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We consider 3D consistent systems of six possibly different quad-equations assigned to the faces
of a cube. The well-known classification of 3D consistent quad-equations, the so-called ABS-list, is
included in this situation. The extension of these equations to the whole lattice Z3 is possible by
reflecting the cubes. For every quad-equation we will give at least one system included leading to a
Bäcklund transformation and a zero-curvature representation which means that they are integrable.
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PACS Number: 02.30.Ik

1. Introduction

One of the definitions of integrability of lattice equations, which becomes increasingly pop-
ular in the recent years, is based on the notion of multidimensional consistency. For 2D
lattices, this notion was clearly formulated first in [1], and it was proposed to use as a syn-
onym of integrability in [2, 3]. The outstanding importance of 3D consistency in the theory
of discrete integrable systems became evident no later than with the appearance of the
well-known ABS-classification of integrable equations in [4]. In that article Adler, Bobenko
and Suris used a definition of 3D consistency as a local (within one elementary cube) cri-
terion of integrability. The equations from [4] can be extended to the whole of Z2 and Zm,
respectively, but the classification only allows equations on the faces of a cube, which differ
only by the parameter values assigned to the edges of a cube. In [5, 6] appeared a lot of
systems of quad-equations not satisfying this strict definition of 3D consistency. However,
these systems can also be seen as families of Bäcklund transformations and they lead to
zero curvature representations of participating quad-equations in the same way (see [2]).

As already done in [7] the definition of 3D consistency can be extended: In contrast
to the restriction, that all faces of a cube must carry the same equation up to parameters
assigned to edges of the cube, we will allow different equations on all faces of a cube. The
classification in that article is restricted to so-called equations of type Q, i.e. those whose
biquadratics are all non-degenerate (we will give a precise definition in the next section).
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The classification in [7] is local (within one 3D cube). The present paper is devoted to
systems containing equations which are not necessarily of type Q. Our classification will
cover systems appearing in [5] (up to two exceptions discussed in Sec. 5) and all systems
in [6], as well as equations which are equivalent to the Hietarinta equation [8], to the “new”
equation in [9] and to the equation in [10]. Moreover, it will contains also many novel
systems.

It turns out that the results of our local classification lead to integrable lattice systems
via a procedure of reflecting the cubes in a suitable way (see Sec. 4).

The outline of our approach is the following: In Sec. 2 we will present a complete classi-
fication of a single quad-equation modulo Möbius transformations acting independently on
the fields at the four vertices of an elementary quadrilateral. In Sec. 3 we will give a clas-
sification of 3D consistent systems of quad-equations possessing the so-called tetrahedron
property modulo Möbius transformations acting independently on the fields at the eight
vertices of an elementary cube. In Sec. 4 we will show how to embed our systems in the
lattice Z3 and how to derive Bäcklund transformations and zero curvature representations
from our systems. We will do this via a procedure of reflecting cubes along its faces to get
their neighbors. If we consider only a 2D subsystem of this 3D consistent system, i.e. a 2D
system of quad-equations, the composing of these quad-equations as an integrable system
on Z2 is as follows. For a quad-equation Q(x, x1, x2, x12) = 0 on one square we get, e.g. its
neighbor on the right-hand sight by reflecting along the right edge (x1, x12) of the square,
i.e. the equation on the neighbor square has the following shape: Q(x1, x, x12, x2) = 0. This
procedure will include the idea of embedding considered in [11] as a special case. The result-
ing 3D systems as well as the contained 2D systems are non-autonomous in principle but
autonomous if one takes a bigger elementary tile, e.g. a 2 × 2 square in Z2. To consider
such non-autonomous systems is not as unnatural as it might seems at first glance: The
geometric constructions which are described by integrable equations such as, e.g., circle
patterns with prescribed combinatorics and intersection angles (see [12]) lead in a natural
way to non-autonomous systems of quad-equations due to a non-autonomous nature of the
edge labellings. The fact that we can derive Bäcklund transformations and zero curvature
representations from our systems can be seen as a justification for the extended definition
of 3D consistency to yield a definition of integrability.

2. Quad-Equations on Single Quadrilaterals

At the beginning we will introduce some objects and notations. We will start with the most
important one, the quad-equation Q(x1, x2, x3, x4) = 0, where Q ∈ C[x1, x2, x3, x4] is an
irreducible multi-affine polynomial.

Very useful tools for characterizing quad-equations, are the biquadratics. We define them
for every permutation (i, j, k, �) of (1, 2, 3, 4) as follows

Qi,j = Qi,j(xi, xj) = Qxk
Qx�

− QQxk,x�
.

A biquadratic h(x, y) is called non-degenerate if no polynomial in its equivalence class with
respect to Möbius transformations in x and y is divisible by a factor x−α1 or y−α2 (with
αi ∈ C). Otherwise, h is called degenerate and factors x − α1 and y − α2 with (x − α1) | h
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and (y − α2) | h are called factors of degeneracy. Moreover, if x | x2 · h(1/x, y), we write
(x −∞) | h(x, y).

Theorem 2 in [7] and earlier (in a different context) [13] gives a complete classification of
biquadratics up to Möbius transformations. In particular, it can be shown that a biquadratic
is degenerate if and only if i3 = 0, where for a biquadratic h(x, y) its relative invariant i3
is defined by

i3(h, x, y) =
1
4

det




h hx hxx

hy hxy hxxy

hyy hxyy hxxyy


.

A multi-affine polynomial Q is of type Q if all its biquadratics are non-degenerate. Otherwise
it is of type H4 if four out of six biquadratics are degenerate and of type H6 if all six
biquadratics are degenerate. According to Lemmas 2.1 and 2.2 which we will prove later
there are no other possibilities for Q.

For every permutation (i, j, k, �) of (1, 2, 3, 4) the quartic polynomial

ri = ri(xi) = (Qj,k
x�

)2 − 2Qj,kQj,k
x�,x�

is called a corresponding discriminant. This polynomial turns out to be independent on
permutations of (j, k, �).

Let Pm
n denote the set of polynomials in n variables which are of degree m in each

variable. We consider the following action of Möbius transformations on polynomials f ∈
Pm

n :

M [f ](x1, . . . , xn) = (c1x1 + d1)m · · · (cnxn + dn)mf

(
a1x1 + b1

c1x1 + d1
, . . . ,

anxn + bn

cnxn + dn

)
,

where aidi−bici �= 0. The group (Möb)4 acts on quad-equations by Möbius transformations
on all fields independently.

We will now present a complete classification of quad-equations on single quadrilaterals.
We will not give the complete proofs here, because they are too long. However, in Subsec. 2.3
we give an overview of the most important ingredients of this proofs.

2.1. Quad-equations of type Q

Quad-equations of type Q were already classified in [7]. Every quad-equation of type Q

is equivalent modulo (Möb)4 to one of the following quad-equations characterized by the
quadruples of discriminants:

• (δ, δ, δ, δ):

Q = α2(x1 − x2)(x3 − x4) − α1(x1 − x4)(x2 − x3) + δα1α2(α1 + α2) (Q1)

• (x1, x2, x3, x4):

Q = α2(x1 − x2)(x3 − x4) − α1(x1 − x4)(x2 − x3)

+ α1α2(α1 + α2)(x1 + x2 + x3 + x4) − α1α2(α1 + α2)(α2
1 + α1α2 + α2

2) (Q2)
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• (x2
1 − δ, x2

2 − δ, x2
3 − δ, x2

4 − δ):

Q = (α1 − α−1
1 )(x1x2 + x3x4) + (α2 − α−1

2 )(x1x4 + x2x3)

− (α1α2 − α−1
1 α−1

2 )(x1x3 + x2x4) +
δ

4
(α1 − α−1

1 )(α2 − α−1
2 )(α1α2 − α−1

1 α−1
2 ) (Q3)

• ((x1 − 1)(k2x2
1 − 1), (x2 − 1)(k2x2

2 − 1), (x3 − 1)(k2x2
3 − 1), (x4 − 1)(k2x2

4 − 1)):

Q = sn(α1) sn(α2) sn(α1 + α2)(k2x1x2x3x4 + 1) − sn(α1)(x1x2 + x3x4)

− sn(α2)(x1x4 + x2x3) + sn(α1 + α2)(x1x3 + x2x4). (Q4)

2.2. Quad-equations of type H4 and H6

A complete classification of type H4 and of type H6 quad-equations did not appear in the
literature before. Every quad-equation of type H4 is equivalent modulo (Möb)4 to one of
the following quad-equations characterized by the quadruples of discriminants:

• (ε, 0, ε, 0):

Q = (x1 − x3)(x2 − x4) + (α2 − α1)(1 + εx2x4) (Hε
1)

• (εx1 + 1, 1, εx3 + 1, 1):

Q = (x1 − x3)(x2 − x4) + (α2 − α1)(x1 + x2 + x3 + x4) + α2
2 − α2

1

+ ε(α2 − α1)(2x2 + α1 + α2)(2x4 + α1 + α2) + ε(α2 − α1)3 (Hε
2)

• (x2
1 + δε, x2

2, x
2
3 + δε, x2

4):

Q = α1(x1x2 + x3x4) − α2(x1x4 + x2x3) + (α2
1 − α2

2)
(

δ +
εx2x4

α1α2

)
. (Hε

3)

Remark 2.1. All these equations were already mentioned in [7].

Every quad-equation of type H6 is equivalent modulo (Möb)4 to one of the following
quad-equations characterized by the quadruples of discriminants:

• (0, 0, 0, 0):

Q = x1 + x2 + x3 + x4

• (1, 0, 1, δ):

Q = x1 + x3 + x2(x4 + δx1)

• (x2
1, x

2
2, x

2
3, x

2
4):

Q = x1x3 + x2x4 + δ1x2x3 + δ2x3x4.
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2.3. Ingredients of the proofs

We will now present some ingredients of the proofs needed for the classification of quad-
equations. At this point we will repeat two formulas already given in [7]:

4i3(Q1,2, x1, x2)Q1,4 = det




Q1,2 Q1,2
x1 �

Q1,2
x2 Q1,2

x1x2 �x2

Q1,2
x2x2 Q1,2

x1x2x2 �x2x2


, (2.1)

where

� = Q2,3
x3x3

Q3,4 − Q2,3
x3

Q3,4
x3

+ Q2,3Q3,4
x3x3

and

2Qx1

Q
=

Q1,2
x1 Q3,4 − Q1,4

x1 Q2,3 + Q2,3Q3,4
x3 − Q2,3

x3 Q3,4

Q1,2Q3,4 − Q1,4Q2,3
. (2.2)

The following lemma gives some informations about the relation between non-degenerate
biquadratics of a quad-equation:

Lemma 2.1. Biquadratics on opposite edges (we consider the two diagonals as opposite
edges, too) are either both degenerate or both non-degenerate.

Proof. A biquadratic Qi,j is degenerate if and only if i3 = 0 holds. It was shown in [7] that
i3 is equal for biquadratics on opposite edges.

Moreover, it follows that the number of non-degenerate biquadratics of a quad-equation
is even. Another restriction for biquadratics of a quad-equation comes along with the next
lemma:

Lemma 2.2. There do not exist any quad-equation with exactly two degenerate
biquadratics.

Proof. Assumption: Q is such a quad-equation. Change variables in a way, that the
two degenerate biquadratics are Q1,3 and Q2,4. Then, all biquadratics on edges are non-
degenerate. It was shown in [7] that Q is of type Q and all biquadratics are non-degenerate.
Contradiction.

In addition, one can show, that Qi,j �≡ 0:

Lemma 2.3. No biquadratic of a quad-equation is identically zero.

Proof. By a simple calculation one can show

Q(Q1,2
x2

− Q1,3
x3

) = 2(Qx3Q
1,3 − Qx2Q

1,2). (2.3)

Let Q1,2 = 0. Then, due to the classification of biquadratics we get r1 = r2 = 0. Assume
that Q1,3 �= 0. We have to consider two cases:

• If Q1,3 is non-degenerate, suitable Möbius transformations in x1 and x3 lead to Q1,3 =
(x1−x3)2. In the same manner, we get Q2,4 = (x2−x4)2, and using (2.1) we get Q3,4 = 0.
Now, one can apply (2.2) and arrive Q = (x1 − x3)(x2 − x4).
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• Otherwise, up to Möbius transformation in x3 we get Q1,3
x3 = 0 according to the classifi-

cation of biquadratics. Using (2.3) we get Qx3 = 0.

Both cases are not possible because Q is irreducible. Therefore, all biquadratics must be
zero polynomials. Consider

(log Q)x1x2 =
(

Qx1

Q

)
x2

=
QQx1x2 − Qx1Qx2

Q2
= −h3,4

Q2
= 0

and in the same manner

(log Q)x1x3 = (log Q)x1x4 = (log Q)x2x3 = (log Q)x2x4 = (log Q)x3x4 = 0.

Therefore,

log Q = φ1(x1) + φ2(x1) + φ3(x3) + φ4(x4)

and, furthermore,

Q = φ1(x1)φ2(x1)φ3(x3)φ4(x4)

with φi(xi) = αixi + βi which is reducible. Contradiction.

Moreover, we also have the following lemma concerning vanishing biquadratics:

Lemma 2.4. There is no solution (x1, x2, x3, x4) of Q(x1, x2, x3, x4) = 0 with Q1,2 �= 0,
Q1,3 �= 0 and Q1,4 = 0.

Proof. Let (x1, x2, x3, x4) of Q(x1, x2, x3, x4) = 0 with Q1,2 �= 0, Q1,3 �= 0 and Q1,4 = 0.
Then, Q1,2 �= 0 leads to Qx3 �= 0 and Q1,3 �= 0 leads to Qx2 �= 0. This is a contradiction to
Qx2Qx3 = 0 which is equivalent to Q1,4 = 0.

Now, we are able to prove the following lemma:

Lemma 2.5. Every factor of degeneracy is a factor of at least two biquadratics, that means
if (x − α) | h1,2 then

(x1 − α) | h1,3 or (x1 − α) | h1,4.

Proof. We have to consider the following cases:

(1) degx1
h1,4 ∈ {0, 1}

Considering the Möbius transformation x1 �→ x1 + α we have to show: If x1 | h1,2,
then x1 | h1,3 or x1 | h1,4.

Assumption: x1 | h1,2 but x1 � h1,3 and x1 � h1,4.
We set Ni := {x ∈ CP1 : h1,i(0, x) = 0} with i ∈ {3, 4}. Obviously, |N3|, |N4| < ∞.

Due to Lemma 2.4 there exists no solution (x1, x2, x3, x4) of Q(x1, x2, x3, x4) = 0 with
x1 = 0, x3 /∈ N3 and x4 /∈ N4.
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Q can be written as Q = px1 +q with p, q ∈ C[x2, x3, x4]. qx2 = 0 (if not, q = p̃x2 + q̃

with p̃, q̃ ∈ C[x3, x4] and p̃ �= 0. Therefore, there would be x3, x4 ∈ C \ (N3 ∪ N4), such
that p̃(x3, x4) �= 0 and therefore,

Q

(
0,− q̃(x3, x4)

p̃(x3, x4)
, x3, x4

)
= 0).

In the same manner one can show, that qx3 = qx4 = 0 and therefore without restriction
q = 1.

Then, h1,4 = px2x1px3x1 − px2,x3x1(px1 + 1). From degx1
h1,4 ≤ 1 there follows,

px2px3 − px2,x3p = 0 and therefore h1,4 = −px2x3x1. Contradiction.
(2) h1,4 = (x1 − ε)2X with X ∈ C[x4].

If ε �= α, we reach the first case using the Möbius transformation x1 �→ εx1+1
x1

which
leads to h1,4 = X.

(3) h1,4 = (x1 − ε)(x1 − ε̂)X with X ∈ C[x4] and ε �= ε̂

If ε �= α and ε̂ �= α, we reach the first case using the Möbius transformation x1 �→
εx1+1

x1
or x1 �→ ε̂x1+1

x1
which leads to h1,4 =

(
x1 ± 1

ε̂−ε

)
X.

These lemmas are the necessary tools for the classification of quad-equations. The reader
will be able to locate the usage of the technical lemmas in the proofs needed for the above
classification.

3. Quad-Equations on the Faces of a Cube

We will now consider systems of the type

A(x, x1, x2, x12) = 0, Ā(x3, x13, x23, x123) = 0,

B(x, x2, x3, x23) = 0, B̄(x1, x12, x13, x123) = 0,

C(x, x1, x3, x13) = 0, C̄(x2, x12, x23, x123) = 0,

(3.1)

where the equations A, . . . , C̄ are quad-equations assigned to the faces of a cube in the
manner demonstrated in Fig. 1(a). Such a system is 3D consistent if the three values for

(a) Normal Case (b) Flipped Case

Fig. 1. Equations on a cube.
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x123 (calculated by using Ā = 0, B̄ = 0 or C̄ = 0) coincide for arbitrary initial data x, x1,
x2 and x3. It possesses the tetrahedron property if there exist two polynomials K and K̄

such that the equations

K(x, x12, x13, x23) = 0 and K̄(x1, x2, x3, x123) = 0

are satisfied for every solution of the system. It can be shown that the polynomials K and
K̄ are multi-affine and irreducible. For this proof we use the following lemma:

Lemma 3.1. Consider a 3D consistent system (3.1) and

F (x, x1, x2, x3, x123) = Āx13,x23BC − Āx23BCx13 − Āx13Bx23C + ĀBx23Cx13 ,

G(x, x1, x2, x3, x123) = B̄x12,x13CA − B̄x13CAx12 − B̄x12Cx13A + B̄Cx13Ax12 ,

H(x, x1, x2, x3, x123) = C̄x12,x23AB − C̄x12ABx23 − C̄x23Ax12B + C̄Ax12Bx23 .

Then,

F = G = H = 0

and

Fx1Fx2 − Fx1,x2F = B0,3C0,3Ā3,123.

Proof. We get the equations

F = G = H = 0

by eliminating x12, x13 and x23 in the system (3.1), and we have simply to factorize Fx1Fx2−
Fx1,x2F to get the second statement.

This allows us to prove the following lemma:

Lemma 3.2. Consider a 3D consistent system (3.1) possessing the tetrahedron property
described by the two equations

K(x, x12, x13, x23) = 0,

K̄(x1, x2, x3, x123) = 0.

Then, K and K̄ are multi-affine, irreducible polynomials.

Proof. Consider the system (3.1). The elimination of x12, x13 and x23 leads to

F
(

2
x,

1
x1,

1
x2,

3
x3,

1
x123

)
= Āx13,x23BC − Āx23BCx13 − Āx13Bx23C + ĀBx23Cx13 = 0,

G
(

2
x,

3
x1,

1
x2,

1
x3,

1
x123

)
= B̄x12,x13CA − B̄x13CAx12 − B̄x12Cx13A + B̄Cx13Ax12 = 0,

H
(

2
x,

1
x1,

3
x2,

1
x3,

1
x123

)
= C̄x12,x23AB − C̄x12ABx23 − C̄x23Ax12B + C̄Ax12Bx23 = 0,

where the numbers over the arguments of F, G and H indicate their degrees in the corre-
sponding variables. These degrees are in the projective sense, that is in agreement with the
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action of Möbius transformations. Therefore the polynomials F, G and H must factorize as:

F = f
(
x,

2
x3

)
L, G = g

(
x,

2
x1

)
L, H = h

(
x,

2
x2

)
L, L = L

(
x,

1
x1,

1
x2,

1
x3,

1
x123

)

and therefore L = k(x, x1, x2, x3, x123)K̄. Therefore, K̄ is multi-affine.
Assume, that K̄ is reducible. Then, without restriction K̄ = x1d(x2, x3, x123) or

K̄ = (x1 − x3)d(x2, x123) (otherwise, change the labeling and apply some Möbius trans-
formations). In both cases K̄3,123 = 0.

Then, due to Lemma 3.1

0 = f2k2K̄3,123 = Fx1Fx2 − Fx1,x2F = B0,3C0,3Ā3,123

which is a contradiction to B0,3, C0,3, Ā3,123 �≡ 0. Analogously, we can prove the same
for K.

The group (Möb)8 acts on such a system by Möbius transformations on all vertex fields
independently.

We classify all 3D consistent systems (3.1) with a tetrahedron property, whereas the
classification of the case, that all quad-equations are of type Q, was already done in [7]. Note,
that in many cases the tetrahedron property is a consequence of the other assumptions.

There are two essential ideas which allow for this classification. The first one was already
used in [7] and deals with the coincidence of biquadratics assigned to an edge but belonging
to different faces. We will adapt the results from [7] to our situations. The second one is
completely new and it can be interpreted as flipping certain vertices of a cube. We will
present three theorems, two devoted to the first idea, one to the second one.

Theorem 3.1. Consider a 3D consistent system (3.1) with B0,3 and C0,3 are non-
degenerate and

• Ā3,123 is non-degenerate or
• the discriminants of B and C corresponding to the vertices of x and x3 are not equal to

zero.

Then:

(1) (3.1) possesses the tetrahedron property.
(2) For any edge of the cube, the two biquadratics corresponding to this edge coincide up to

a constant factor.
(3) The product of this factors around one vertex is equal to −1; for example

A0,1B0,2C0,3 + A0,2B0,3C0,1 = 0.

Proof. The elimination of x12, x13 and x23 leads to

F
(

2
x,

1
x1,

1
x2,

3
x3,

1
x123

)
= Āx13,x23BC − Āx23BCx13 − Āx13Bx23C + ĀBx23Cx13 = 0,

G
(

2
x,

3
x1,

1
x2,

1
x3,

1
x123

)
= B̄x12,x13CA− B̄x13CAx12 − B̄x12Cx13A + B̄Cx13Ax12 = 0,

H
(

2
x,

1
x1,

3
x2,

1
x3,

1
x123

)
= C̄x12,x23AB − C̄x12ABx23 − C̄x23Ax12B + C̄Ax12Bx23 = 0,
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where the numbers over the arguments of F, G and H indicate their degrees in the corre-
sponding variables. Therefore the polynomials F, G and H must factorize as:

F = f
(
x,

2
x3

)
L, G = g

(
x,

2
x1

)
L, H = h

(
x,

2
x2

)
L, L = L

(
x,

1
x1,

1
x2,

1
x3,

1
x123

)
.

Then, due to Lemma 3.1

f2(Lx1Lx2 − Lx1,x2L) = Fx1Fx2 − Fx1,x2F = B0,3C0,3Ā3,123.

Consider first the case that Ā3,123 is non-degenerate. Then, Ā3,123 | (Lx1Lx2 − Lx1,x2L).
Since B0,3 and C0,3 are non-degenerate, too, B0,3 = f = C0,3 up to constant factors. In
the other case B0,3 and C0,3 are not complete squares. Therefore, since B0,3 and C0,3 are
non-degenerate B0,3C0,3 | f2 or B0,3C0,3 | (Lx1Lx2 −Lx1,x2L) which is not possible because
of degx L = 1. Therefore, B0,3 = f = C0,3 up to constant factors. Then, degx f = 2 and
therefore degx L = 0, so the tetrahedron property is valid. It was shown in [4] that this is
equivalent to

A0,1B0,2C0,3 + A0,2B0,3C0,1 = 0.

Therefore, A0,1/C0,1 can only depend on x and not on x1. Since for symmetry reasons also

A0,1B̄1,12C1,13 + A1,12B̄1,13C0,1 = 0

holds, A0,1/C0,1 is constant. This completes the proof.

Theorem 3.2. Consider a 3D consistent system (3.1) with

• all discriminants on diagonals of faces are non-degenerate and
• all discriminants not equal to zero.

Then:

(1) For any edge of the cube, the two biquadratic polynomials corresponding to this edge
coincide up to a constant factor.

(2) If in addition system (3.1) possesses the tetrahedron property, the product of this factors
around one vertex is equal to −1; for example,

A0,1B0,2C0,3 + A0,2B0,3C0,1 = 0.

Proof. The elimination of x12, x13 and x23 leads to

F
(

2
x,

1
x1,

1
x2,

3
x3,

1
x123

)
= Āx13,x23BC − Āx23BCx13 − Āx13Bx23C + ĀBx23Cx13 = 0,

G
(

2
x,

3
x1,

1
x2,

1
x3,

1
x123

)
= B̄x12,x13CA − B̄x13CAx12 − B̄x12Cx13A + B̄Cx13Ax12 = 0,

H
(

2
x,

1
x1,

3
x2,

1
x3,

1
x123

)
= C̄x12,x23AB − C̄x12ABx23 − C̄x23Ax12B + C̄Ax12Bx23 = 0,

where the numbers over the arguments of F, G and H indicate their degrees in the corre-
sponding variables. Therefore the polynomials F, G and H must factorize as:

F = f
(
x,

2
x3

)
L, G = g

(
x,

2
x1

)
L, H = h

(
x,

2
x2

)
L, L = L

(
x,

1
x1,

1
x2,

1
x3,

1
x123

)
.
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Then, due to Lemma 3.1

f2(Lx1Lx2 − Lx1,x2L) = Fx1Fx2 − Fx1,x2F = B0,3C0,3Ā3,123

and since Ā3,123 is non-degenerate and B0,3 and C0,3 are not of type (0, 0), i.e. B0,3 and
C0,3 are not complete squares, we have B0,3 = f · k1(x) and C0,3 = f · k2(x) with some
polynomials k1 and k2, so that B0,3/C0,3 can depend on x only. Analogously, the elimination
of x1, x2 and x123 leads to

f̄2(L̄x13L̄x23 − L̄x13,x23L̄) = B0,3C0,3A0,12.

Since A0,12 is non-degenerate, too, we have B0,3 = f̄ · k̄1(x3) and C0,3 = f̄ · k̄2(x3) with some
polynomials k̄1 and k̄2, so that B0,3/C0,3 can depend on x3 only. Therefore, B0,3 = k̂C0,3

with k̂ ∈ C.
In [4] it is shown, that the tetrahedron property is equivalent to

A0,1B0,2C0,3 + A0,2B0,3C0,1 = 0.

This completes the proof.

Theorem 3.3. Consider a 3D consistent system (3.1) possessing the tetrahedron property
described by the two equations

K(x, x12, x13, x23) = 0

K̄(x1, x2, x3, x123) = 0.

Then, the system

K(x, x12, x13, x23) = 0, K̄(x1, x2, x3, x123) = 0,

B(x, x2, x3, x23) = 0, B̄(x1, x12, x13, x123) = 0,

C(x, x1, x3, x13) = 0, C̄(x2, x12, x23, x123) = 0,

(3.2)

which can be assigned to a cube in the manner demonstrated in Fig. 1(b) on page 7, is 3D
consistent and possesses the tetrahedron property. 3D consistency of (3.2) is understood as
the property of the initial value problem with initial date x, x3, x13 and x23.

Proof. Let x, x3, x13 and x23 be the initial data for the system (3.2). Then, we can
calculate x1 using C(x, x1, x3, x13) = 0, x2 using B(x, x2, x3, x23) = 0 and x12 using
K(x, x12, x13, x23) = 0.

Furthermore, one can prove that A(x, x1, x2, x12) = 0 for this values of x1, x2 and x12:
Assume that A(x, x1, x2, x12) = 0 is not satisfied and let x1 and x2 be fixed. Then, we
would get another value x̄12 for x12 using A(x, x1, x2, x12) = 0. Since (3.1) possesses the
tetrahedron property, K(x, x̄12, x13, x23) = 0 would hold, but due to Lemma 3.2 this is a
contradiction to K(x, x12, x13, x23) = 0.

With this values of x1, x2 and x12 use the equations B̄(x1, x12, x13, x123) = 0 and
C̄(x2, x12, x23, x123) = 0 to calculate two values for x123 which are equal because of the
3D consistency of (3.1). Moreover, Ā(x3, x13, x23, x123) = 0 is satisfied due to the 3D consis-
tency of (3.1) and K̄(x1, x2, x3, x123) = 0 is satisfied, because (3.1) possesses the tetrahedron
property.
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We will now present the classification. The following sections deal with all logical
possibilities for 3D consistent systems with tetrahedron property.

Theorem 3.4. Each 3D consistent system with the tetrahedron property is either equivalent
modulo (Möb)8 to one of the systems in the classification given in [7] or to one of the systems
from Theorems 3.5–3.11.

This can be shown by the combination of many steps presented in Subsecs. 3.1–3.7.
The proofs will only be given for the first two sections. The other proofs are quite

analogous.

3.1. Six equations of type H4, first case

In this section we consider systems (3.1) with

• A, Ā, . . . , C̄ of type H4 and
• all non-degenerate biquadratics on diagonals of faces.

Below is the list of all 3D consistent systems modulo (Möb)8 with these properties and
with the tetrahedron property. It turns out that their tetrahedron property follows from
the above assumptions except for the system characterized by the quadruple (ε, 0, 0, ε).

Theorem 3.5. Every 3D consistent system (3.1) satisfying the properties of this section
and possessing the tetrahedron property is equivalent modulo (Möb)8 to one of the follow-
ing three systems. They are written in terms of two polynomials A(x, x1, x2, x12;α, β) and
K(x, x12, x13, x23; ε) as

Ā = A(x13, x3, x123, x23;α, β), B = A(x, x2, x3, x23;β, γ),

B̄ = A(x12, x1, x123, x13;β, γ), C = A(x, x1, x3, x13;α, γ),

C̄ = A(x12, x2, x123, x23;α, γ), K̄ = K(x1, x2, x3, x123; 0).

(3.3)

The polynomials A and K can be characterized by the quadruples of discriminants of A:

• (ε, 0, 0, ε):

A = (x − x12)(x1 − x2) − (α − β)(1 + εx1x2),

K = (β − γ)(x − x12)(x13 − x23) − (α − β)(x − x23)(x12 − x13)

− ε(α − β)(β − γ)(α − γ)

(3.4)

• (εx + 1, 1, 1, εx12 + 1):

A = (x − x12)(x1 − x2) − (α − β)(x + x1 + x2 + x12) − α2 + β2

− ε(α − β)(2x1 + α + β)(2x2 + α + β) − ε(α − β)3,

K = (β − γ)(x − x12)(x13 − x23) − (α − β)(x − x23)(x12 − x13)

+ (α − β)(β − γ)(α − γ) − 2ε(α − β)(β − γ)(α − γ)(x + x12 + x13 + x23)

− 4ε2(α − β)(β − γ)(α − γ)((α − β)2 + (α − β)(β − γ) + (β − γ)2)

(3.5)
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• (x2 + δε, x2
1, x

2
2, x

2
12 + δε):

A = α(xx1 + x2x12) − β(xx2 + x1x12) + (α2 − β2)
(
δ + εx1x2

αβ

)
,

K = γ(α2 − β2)(xx12 + x13x23) − β(α2 − γ2)(xx13 + x12x23)

+α(β2 − γ2)(xx23 + x12x13) +
δε(α2 − β2)(α2 − γ2)(β2 − γ2)

αβγ
.

(3.6)

Proof. We will start with systems characterized by (ε, 0, 0, ε). In this case we suppose that
the tetrahedron property holds. Due to Sec. 2 we have

A = (x − x12)(x1 − x2) − α(1 + εx1x2)

up to Möbius transformations in x, x1, x2 and x12. We have the biquadratics

A0,1 = α(1 + εx2
1), A0,2 = −α(1 + εx2

2), A2,12 = α(1 + εx2
2).

The biquadratics A0,2 and B0,2 coincide up to a constant factor because of the tetrahedron
property. Therefore, up to Möbius transformations in x3 and x23 we have

B = (x − x23)(x2 − x3) − β(1 + εx2x3)

with biquadratics

B0,2 = β(1 + εx2
2), B0,3 = −β(1 + εx2

3), B2,23 = −β(1 + εx2
2).

We have to keep in mind that Möbius transformations x �→ µx + ν and, if ε = 0, also
x2 �→ µ2x + ν2 do not change B0,2 up to a constant factor. However, the influence of these
transformations on B can be eliminated by x23 �→ µx23 + ν and β �→ µβ or, if ε = 0, by
x3 �→ µ2x3 + ν2, x23 �→ µx23 + ν and β �→ µµ2β. Furthermore, the biquadratics A0,1 and
C0,1 as well as B0,3 and C0,3 coincide up to a constant factor and, moreover, we have

A0,1B0,2C0,3 + A0,2B0,3C0,1 = 0.

Therefore, up to Möbius transformation in x13 we have

C = (x − x13)(x1 − x3) − γ(1 + εx1x3) + γ̃(x − x13)

with γ̃ = 0, if ε �= 0, and biquadratics

C0,1 = γ(1 + εx2
1), C0,3 = γ(1 + εx2

3).

Again, we have to keep in mind that Möbius transformations x �→ µx + ν and, if ε = 0,
also x1 �→ µ1x1 + ν1 and x3 �→ µ1x3 + ν3 do not change C0,1 and C0,3 up to a common
constant factor. However, the influence of these transformations on C can be eliminated by
x13 �→ µx13 + ν and γ �→ µγ or, if ε = 0, x13 �→ µx13 + ν, γ �→ µµ1γ and γ̃ �→ µ1γ̃ − ν1 + ν3.
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From A, B and C one can derive K. However, K is multi-affine and independent on
x1, x2 and x3 only if γ = α + β and γ̃ = 0 hold. We get

K = α(x − x23)(x12 − x13) − β(x − x12)(x13 − x23) + εαβ(α + β)

with the biquadratic

K12,23 = αβ((x12 − x23)2 + ε(α + β)2).

In the same way as for C, we get, up to Möbius transformation in x123,

C̄ = (x2 − x123)(x12 − x23) − γ2(1 + εx12x23) + γ̃2(x2 − x123)

with the biquadratic

C̄12,23 = −((x12 − x23 + γ̄2)2 + εγ2
2).

Due to Theorem 3.3 we have γ2 = α + β and γ̄2 = 0. Ā, B̄ and K̄ can now easily derived
from the other equations. After transformations α �→ α−β and β �→ β−γ we get the above
system.

Now, we consider the systems characterized by (εx + 1, 1, 1, εx12 + 1). In this case we
do not suppose the tetrahedron property. We will show, that it follows from the above
assumptions. Due to Sec. 2 we have

B = (x − x23)(x2 − x3) − (β − γ)(x + x2 + x3 + x23) − β2 + γ2

− ε(β − γ)(2x2 + β + γ)(2x3 + β + γ) − ε(β − γ)3

up to Möbius transformations in x, x2, x3 and x23. We have the following biquadratics

B0,2 = 2(β − γ)(x + x2 + β + 2ε(x2 + β)2),

B3,23 = 2(β − γ)(x3 + x23 + β + 2ε(x3 + β)2),

B0,3 = −2(β − γ)(x + x3 + γ + 2ε(x3 + γ)2),

B2,23 = −2(β − γ)(x2 + x23 + γ + 2ε(x2 + γ)2).

Due to Theorem 3.2 the biquadratics A0,2 and B0,2 coincide up to a constant factor. There-
fore, we have, up to Möbius transformations in x1 and x12,

A = (x − x12)(x1 − x2) − (α − β)(x + x1 + x2 + x12) − α2 + β2

− ε(α − β)(2x1 + β + α)(2x2 + β + α) − ε(α − β)3

with biquadratics

A0,1 = 2(α − β)(x + x1 + α + 2ε(x1 + α)2),

A2,12 = 2(α − β)(x2 + x12 + α + 2ε(x2 + α)2),

A0,2 = −2(α − β)(x + x2 + β + 2ε(x2 + β)2),

A1,12 = −2(α − β)(x1 + x12 + β + 2ε(x1 + β)2).
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Furthermore, the biquadratics A0,1 and C0,1 as well as B0,3 and C0,3 coincide up to a
constant factor, and therefore, we have, up to Möbius transformation in x13,

C = (x − x13)(x3 − x1) − (γ − α)(x + x1 + x3 + x13) − γ2 + α2

− ε(γ − α)(2x1 + γ + α)(2x3 + γ + α) − ε(γ − α)3

with biquadratics

C0,1 = −2(γ − α)(x + x1 + α + 2ε(x1 + α)2),

C3,13 = −2(γ − α)(x3 + x13 + α + 2ε(x3 + α)2),

C0,3 = 2(γ − α)(x + x3 + γ + 2ε(x3 + γ)2),

C1,13 = 2(γ − α)(x1 + x13 + γ + 2ε(x1 + γ)2).

Moreover, the biquadratics A2,12 and C̄2,12 as well as B2,23 and C̄2,23 coincide up to a
constant factor. Therefore, we have, up to Möbius transformation in x123,

C̄ = (x2 − x123)(x23 − x12) − (γ − α)(x2 + x12 + x23 + x123) − γ2 + α2

− ε(γ − α)(2x2 + γ + α)(2x123 + γ + α) − ε(γ − α)3

with biquadratics

C̄2,12 = −2(γ − α)(x2 + x12 + α + 2ε(x2 + α)2),

C̄23,123 = −2(γ − α)(x23 + x123 + α + 2ε(x123 + α)2),

C̄2,23 = 2(γ − α)(x2 + x23 + γ + 2ε(x2 + γ)2),

C̄12,123 = 2(γ − α)(x12 + x123 + γ + 2ε(x123 + γ)2).

In addition, the biquadratics Ā3,13 and C3,13, Ā3,23 and B3,23 as well as Ā23,123 and C̄23,123

coincide up to a constant factor and therefore, we have

Ā = (x3 − x123)(x13 − x23) − (α − β)(x3 + x13 + x23 + x123) − α2 + β2

− ε(α − β)(2x3 + β + α)(2x123 + β + α) − ε(α − β)3

with biquadratics

Ā3,13 = 2(α − β)(x3 + x13 + α + 2ε(x3 + α)2),

Ā23,123 = 2(α − β)(x23 + x123 + α + 2ε(x123 + α)2),

Ā3,23 = −2(α − β)(x3 + x23 + β + 2ε(x3 + β)2),

Ā13,123 = −2(α − β)(x13 + x123 + β + 2ε(x123 + β)2).

Nevertheless, A1,12 and B̄1,12, B̄1,13 and C1,13, Ā13,123 and B̄13,123 as well as B̄12,123 and
C̄12,123 coincide up to a constant factor. Therefore, we have

B̄ = (x1 − x123)(x12 − x13) − (β − γ)(x1 + x12 + x13 + x123) − β2 + γ2

− ε(β − γ)(2x1 + β + γ)(2x123 + β + γ) − ε(β − γ)3
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with biquadratics

B̄1,12 = 2(β − γ)(x1 + x12 + β + 2ε(x1 + β)2),

B̄13,123 = 2(β − γ)(x13 + x123 + β + 2ε(x123 + β)2),

B̄1,13 = −2(β − γ)(x1 + x13 + γ + 2ε(x1 + γ)2),

B̄12,123 = −2(β − γ)(x12 + x123 + γ + 2ε(x123 + γ)2).

Now, one can easily compute K and K̄ from the above equations. Therefore, the tetrahedron
property holds for this system.

The next case will consider on systems characterized by (x2, x2
1, x

2
2, x

2
12) where all

biquadratics on edges have four factors of degeneracy. In this case we suppose the tetrahe-
dron property. Due to Sec. 2

B = β(xx2 + x3x23) − (xx3 + x2x23)

up to Möbius transformations in x, x2, x3 and x23. We have the following biquadratics:

B0,2 = −(β2 − 1)xx2, B0,3 = (β2 − 1)xx3, B2,23 = (β2 − 1)x2x23.

The biquadratics A0,2 and B0,2 coincide up to a constant factor because of the tetrahedron
property. Therefore, up to Möbius transformations in x1 and x12 we have

A = α(xx1 + x2x12) − (xx2 + x1x12)

with biquadratics

A0,1 = −(α2 − 1)xx1, A0,2 = (α2 − 1)xx2, A2,12 = −(α2 − 1)x2x12.

We have to keep in mind that Möbius transformations x �→ x−1 and x2 �→ x−1
2 do not

change A0,2 up to a constant factor. However, the influence of these transformations on A

can be eliminated by x1 �→ x−1
1 and x−1

12 . Furthermore, the biquadratics A0,1 and C0,1 as
well as B0,3 and C0,3 coincide up to a constant factor and, moreover, we have

A0,1B0,2C0,3 + A0,2B0,3C0,1 = 0.

Therefore, up to Möbius transformation in x13 we have

C = γ(xx3 + x1x13) − (xx1 + x3x13)

with biquadratics

C0,1 = −(γ2 − 1)xx1, C0,3 = (γ2 − 1)xx3.

Again, we have to keep in mind that Möbius transformations x �→ x−1 as well as simultane-
ously x1 �→ x±1

1 ans x3 �→ x±1
3 do not change C0,1 and C0,3 up to a common constant factor.

However, the influence of these transformations on C can be eliminated by x13 �→ x−1
13 as

well as γ �→ γ∓1.
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From A, B and C one can derive K. However, K is multi-affine and independent on
x1, x2 and x3 only if γ = 1/(αβ) hold. We get

K = β(α2 − 1)(xx12 + x13x23) + α(β2 − 1)(xx23 + x12x13) − (α2β2 − 1)(xx13 + x12x23)

with the biquadratic

K12,23 = (α2 − 1)(β2 − 1)(αβx12 − x23)(x12 − αβx23).

In the same way as for C, we get, up to Möbius transformation in x123,

C̄ = γ2(x2x23 + x12x123) − (x2x12 + x23x123)

with the biquadratic

C̄12,23 = −(γ2x12 − x23)(x12 − γ2x23).

Due Theorem 3.3 we have γ2 = αβ. Ā, B̄ and K̄ can now easily derived from the other
equations. After transformations α �→ α/β and β �→ β/γ we get the above system with
δ = ε = 0.

Our last case will consider systems characterized by (x2 + δε, x2
1, x

2
2, x

2
12 + δε) where all

biquadratics have at most two factors of degeneracy. In this case we will also not suppose
the tetrahedron property because it follows from the above assumptions. Due to Sec. 2

B = β(xx2 + x3x23) − γ(xx3 + x2x23) + (β2 − γ2)
(

δ +
εx2x3

βγ

)

up to Möbius transformations in x, x2, x3 and x23 with δ �= 0 or ε �= 0. We have the
following biquadratics:

B0,2 = −(β2 − γ2)
(

xx2 + δβ +
εx2

2

β

)
, B0,3 = (β2 − γ2)

(
xx3 + δγ +

εx2
3

γ

)
,

B3,23 = −(β2 − γ2)
(

x3x23 + δβ +
εx2

3

β

)
, B2,23 = (β2 − γ2)

(
x2x23 + δγ +

εx2
2

γ

)
.

Due to Theorem 3.2 the biquadratics A0,2 and B0,2 coincide up to a constant factor. There-
fore, we have, up to Möbius transformations in x1 and x12,

A = α(xx1 + x2x12) − β(xx2 + x1x12) + (α2 − β2)
(

δ +
εx1x2

αβ

)

with biquadratics

A0,1 = −(α2 − β2)
(

xx1 + δα +
εx2

1

α

)
, A0,2 = (α2 − β2)

(
xx2 + δβ +

εx2
2

β

)
,

A2,12 = −(α2 − β2)
(

x2x12 + δα +
εx2

2

α

)
, A1,12 = (α2 − β2)

(
x1x12 + δβ +

εx2
1

β

)
.

Furthermore, the biquadratics A0,1 and C0,1 as well as B0,3 and C0,3 coincide up to a
constant factor, and therefore, we have, up to Möbius transformation in x13,

C = γ(xx3 + x1x13) − α(xx1 + x3x13) + (γ2 − α2)
(

δ +
εx1x3

αγ

)
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with biquadratics

C0,1 = −(α2 − γ2)
(

xx1 + δα +
εx2

1

α

)
, C0,3 = (α2 − γ2)

(
xx3 + δγ +

εx2
3

γ

)
,

C3,13 = −(α2 − γ2)
(

x3x13 + δα +
εx2

3

α

)
, C1,13 = (α2 − γ2)

(
x1x13 + δγ +

εx2
1

γ

)
.

Moreover, the biquadratics A2,12 and C̄2,12 as well as B2,23 and C̄2,23 coincide up to a
constant factor. Therefore, we have, up to Möbius transformation in x123,

C̄ = γ(x2x23 + x12x123) − α(x2x12 + x23x123) + (γ2 − α2)
(

δ +
εx2x123

αγ

)

with biquadratics

C̄2,12 = −(α2 − γ2)
(

x2x12 + δα +
εx2

2

α

)
,

C̄23,123 = −(α2 − γ2)
(

x23x123 + δα +
εx2

123

α

)
,

C̄2,23 = (α2 − γ2)
(

x2x23 + δγ +
εx2

2

γ

)
,

C̄12,123 = (α2 − γ2)
(

x12x123 + δγ +
εx2

123

γ

)
.

In addition, the biquadratics Ā3,13 and C3,13, Ā3,23 and B3,23 as well as Ā23,123 and C̄23,123

coincide up to a constant factor and therefore, we have

Ā = α(x3x13 + x23x123) − β(x3x23 + x13x123) + (α2 − β2)
(

δ +
εx3x123

αβ

)

with biquadratics

Ā3,13 = −(α2 − β2)
(

x3x13 + δα +
εx2

3

α

)
,

Ā23,123 = −(α2 − β2)
(

x23x123 + δα +
εx2

123

α

)
,

Ā3,23 = (α2 − β2)
(

x3x23 + δβ +
εx2

3

β

)
,

Ā13,123 = (α2 − β2)
(

x13x123 + δβ +
εx2

123

β

)
.

Nevertheless, A1,12 and B̄1,12, B̄1,13 and C1,13, Ā13,123 and B̄13,123 as well as B̄12,123 and
C̄12,123 coincide up to a constant factor. Therefore, we have

B̄ = β(x1x12 + x13x123) − γ(x1x13 + x12x123) + (β2 − γ2)
(

δ +
εx1x123

βγ

)
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with biquadratics

B̄1,12 = −(β2 − γ2)
(

x1x12 + δβ +
εx2

1

β

)
,

B̄13,123 = −(β2 − γ2)
(

x13x123 + δβ +
εx2

123

β

)
,

B̄1,13 = (β2 − γ2)
(

x1x13 + δγ +
εx2

1

γ

)
,

B̄12,123 = (β2 − γ2)
(

x12x123 + δγ +
εx2

123

γ

)
.

Now, one can easily compute K and K̄ from the above equations. Therefore, the tetrahedron
property holds for this system.

Remark 3.1. Equivalent systems appeared in [4, 7] without classification results for such
systems.

3.2. Two equations of type Q and four equations of type H4

In this section we consider systems (3.1) with

• B and B̄ of type Q,
• A, Ā, C and C̄ of type H4 and
• the non-degenerate biquadratics of Ā, C and C̄ on edges neighboring B or B̄.

Below is the list of all 3D consistent systems modulo (Möb)8 with these properties. It turns
out that their tetrahedron property follows from the above assumptions.

Theorem 3.6. Every 3D consistent system (3.1) satisfying the properties of this section is
equivalent modulo (Möb)8 to one of the following three systems. They are written in terms
of the two polynomials A(x, x1, x2, x12;α, β) and B(x, x2, x3, x23; ε) as

Ā = A(x3, x13, x23, x123;α, β), B̄ = B(x1, x12, x13, x123; 0),

C = A(x, x1, x3, x13;α, γ), C̄ = A(x2, x12, x23, x123;α, γ),

K = A(x, x12, x23, x13;β, γ), K̄ = A(x2, x1, x3, x123;β, γ).

(3.7)

The polynomials A and K can be characterized by the quadruples of discriminants of A:

• (ε, 0, ε, 0):

A = (x − x2)(x1 − x12) − (α − β)(1 + εx1x12),

B = (β − γ)(x − x2)(x3 − x23) − (α − β)(x − x23)(x2 − x3)

− ε(α − β)(β − γ)(α − γ)

(3.8)
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• (εx + 1, 1, εx2 + 1, 1):

A = (x − x2)(x1 − x12) − (α − β)(x + x1 + x2 + x12)

−α2 + β2 − ε(α − β)(2x1 + α + β)(2x12 + α + β) − ε(α − β)3,

B = (β − γ)(x − x2)(x3 − x23) − (α − β)(x − x23)(x2 − x3)

+ (α − β)(β − γ)(α − γ) − 2ε(α − β)(β − γ)(α − γ)(x + x2 + x3 + x23)

−4ε2(α − β)(β − γ)(α − γ)((α − β)2 + (α − β)(β − γ) + (β − γ)2)

(3.9)

• (x2 + δε, x2
1, x

2
2 + δε, x2

12):

A = α(xx1 + x2x12) − β(xx12 + x1x2) + (α2 − β2)
(

δ +
εx1x12

αβ

)
,

B = γ(α2 − β2)(xx2 + x3x23) − β(α2 − γ2)(xx3 + x2x23)

+ α(β2 − γ2)(xx23 + x2x3) +
δε(α2 − β2)(α2 − γ2)(β2 − γ2)

αβγ

(3.10)

Proof. Due to Theorem 3.1 all systems we have to consider possess the tetrahedron prop-
erty. Therefore, using Theorem 3.3 we get our systems by the flips x2 ↔ x12 and x3 ↔ x13

in the systems of Theorem 3.5.

Remark 3.2. Equivalent systems appeared in [5–7] without classification results for such
systems.

3.3. Six equations of type H4, second case

In this section we consider systems (3.1) with

• A, Ā, . . . , C̄ of type H4,
• the non-degenerate biquadratics of A and Ā on diagonals of faces and
• the non-degenerate biquadratics of B, B̄, C and C̄ on edges not neighboring A and Ā.

Below is the list of all 3D consistent systems modulo (Möb)8 with these properties. It turns
out that their tetrahedron property follows from the above assumptions.

Theorem 3.7. Every 3D consistent system (3.1) satisfying the properties of this section is
equivalent modulo (Möb)8 to one of the following three systems. They are written in terms
of three polynomials A(x, x1, x2, x12), B(x, x2, x3, x23;β) and K(x, x12, x13, x23) as

Ā = A(x3, x13, x23, x123), B̄ = B(x12, x1, x123, x13;β), C = B(x, x1, x3, x13;α),

C̄ = B(x12, x2, x123, x23;α), K̄ = K(x3, x123, x1, x2).
(3.11)

The polynomials A, B and K can be characterized by the quadruples of discriminants of A:

• (ε, 0, 0, ε):

A = (x − x12)(x1 − x2) − (α − β)(1 + εx1x2),

B = (x − x3)(x2 − x23) + γ(1 + εx2x23),

K = (x − x12)(x13 − x23) − (α − β)(1 + εx13x23)

(3.12)
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• (εx + 1, 1, 1, εx12 + 1):

A = (x − x12)(x1 − x2) − (α − β)(x + x1 + x2 + x12) − α2 + β2

− ε(α − β)(2x1 + α + β)(2x2 + α + β) − ε(α − β)3,

B = (x − x3)(x2 − x23) + γ(x + x2 + x3 + x23) + γ2 + 2βγ

+ εγ(2x2 + 2β + γ)(2x23 + 2β + γ) + γ3ε,

K = (x − x12)(x13 − x23) − (α − β)(x + x12 + x13 + x23) − α2β2

− 2γ(α − β) − ε(α − β)(2x13 + α + β + 2γ)(2x23 + α + β + 2γ) − ε(α − β)3

(3.13)

• (x2 + δε, x2
1, x

2
2, x

2
12 + δε):

A = α(xx1 + x2x12) − β(xx2 + x1x12) + (α2 − β2)
(

δ +
εx1x2

αβ

)
,

B = xx2 + x3x23 − γ(xx23 + x2x3) − (γ2 − 1)
(

δβ +
εx2x23

βγ

)
,

K = α(xx13 + x12x23) − β(xx23 + x12x13) + (α2 − β2)
(

δγ +
εx13x23

αβγ

)
.

(3.14)

Remark 3.3. These systems did not appear in the literature before.

3.4. Four equations of type H4 and two equations of type H6, first case

Theorem 3.8. No 3D consistent system (3.1) exists with the tetrahedron property and with

• A and Ā of type H6,

• B, B̄, C and C̄ of type H4,

• the non-degenerate biquadratics of B, B̄, C and C̄ on diagonals.

3.5. Four equations of type H4 and two equations of type H6, second case

In this section we consider systems (3.1) with

• A and Ā of type H6,
• B, B̄, C and C̄ of type H4 and
• the non-degenerate biquadratics of B, B̄, C and C̄ on edges not neighboring A and Ā.

Below is the list of all 3D consistent systems modulo (Möb)8 with these properties and with
the tetrahedron property. It turns out that in the last case the tetrahedron property follows
from the above assumptions.

Theorem 3.9. Every 3D consistent system (3.1) satisfying the properties of this section
and possessing the tetrahedron property is equivalent modulo (Möb)8 to one of the following
four systems which can be characterized by the quadruples of discriminants of A:

• (0, 0, 0, 0):

A(x, x1, x2, x12) = x + x1 + x2 + x12,

B(x, x2, x3, x23;α) = (x − x3)(x2 − x23) + α,
(3.15)
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Ā = A(x3, x13, x23, x123), B̄ = B(x1, x12, x13, x123;α),

C = B(x, x1, x3, x13;−α), C̄ = B(x2, x12, x23, x123;−α),

K = A(x, x12, x13, x23), K̄ = A(x1, x2, x3, x123).

(3.16)

• (1, 1, 0, δ1δ2):

B(x, x2, x3, x23; δ2) = (x − x3)(x2 − x23) + δ1α(x2 + x23)

+ δ2α(x + x3) + δ1δ2α
2,

B̄(x1, x12, x13, x123; δ1) = (x1 − x13)(x12 − x123) + 2(δ1 − 1)α

+ (δ1δ2 + δ1 − δ2)α(x12 + x123) + 2δ1δ2αx12x123,

K(x, x13, x23, x12;α) = x + x13 + (δ1 − 1)x23 + δ1α

+ x12(δ2x + δ1x23 + δ1δ2α),

(3.17)

A = K(x, x1, x2, x12; 0), Ā = K(x3, x13, x23, x123),

C = B(x, x1, x3, x13; δ1 + δ2 − δ1δ2), C̄ = B̄(x2, x12, x23, x123; 0),

K̄ = K(x3, x1, x2, x123;α).

(3.18)

Remark 3.4. If δ1 = δ2 = 0, A is reducible.

• (x2, x2
1, x

2
12, x

2
2):

— There are two non-equivalent systems with this quadruple of determinants:

A(x, x1, x2, x12; δ1, δ2) = xx12 + x1x2 + δ1x1x12 + δ2x2x12,

B(x, x2, x3, x23;α) = xx23 + x2x3 − α(xx2 + x3x23) − δ2(α2 − 1)x2x23,
(3.19)

Ā = A(x3, x13, x23, x123; δ1, δ2), B̄ = B(x1, x12, x13, x123;α),

C = B(x, x1, x3, x13;α−1), C̄ = B(x2, x12, x23, x123;α−1),

K = A(x, x13, x23, x12; δ1α
−1, δ2α), K̄ = A(x3, x1, x2, x123; δ1α

−1, δ2α)

(3.20)

— and

A(x, x1, x2, x12; δ1) = xx2 + x1x12 + δ1x1x2 + δ2x2x12,

B(x, x2, x3, x23; δ1δ2) = xx23 + x2x3 − α(xx2 + x3x23) + δ1δ2(α2 − 1)x2x23,
(3.21)

Ā = A(x3, x13, x23, x123; δ1), B̄ = B(x123, x13, x12, x1; 0),

C = B(x, x1, x3, x13;−δ1), C̄ = B(x123, x23, x12, x2;−δ1),

K = A(x, x13, x23, x12; δ1α), K̄ = A(x3, x1, x2, x123; δ1α).

(3.22)

Remark 3.5. These systems did not appear in the literature before. Special cases of equa-
tions A = 0 in the last two systems are equivalent modulo (Möb)4 to the equations whose
integrability was shown in [8, 10] and the “new” integrable equation from [9].
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3.6. Two equations of type H4 and four equations of type H6

In this section we consider systems (3.1) with

• A, Ā, C and C̄ of type H6,
• B and B̄ of type H4 and
• the non-degenerate biquadratics of B and B̄ on diagonals.

Below is the list of all 3D consistent systems modulo (Möb)8 with these properties and with
the tetrahedron property.

Theorem 3.10. Every 3D consistent system (3.1) satisfying the properties of this section
is equivalent modulo (Möb)8 to one of the following six systems which can be characterized
by the quadruples of discriminants of A:

• (0, 0, 0, 0):

A(x, x1, x2, x12) = x + x1 + x2 + x12,

B(x, x2, x3, x23;α) = (x − x23)(x2 − x3) + α,
(3.23)

Ā = A(x3, x13, x23, x123), B̄ = B(x1, x12, x13, x123;α),

C = A(x, x1, x3, x13), C̄ = A(x2, x12, x23, x123),

K = B(x, x12, x13, x23;−α), K̄ = B(x1, x2, x3, x123;−α).

(3.24)

• (1, 1, 0, δ1δ2):

— There are two non-equivalent systems with this quadruple of determinants:

B(x, x2, x3, x23; δ2) = (x − x23)(x2 − x3) + δ1α(x2 + x3) + δ2α(x + x23)

+ δ1δ2α
2,

B̄(x1, x12, x13, x123; δ1) = (x1 − x123)(x12 − x13) + 2(δ1 − 1)α

+ (δ1δ2 + δ1 − δ2)α(x1 + x123) + 2δ1δ2αx1x123,

C(x, x1, x3, x13;α) = x + x13 + (δ1 − 1)x3 + δ1α + x1(δ2x + δ1x3 + δ1δ2α),

(3.25)

A = C(x, x1, x2, x12; 0), Ā = C(x23, x123, x3, x13; 0),

C̄ = C(x23, x123, x2, x12;α), K = B(x, x12, x13, x23; δ1 + δ2 − δ1δ2),

K̄ = B̄(x1, x2, x3, x123; 0)

(3.26)

— and

C(x, x1, x3, x13;α) = x + x3 + (δ1 − 1)x13 + δ1α + x1(δ2x + δ1x13 + δ1δ2α),

K(x, x12, x13, x23; δ2) = (x − x23)(x12 − x13) + δ1α(x12 + x13)
+ δ2α(x + x23) + δ1δ2α

2,

K̄(x1, x2, x3, x123; δ1) = (x1 − x123)(x2 − x3) + 2(δ1 − 1)α
+ (δ1δ2 + δ1 − δ2)α(x1 + x123) + 2δ1δ2αx1x123,

(3.27)

A = C(x, x1, x2, x12; 0), Ā = C(x23, x123, x3, x13; 0),

B = K(x, x2, x3, x23; δ1 + δ2 − δ1δ2), B̄ = K̄(x1, x12, x13, x123; 0),

C̄ = C(x23, x123, x2, x12;α).

(3.28)
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Remark 3.6. If δ1 = δ2 = 0, A is reducible.

• (x2, x2
1, x

2
12, x

2
2):

— There are three non-equivalent systems with this quadruple of determinants:

A(x, x1, x2, x12; δ1, δ2) = xx1 + x2x12 + δ1x1x12 + δ2x1x2,

B(x, x2, x3, x23;α) = xx3 + x2x23 − α(xx2 + x3x23) − δ2(α2 − 1)x2x3,
(3.29)

Ā = A(x23, x123, x3, x13; δ1, δ2), B̄ = B(x12, x1, x123, x13;α),

C = A(x, x1, x3, x13; δ1α
−1, δ2α), C̄ = A(x23, x123, x2, x12; δ1α

−1, δ2α),

K = B(x, x12, x13, x23;α−1), K̄ = B(x2, x1, x123, x3;α−1),

(3.30)

— moreover,

A(x, x1, x2, x12; δ1) = xx2 + x1x12 + δ1x2x12 + δ2x1x2,

B(x, x2, x3, x23; δ1δ2) = xx3 + x2x23 − α(xx2 + x3x23) + δ1δ2(α2 − 1)x2x3,
(3.31)

Ā = A(x23, x123, x3, x13; δ1), B̄ = B(x1, x12, x13, x123; 0),

C = A(x, x1, x3, x13; δ1α), C̄ = A(x23, x123, x2, x12; δ1α),

K = B(x, x12, x13, x23;−δ1), K̄ = B(x1, x2, x3, x123;−δ1)

(3.32)

— and last but not least

A(x, x1, x2, x12; δ1) = xx12 + x1x2 + δ1x2x12 + δ2x1x12,

B(x, x2, x3, x23;−δ1) = xx3 + x2x23 − α(xx2 + x3x23) − δ1(α2 − 1)x2x3,
(3.33)

Ā = A(x23, x123, x3, x13; δ1), B̄ = B(x1, x12, x13, x123;−δ1),

C = A(x, x1, x3, x13; δ1α), C̄ = A(x23, x123, x2, x12; δ1α),

K = B(x, x12, x13, x23; δ1δ2), K̄ = B(x1, x2, x3, x123; 0).

(3.34)

Remark 3.7. Except two special cases (see [5]) these systems did not appear in the liter-
ature before.

3.7. Six equations of type H6

In this section we consider systems (3.1) with A, Ā, . . . , C̄ of type H6. Below is the list of
all those systems possessing the tetrahedron property.

Theorem 3.11. Every 3D consistent system (3.1) satisfying the properties of this section
is equivalent modulo (Möb)8 to one of the following five systems which can be characterized
by the quadruples of discriminants of A:

• (0, 0, 0, 0):

K(x, x12, x13, x23;α, β) = (α − αβ + β)x − αβx12 − αx13 + βx23, (3.35)
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A = K(x, x1, x2, x12;−1, 1), Ā = K(x13, x3, x123, x23;αβ − α − β, 1),

B = K(x, x2, x3, x23;−α, 1), B̄ = K(x12, x1, x123, x13; (αβ − α − β)/α, 1),

C = K(x, x1, x13, x3; 1,−β), C̄ = K(x12, x2, x23, x123; 1, (αβ − α − β)/β),

K̄ = K(x123, x3, x2, x1;α, β).

(3.36)

• (0, 0, 1, 1):

— There are two non-equivalent systems with this quadruple of determinants:

A(x, x1, x2, x12) = xx1 − x2 − x12, Ā(x3, x13, x23, x123) = (x3 + x13)x23 + x123,

(3.37)

B = A(x, x23, x2, x3), B̄ = Ā(x12, x13, x1, x123), C = A(−x, x1, x3, x13),

C̄ = Ā(x2, x12, x23,−x123), K = A(−x, x23, x12, x13), K̄ = Ā(x2, x3, x1,−x123)
(3.38)

— and

A(x, x1, x2, x12) = xx1 − x2 − x12,

Ā(x3, x13, x23, x123) = (x3 + x13)x123 + x3 − x23,
(3.39)

B = Ā(x2, x3,−x23, α
−1x), B̄ = A(αx1, x123 + 1,−x12,−x13),

C = A(x + α, x1,−x3,−x13), C̄ = Ā(x2, x12,−x23, x123),

K = Ā(x12, x13, x23, α
−1x) K̄ = A(αx1, x123, x2, x3).

(3.40)

• (x2, x2
1, x

2
12, x

2
2):

— There are two non-equivalent systems with this quadruple of determinants:

A(x, x1, x2, x12; δ1, δ2) = xx12 + x1x2 + δ1x1x12 + δ2x2x12, (3.41)

Ā = A(x13, x3, x123, x23; δ1, δ2), B = A(x, x2, x3, x23; δ2, 0),

B̄ = A(x13, x1, x123, x12; δ1δ3, δ2), C = A(x13, x3, x, x1, δ1,−δ3),

C̄ = A(x123, x23, x2, x12, δ1,−δ3), K = A(x13, x, x23, x12;−δ3,−δ1δ2),

K̄ = A(x3, x1, x123, x2;−δ3, 0)

(3.42)

— and

A(x, x1, x2, x12; δ1, δ2) = xx1 + x2x12 + δ1x1x12 + δ2x1x2, (3.43)

Ā = A(x13, x3, x123, x23; δ1, δ2), B = A(x, x3, x2, x23; δ2, 0),

B̄ = A(x13, x1, x123, x12; δ1δ3, δ2), C = A(x12, x1, x3, x;−δ3,−δ1δ2),

C̄ = A(x123, x12, x23, x2;−δ3, 0), K = A(x13, x12, x, x23; δ1,−δ3),

K̄ = A(x123, x1, x2, x3; δ1,−δ3).

(3.44)

Remark 3.8. All systems except for the one characterized by the quadruple (0, 0, 0, 0) did
not appear in the literature before. The latter is equivalent to a special case of the one of
the systems from [14] (in that paper the tetrahedron property is not assumed).
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4. Embedding in the Lattice Z3

The main conceptual message of [2, 4] is that 3D consistency is synonymous with integra-
bility. In the situations considered there, where equations on opposite faces of the cube are
shifted versions of one another, it was demonstrated how to derive Bäcklund transformations
and zero curvature representations from a 3D consistent system.

It might be not immediately obvious whether these integrability attributes can still be
derived for our systems, where the equations on opposite faces of one elementary cube
happen to be completely different. We show now this is the case, indeed.

We start with the composing an integrable system on Z2 from a non-symmetric multi-
affine polynomial Q from one of our lists. The polynomials will be assigned to the faces as
demonstrated in Fig. 2. For an equation

Q(x, x1, x2, x12) = 0

we define

|Q := Q(x1, x, x12, x2), Q := Q(x2, x12, x, x1) and |Q := Q(x12, x2, x1, x).

This can be interpreted as reflections at the axis implied by the notation. So, the basic
elements of our embedding are not as usual faces but quadruples of faces as marked by the
bold lines in Fig. 2 and the embedding is not one-periodic as usual but two-periodic in each
direction. In the cases considered in [11] the equation |Q is a shifted version of Q as well as
Q is a shifted version of |Q.

We show now that this 2D system, with an elementary 2 × 2 building-block, is inte-
grable: One can find (properly generalized) Bäcklund transformations and zero curvature
representations for these systems.

Let us start with Bäcklund transformations. In the symmetric case, i.e. for systems
of the ABS-list, we have the picture like in Fig. 3(a). A Bäcklund transformation can be
interpreted as one layer of the system in the three dimensional lattice. We have a solution
f : V (D) → C on a quad-graph D of

Q(f, f1, f2, f12) = 0

Fig. 2. Embedding in a planar lattice.
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(a) Symmetric case (b) Non-symmetric case

Fig. 3. Bäcklund transformation.

on the ground floor, its Bäcklund transformation f+ : V (D+) → C on a copy D+ of D with

Q(f+, f+
1 , f+

2 , f+
12) = 0

on the first floor and the Bäcklund parameter assigned to the vertical edges. A more detailed
demonstration of this situation can be found for example in [12]. In the non-symmetric case,
i.e. for our systems, we have to consider a picture which is a little bit more extensive, as
demonstrated in Fig. 3(b). In this case a Bäcklund transformation can be seen as two layers
of our lattice. We start again with a solution f : V (D) → C of

Q(f, f1, f2, f12) = 0

on the ground floor and get a transformation g : V (D̄) → C on a copy D̄ of D with the
equation on the opposite face of the cube

Q̄(g, g1, g2, g12) = 0

and a parameter λ1 assigned to the vertical edges. Every parameter of the system we
consider which do not appear in Q and Q̄ can be chosen as λ1. Then, starting from g we
get a Bäcklund transformation of f called f+ : V (D) → C on the second floor with

Q(f+, f+
1 , f+

2 , f+
12) = 0

and a parameter λ2 assigned to the vertical edges.
Zero curvature representations can be derived for non-symmetric systems, too. We will

first consider briefly the idea how to derive zero curvature representations of the symmetric
systems. In the symmetric case we have again the picture like in Fig. 4(a). In this case
a transition matrix of a zero curvature representation of an equation on the ground floor
can be interpreted as a Möbius transformation (in the standard matrix notation) from one
vertex of the first floor to another one connected by an edge e.g.,

f+
1 = L(f, f1, λ)[f+]

with L a 2 × 2 transition matrix dependent on the spectral parameter λ. One can derive
the Möbius transformation from the equation of the corresponding face. For informations
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(a) Symmetric case (b) Non-symmetric case

Fig. 4. Zero curvature represenation.

in more details we again refer to [12]. In the non-symmetric case we also need just one layer
to derive a zero curvature equation (see Fig. 4(b)). Also in this case a transition matrix of
a zero curvature representation of an equation on the ground floor can be interpreted as
a Möbius transformation from one vertex of the first floor to another one conneted by an
edge in the standard matrix notation, e.g.,

g1 = L(f, f1, λ1)[g]

with L a 2 × 2 transition matrix dependent on the spectral parameter λ1.

5. Concluding Remarks

Due to Sec. 4, Theorems 3.5, 3.7 and 3.9 gives us a Bäcklund transformation and a zero
curvature representation for every quad-equation of type H4 and of type H6 in every arrange-
ment of fields to the vertices of an elementary square of Z2. Therefore, they are all integrable.

Moreover, our classification includes all known 3D consistent systems except two sys-
tems mentioned in [5], the system mentioned in [8] and two systems only containing linear
equations (see [14, 7]). Of course, all these system do not possess the tetrahedron property.
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[5] J. Atkinson, Bäcklund transformations for integrable lattice equations, J. Phys. A: Math. Theor.
41(135202) (2008).

[6] R. Boll and Y. B. Suris, Non-symmetric discrete Toda systems from quad-graphs, Appl. Anal.
89(4) (2010) 547–569.

[7] V. E. Adler, A. I. Bobenko and Y. B. Suris, Discrete nonlinear hyperbolic equations. Classifi-
cation of integrable cases, Funct. Anal. Appl. 43 (2009) 3–17.

[8] J. Hietarinta, A new two-dimensional lattice model that is “consistent around a cube”, J. Phys.
A: Math. Theor. 37 (2004) 67–73.

[9] P. E. Hydon and C.-M. Viallet, Asymmetric integrable quad-graph equations, Appl. Anal. 89(4)
(2010) 493–506.

[10] D. Levi and R. I. Yamilov, On a linear inegrable difference equation on the square, Ufa Math.
J. 1(2) (2009) 101–105.

[11] P. D. Xenitidis and V. G. Papageorgiou, Symmetries and integrability of discrete equations
defined on a black-white lattice, J. Phys. A: Math. Theor. 42(454025) (2009).

[12] A. I. Bobenko and Y. B. Suris, Discrete Differential Geometry. Integrable Structure, Graduate
Studies in Mathematics, Vol. 98 (AMS, 2008).

[13] A. Iatrou and J. A. G. Roberts, Integrable mappings of the plane preserving biquadratic invari-
ant curves II, Nonlinearity 14 (2002) 459–489.

[14] J. Atkinson, Linear quadrilateral lattice equations and multidimensional consistency, J. Phys.
A: Math. Theor. 42(454005) (2009).


	1 Introduction
	2 Quad-Equations on Single Quadrilaterals
	2.1 Quad-equations of type Q
	2.2 Quad-equations of type H4 and H6
	2.3 Ingredients of the proofs

	3 Quad-Equations on the Faces of a Cube
	3.1 Six equations of type H4, first case
	3.2 Two equations of type Q and four equations of type H4
	3.3 Six equations of type H4, second case
	3.4 Four equations of type H4 and two equations of type H6, first case
	3.5 Four equations of type H4 and two equations of type H6, second case
	3.6 Two equations of type H4 and four equations of type H6
	3.7 Six equations of type H6

	4 Embedding in the Lattice Z^3
	5 Concluding Remarks

