ρ− 2g

α2
ρ3 +

2V0

α2
dnρ− 2K

α2
= 0. (3.24)

Substituting

ρ(ξ) =
A6 +B6 dn2(ξ,m)
1 +D3 dn(ξ,m)

(3.25)

in Eq. (3.24) and equating the coefficients of equal powers of dn(ξ,m) will yield the following
consistency conditions.

2A6D
2
3(m− 1) + ΓA6 − 2g

α2
A3

6 −
2K
α2

= 0, (3.26)

−2B6D
2
3 −

2g
α2
B3

6 = 0, (3.27)

−4B6D3 +
2V0

α2
B6D

2
3 = 0, (3.28)

−4B6 − 2B6D3 +B6D
2
3(Γ −m+ 2) − 6g

α2
A6B

2
6 +

4V0

α2
B6D3 = 0, (3.29)

2A6D3 +B6D3(2Γ − 3m+ 4) +
2V0

α2
A6D

2
3 +

2V0

α2
B6 − 2K

α2
D3

3 = 0, (3.30)

−2B6(m− 2) + 2B6D3 +A6D
2
3(Γ −m+ 2) + ΓB6 − 6g

α2
A2

6B6

+
4V0

α2
A6D3 − 6K

α2
D2

3 = 0, (3.31)

A6D3(2Γ +m− 2) +
2V0

α2
A6 − 6K

α2
D3 = 0. (3.32)

From the above consistency conditions we obtain the following relations

A6 =
6K

α2(2Γ +m− 2) + 2V 2
0

α2

, (3.33)

B6 =
2α2

V0

√
−α

2

g
, D2 =

2α2

V0
. (3.34)
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3.1. Trigonometric solutions

From the consistency conditions that arise from the first two “smart” periodic potentials,
we conclude that the limit m = 0 is forbidden as the amplitude parameters A, B, and D will
be zero. On the other hand, for V (ξ) = −V0 dn(ξ,m) case, only flat background solutions
will be possible for m = 0 limit.

3.2. Solitonlike solutions

Here, in this subsection, we describe the solitonlike solutions that are obtained from the
solutions in sn(ξ,m) and cn(ξ,m) in the limit m = 1, in detail. In the limit m = 1, V (ξ)
becomes an array of well separated kink-type of potential barriers: V (ξ) = −V0 tanh(ξ).
Then we have the following relations

A4 =
18K

6(Γ + 1)α2 − 2V 2
0

α2

, (3.35)

B4 =
3α3

V0g1/2
, D1 =

−3α2

V0
(3.36)

and the strength of the source is

K =
V0[6(Γ + 1)α4 − 2V 2

0 ]
108α3g1/2

(
63(Γ − 2)α4 − 2V 2

0

V 2
0

)
.

As a special case, if we set α = 1 and V0 = 1, then we get A4 = 9K
3Γ+2 , B4 = 3/

√
g, and

D1 = −3. This results in a solitonlike solution

ρ(ξ) =
A4 +B4 tanh2(ξ)

1 − 3 tanh(ξ)
. (3.37)

This set corresponds to the singular solution for repulsive case i.e., g > 0. The singularity
of the pulse profile may correspond to the beam power exceeding material breakdown due
to self-focusing [16–19]. Figure 1 depicts a surface plot of this solution for the parameter
values given in the figure caption.

Another interesting solitonlike solution is obtained from the solution in cn(ξ,m) for
m = 1. In the limit m = 1, V (ξ) becomes an array of well separated secant hyperbolic
potential barriers: V (ξ) = −V0 sech(ξ). Then we have the following relations

A5 =
18K

3(2Γ − 1)α2 + 2V 2
0

α2

, (3.38)

B5 =
3α3

V0

√
−1/g, D2 =

3α2

V0
. (3.39)

As a special case, if we set α = 1, V0 = −6, g = −1 and K = 1/2 then we get A5 = 9
6Γ+69 ,

B5 = −(1/2), and D1 = −(1/2). This results in a solitonlike solution

ρ(ξ) =
A5 +B5 sech2(ξ)
1 − 0.5 sech(ξ)

. (3.40)
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Fig. 1. Singular solitary wave solution for α = 1 and V0 = 1, and g = 1.
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Fig. 2. Nonsingular solitary wave solution for α = 1, V0 = −6, g = −1 and K = 1/2.

This set corresponds to the non-singular solution for attractive case i.e., g < 0. The same
has been depicted in Fig. 2 for the parameter values given in in the figure caption.

4. Conclusions

In conclusion, we have shown the existence of wide class of exact solutions for the modified
GP equation in “smart” periodic potentials with an external source. The Lorentzian-type
of solitons are obtained with the aid of a fractional transform. Our analysis applies to
both attractive and repulsive cases of GP equation. Furthermore, our rational solutions
generalize those contained in [6], for nonzero trapping potential, because of our choice
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of “smart” potential. We hope that these potentials may be experimentally realizable, to
achieve BEC. Although not presented here, the stability of these wide class of solutions can
be checked using a semi-implicit Crank–Nicolson finite difference method [7], as the much
used numerical techniques based on fast Fourier transform (FFT) requires the FFT of the
source, which is costly.
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