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We report a new three and four coupled nonlinear partial differential-difference equations each
admits Lax representation, possess infinitely many generalized (nonpoint) symmetries, conserved
quantities and a recursion operator. Hence they are completely integrable both in the sense of Lax
and Liouville.
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1. Introduction

In recent years, searching for new integrable discrete systems governed by nonlinear partial
differential-difference equations (PD∆Es) is an important and interesting task in nonlin-
ear systems[3, 4, 14, 16, 19, 22, 23, 28, 30, 31]. A variety of analytical techniques have
been devised toward this goal both for nonlinear partial differential equations (PDEs) and
PD∆Es [1, 8, 15, 18, 20, 25, 27, 29]. As a result, considerable number of completely inte-
grable nonlinear scalar PD∆Es with polynomial forms with (1+1) dimensions have been
identified. More often these integrable equations exhibit rich mathematical structures such
as Lax representation[1, 5, 9, 16, 22, 23, 31], an infinitely many generalized symmetries, con-
served densities [10–13, 15, 25] and master symmetries[8, 11, 20], etc.[7, 17, 21, 32] which
are common properties of completely integrable systems. However only a limited number
of integrable coupled nonlinear PD∆Es with (1+1) dimensions exist in the literature. Also,
if one introduces more components to a known scalar nonlinear PD∆Es possessing mathe-
matical structures related with integrability, the resulting equation may not preserve all the
characteristics of original equation and hence it is important to investigate further towards
their integrability. Thus it is interesting to identify integrable coupled nonlinear PD∆Es.
With this aim, in this article we report a new integrable three and four coupled nonlinear
partial differential-difference equations (PD∆Es).
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More specifically we consider a 3- and 4-coupled PD∆Es, respectively given by

∂un

∂t
=

1
vn

− pn

un+1 vn
, (1.1a)

∂vn

∂t
=

vnpn−1

unun−1vn−1
− 1

un
, (1.1b)

∂pn

∂t
=

pn

unvn
− p2

n

unvnun+1
(1.1c)

and

∂un

∂t
=

1
vn

− qn

un+1vn
− unpn

un+1vn
, (1.2a)

∂vn

∂t
=

vnqn−1

unun−1vn−1
− 1

un
+

pn

un+1
, (1.2b)

∂pn

∂t
=

pnqn−1

vn−1un−1un
− pnqn

vnunun+1
, (1.2c)

∂qn

∂t
=

qn

unvn
− q2

n

unvnun+1
− pnqn−1

un−1vn−1
, (1.2d)

where un = u(n, t), vn = v(n, t), pn = p(n, t), qn = q(n, t), un−1 = u(n − 1, t), un+1 =
u(n+1, t) and show that both of them are Hamiltonian ones and admit Lax representation
with (2×2) Lax matrices and possess infinitely many generalized (nonpoint) symmetries,
conserved quantities and recursion operator. Hence (1.1) and (1.2) are completely integrable
in the sense of Lax and Liouville.

Different research groups have been engaged in this direction and reported a limited
number of integrable coupled equations with both polynomial and rational terms with
(1+1) dimensions [26, 30, 31]. It is appropriate to mention that (1.1) and (1.2) reduce into
the following integrable 2-coupled nonlinear PD∆E [26]

∂un

∂t
=

1
vn

− un

un+1vn
, (1.3a)

∂vn

∂t
=

vn

unvn−1
− 1

un
(1.3b)

when pn = un in (1.1) and pn = 0 and qn = un in (1.2). We would like to mention that
Blaszak and Marciniak [6] have reported three and four component nonlinear integrable
PD∆Es. Furthermore the authors of reference [33, 34] have shown that the Blaszak and
Marciniak system arises from the Lax representation with (3×3) and (4×4) Lax matrices.
Also (1.1) and (1.2) cannot be deduced from the Blaszak and Marciniak systems [6] and
hence to the best of our knowledge (1.1) and (1.2) are new multicomponent integrable
equations.

The plan of the paper is as follows: In Sec. 2, we show that (1.1) and (1.2) admit
Lax representation indicating that they are integrable in the sense of Lax. In Sec. 3, we
establish that both (1.1) and (1.2) are Hamiltonian ones. In Sec. 4, we show explicitly
that both 3-coupled and 4-coupled nonlinear PD∆Es possess an infinitely many generalized
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(nonpoint) symmetries and conserved quantities and hence they are integrable in the sense
of Liouville. In Sec. 5, we derive the recursion operator for coupled system (1.1) and (1.2)
separately. In Sec. 6, we give summary of our results.

2. Lax Representation of Differential-Difference Equations

A nonlinear (autonomous) PD∆E with two independent variables (one continuous + one
discrete) is an equation of the form

∂un

∂t
= F(. . . ,un−1,un,un+1, . . .), (2.1)

where un and F are vector valued functions. Consider a linear system

Φn+1(t, λ) = Ln(t, λ)Φn(t, λ),
d

dt
Φn(t, λ) = Mn(t, λ)Φn(t, λ), (2.2)

where Ln(t, λ) and Mn(t, λ) are nonsingular square matrices. When the Lax matrices
Ln(= Ln(t, λ)) and Mn(= Mn(t, λ)) are (2×2) square matrices then (2.2) reads[

φ1n+1(t, λ)

φ2n+1(t, λ)

]
=

[
L11n(t, λ) L12n(t, λ)

L21n(t, λ) L22n(t, λ)

] [
φ1n(t, λ)

φ2n(t, λ)

]
, (2.3a)




d

dt
φ1n(t, λ)

d

dt
φ2n(t, λ)


 =

[
An(t, λ) Bn(t, λ)

Cn(t, λ) Dn(t, λ)

][
φ1n(t, λ)

φ2n(t, λ)

]
, (2.3b)

where λ is the spectral parameter and Lijn(t, λ), An(t, λ), Bn(t, λ), Cn(t, λ) and Dn(t, λ) are
functions of un and their shifts. The compatibility of the linear system, (2.2) gives

d

dt
Ln + LnMn − Mn+1Ln = 0 (2.4)

and the compatibility of (2.3) yields

d

dt
L11n + L11nAn + L12nCn − An+1L11n − Bn+1L21n = 0, (2.5a)

d

dt
L12n + L11nBn + L12nDn − An+1L12n − Bn+1L22n = 0, (2.5b)

d

dt
L21n + L21nAn + L22nCn − Cn+1L11n − Dn+1L21n = 0, (2.5c)

d

dt
L22n + L21nBn + L22nDn − Cn+1L12n − Dn+1L22n = 0. (2.5d)

The explicit form of the Lax matrices Ln and Mn can be derived by extending a well
known procedure devised by Ablowitz, Kaup, Newell and Segur (AKNS) for nonlinear
partial differential equations[2]. More precisely for a given suitable matrix Ln the entries
of the matrix Mn can be derived by expanding its entries as a polynomial in the spectral
parameter λ satisfying the Lax Eq. (2.4).
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2.1. Lax representation of (1.1) and (1.2)

To start with, we consider the discrete spectral problem (2.2) for (1.1) with Ln and Mn as

Ln =

[
0 λ pn

−λvn 1 + λ2un vn

]
, Mn =


An Bn

Cn Dn


. (2.6)

Then the compatibility condition (2.4) gives the following

Cnpn + Bn+1vn = 0,

unt = unAn − λun
2Cn − unDn +

Bn

λ
− Cnun

λ vn
+

Cn+1pn

λ vn
+

Dn+1

λ2vn
− Dn

λ2vn
,

vnt = Dn+1vn − vnAn +
Cn

λ
+ λCnunvn,

pnt = An+1pn − pnDn +
Bn+1

λ
+ λBn+1unvn.

(2.7)

In order to find the entries of the associated matrix Mn we expand each of them as a
quadratic polynomial in the spectral parameter λ, that is

An =
2∑

l=0

a(l)
n λl, Bn =

2∑
l=0

b(l)
n λl, Cn =

2∑
l=0

c(l)
n λl, Dn =

2∑
l=0

d(l)
n λl,

where a
(l)
n , b

(l)
n , c

(l)
n and d

(l)
n are unknown functions to be determined. Substituting the above

expansions into (2.7) and then equating the like powers of λ to zero we obtain a system of
equations along with evolution equations and solving them consistently yields the explicit
form of An, Bn, Cn and Dn. As a result the matrix Mn for (1.1) reads

Mn =



− λ2

2
− pn−1

unun−1vn−1

λ pn−1

un−1vn−1

− λ

un

λ2

2


. (2.8)

Proceeding in a similar manner we find that (1.2) arises from the compatibility condition
(2.4) with Lax matrices Ln and Mn as

Ln =

[
pn λ qn

−λvn 1 + λ2un vn

]
, Mn =



−λ2

2
− qn−1

unun−1vn−1

qn−1

un−1vn−1
λ

− 1
un

λ
λ2

2




satisfying (2.4). Thus 3- and 4-coupled systems given in (1.1) and (1.2) are integrable in
the sense of Lax.

3. Hamiltonian Structure of (1.1) and (1.2)

Let us recall some of the basics related with Hamiltonian system governed by nonlinear
partial differential and differential-difference equations [20]. Let H : Lq → Lq be a linear
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operator and VH be a formal evolutionary vector field with characteristic is the q-tuple,

(Hθ)α =
q∑

β=1

Hαβθβ (3.1)

of vertical uni-vector. Then the prolongation of the vector field is given by

PrVHθ =
∑
α,J

EJ


∑

β

Hαβθβ


 ∂

∂EJuα
n

, (3.2)

where E is a shift operator defined by Ef(n) = f(n + 1).

Definition 3.1. A linear operator H is said to be a Hamiltonian operator of (2.1) if it is
skew symmetric and satisfies Jacobi’s identity [21].

Definition 3.2. A system of coupled nonlinear PD∆Es is said to be a Hamiltonian system
if it can be written as

∂un

∂t
= H

(
δH
δ un

)
, (3.3)

where H is a Hamiltonian operator and H is the appropriate Hamiltonian functional.

In order to prove that the skew symmetric operator H be Hamiltonian it remains to
prove that it satisfies the Jacobi’s identity. For clarity, we mention the following theorem
for a system of nonlinear partial differential equations ∂u

∂t = K(u) due to Olver[21].

Theorem. Let D be a skew-adjoint q×q matrix differential operator of the system of partial
differential equations, ∂u

∂t = K(u) and Θ = 1
2

∫ {Θ ∧ DΘ}dx, the corresponding functional
bi-vector. Then D is Hamiltonian if and only if

PrVDθ(Θ) = 0. (3.4)

Here θ = θ(x, t,u).
Recent investigations by Sanders and Wang[24] suggest that the above result holds for

nonlinear PD∆Es as well. For nonlinear PD∆Es, the prolongation of the vector field takes
the form given in (3.2).

We now establish the Hamiltonian structure of (1.1) and (1.2) through the definitions
and theorems stated above. The 3-coupled system (1.1) can be written as




unt

vnt

pnt


 = H




δH
δun

δH
δvn

δH
δpn




=




0 −un vn 0

un vn 0 vn pn

0 −vn pn 0







pn

u2
nvnvn+1

+
pn−1

u2
nun−1vn−1

− 1
u2

nvn

pn

unv2
nun+1

− 1
unv2

n

− 1
unvnun+1




.

(3.5)
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Similarly 4-coupled system (1.2) can be written as




unt

vnt

pnt

qnt


 = J




δH
δun

δH
δvn

δH
δpn

δH
δqn




=




0 −un vn −un pn u2
n pn

un vn 0 vn pn −un vn pn + vn qn

un pn −vn pn 0 pn qn

−u2
n pn un vn pn − vn qn −pn qn 0




×




qn

u2
nvnvn+1

+
qn−1

u2
nun−1vn−1

− 1
u2

nvn

qn

unv2
nun+1

− 1
unv2

n

0

− 1
unvnun+1




. (3.6)

Theorem 3.1. The operator H given in (3.5) is a Hamiltonian operator for the 3-coupled
system (1.1).

Proof. Let θ = (θ1, θ2, θ3)T . Then

Hθ = H




θ1

θ2

θ3


 =




−un vnθ2

un vnθ1 + vn pnθ3

−vn pnθ2


 =




Φ1

Φ2

Φ3


. (3.7)

Next, define a bi-vector Θ of H by

ΘH =
1
2

∑
[θ1 ∧ Φ1 + θ2 ∧ Φ2 + θ3 ∧ Φ3],

=
1
2

∑
[−unvnθ1 ∧ θ2 + unvnθ2 ∧ θ1 + vnpnθ2 ∧ θ3 − vnpnθ3 ∧ θ2].

Using the property of wedge product θ1 ∧ θ1 = 0, θ2 ∧ θ2 = 0, θ3 ∧ θ3 = 0, θ2 ∧ θ1 =
−θ1 ∧ θ2, θ3 ∧ θ1 = −θ1 ∧ θ3, θ3 ∧ θ2 = −θ2 ∧ θ3, we have,

ΘH =
∑

[−unvnθ1 ∧ θ2 + vnpnθ2 ∧ θ3] (3.8)

and further calculation shows that

PrVHθ(ΘH) = 0 (3.9)

and hence the skew symmetric operator H is Hamiltonian of (1.1).

Theorem 3.2. The operator J given in (3.6) is a Hamiltonian operator for the 4-coupled
system (1.2).
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Proof. The proof is similar to that of Theorem 3.1 and hence omitted.

Thus the 3-coupled system (1.1) and 4-coupled system (1.2) are Hamiltonian systems.

4. Generalized Symmetries and Conserved Densities

4.1. Generalized symmetries: 3-coupled system (1.1)

In this subsection, we present the computational details of the derivation of generalized
symmetries for the 3-coupled system (1.1). Obviously (1.1) is invariant under the scaling
(dilation) symmetry

(t, un, vn, pn) → (s−2t, s−1un, s−1vn, s−1pn), (4.1)

where s is an arbitrary parameter. Let us assume that (1.1) is invariant under a continuous
non-point transformations

n∗ = n, t∗ = t, u∗
n = un + εG

(1)
i (n) + O(ε2), v∗n = vn + εG

(2)
i (n) + O(ε2),

p∗n = pn + εG
(3)
i (n) + O(ε2), i = 1, 2, . . . ,

(4.2)

where

G
(1)
i (n) = G

(1)
i (. . . , pn−1, vn−1, un−1, un, vn, pn, un+1, vn+1, pn+1, . . .),

G
(2)
i (n) = G

(2)
i (. . . , pn−1, vn−1, un−1, un, vn, pn, un+1, vn+1, pn+1, . . .),

G
(3)
i (n) = G

(3)
i (. . . , pn−1, vn−1, un−1, un, vn, pn, un+1, vn+1, pn+1, . . .),

provided un, vn and pn satisfy (1.1). For clarity, we denote Gi(n) = (G(1)
i (n), G(2)

i (n),
G

(3)
i (n))T and the subscript i represents the ith order generalized symmetry. Consequently,

we obtain the following invariant equations

∂G
(1)
i (n)
∂t

=
vnpnG

(1)
i (n + 1) + un+1pnG

(2)
i (n) − un+1vnG

(3)
i (n)

u2
n+1v

2
n

− G
(2)
i (n)
v2
n

, (4.3a)

∂G
(2)
i (n)
∂t

=
G

(1)
i (n)
u2

n

+
G

(2)
i (n)pn−1 + G

(3)
i (n − 1)vn

unun−1vn−1

−vnpn−1(un−1vn−1G
(1)
i (n) + unvn−1G

(1)
i (n − 1) + unun−1G

(2)
i (n − 1))

u2
nu2

n−1v
2
n−1

,

(4.3b)

∂G
(3)
i (n)
∂t

=
unvnG

(3)
i (n) − unpnG

(2)
i (n) − vnpnG

(1)
i (n)

u2
nv2

n

− 2pnG
(3)
i (n)

unun+1vn

+
vnp2

nun+1G
(1)
i (n) + unvnp2

nG
(1)
i (n + 1) + unp2

nun+1G
(2)
i (n)

u2
nv2

nu2
n+1

. (4.3c)

The invariant equations (4.3) can be solved for the generalized symmetry Gi(n) =
(G(1)

i (n), G(2)
i (n), G(3)

i (n))T in more than one ways[7, 15, 18, 21, 25]. We show below how
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to derive the generalized symmetries of (1.1) through the algorithmic procedure developed
by Hereman and his co-workers[15]. Basically, Hereman’s algorithmic procedure is based on
the concept of weights and ranks. To start with, we briefly explain the concept of weights
and ranks. The weight, w, of a variable is defined as the exponent in the scaling parameter
s which multiplies the variable. Similarly the rank of a monomial is defined as the total
weight of the monomial. An expression is uniform in rank if all its terms have the same
rank.

We set w( d
dt) = 2. From (1.1) we see

w

(
d

dt

)
+ w(un) = −w(vn) = w(pn) − w(un+1) − w(vn),

w

(
d

dt

)
+ w(vn) = w(vn) + w(pn−1) − w(un) − w(un−1) − w(vn−1) = −w(un),

w

(
d

dt

)
+ w(pn) = w(pn) − w(un) − w(vn) = 2w(pn) − w(un) − w(un+1) − w(vn)

and so

w(un) = −1, w(vn) = −1, w(pn) = −1,

and hence (1.1a)–(1.1c) are of rank 1, 1 and 1, respectively. We wish to mention that
Hereman and his collaborators[12, 13, 15] have developed a Mathematical software pack-
age (known as INVARIANTSSYMMETRIES.M) in Mathematica for finding higher-order
symmetries and conservation laws for nonlinear PDEs and nonlinear PD∆Es with two
independent variables provided the weight of the dependent variable is positive. Since the
weights of the dependent variables associated with (1.1) are negative, the software package
is not applicable. However we demonstrate that one can derive higher-order generalized
symmetries for (1.1) and (1.2) by exploiting their ideas. In this article, we have computed
the generalized symmetries and conserved densities manually. Hereafter, we use the more
compact notation

un = u, vn = v, pn = p, un−1 = u, vn−1 = v, pn−1 = p,

un−2 = u, vn−2 = v, pn−2 = p, un+1 = u, vn+1 = v,

pn+1 = p, un+2 = u, vn+2 = v, pn+2 = p, etc.

Note that the trivial generalized symmetry is of rank (1, 1, 1), then the next nontriv-
ial generalized symmetry G2(n) = (G(1)

2 (n), G(2)
2 (n), G(3)

2 (n))T must have rank (3, 3, 3).
With this in mind, we first form monomial in u, v and p of rank (3, 3, 3) that leads to
a set L = {u, v, p, 1

u , 1
v , 1

p , 1
u2 , 1

v2 , 1
p2 , 1

u v , 1
u p , 1

v p , 1
u3 , 1

v3 , 1
p3 , 1

u v2 , 1
u p2 , 1

u2 v
, 1

u2 p
, 1

v p2 , 1
v2 p

, 1
u v p}.

Then the necessary partial derivatives with respect to t in each monomial of L along
with (1.1) and leads to an another set M involving u, v, p and its backward and for-
ward shifts. Note that each monomial in M is of rank 3. The linear combination of
the monomials in M gives the most general form of the nontrivial generalized symme-
try G2(n) = (G(1)

2 (n), G(2)
2 (n), G(3)

2 (n))T. Substituting the above linear combination in the
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invariant equations along with (1.1), leads to a system of linear equations and solving them
consistently gives the first nontrivial generalized symmetry with rank (3,3,3) as

G
(1)
2 (n) =

p

v u 2v
− 1

u v 2
+

p

u v u v
− p p

u v u u v
− p p

v u 2v u
− p 2

u v 2u 2 +
2p

u v 2u
, (4.4a)

G
(2)
2 (n) =

1
u 2v

− 2p
u 2u v

+
p p

u2 u v u
− v p

uu 2v 2
+

v p 2

u2 u 2v 2
+

v p p

uu 2v u v
− p

u 2v u
, (4.4b)

G
(3)
2 (n) =

p 2

u v u 2v
− p 2p

u v u 2v u
+

2p 2

u 2v 2u
− p 3

u 2v 2u 2 − p 2 p

u 2 v u v u
+

p p

u 2v u v
− p

u 2v 2
.

(4.4c)

Proceeding as above, we obtain the next generalized symmetry G3(n) =
(G(1)

3 (n), G(2)
3 (n), G(3)

3 (n))T with rank (5, 5, 5), where

G
(1)
3 (n) =

1
u 2v 3

+
p 2

u 2 v u 2v 2
− p 3

u 2v 3u 3 +
p p

u v u 2 v u v
−

p p p

u v uu 2v u v
− p

u v u 2v 2

− p

v u 3v 2 − p p p

v u 2v u
2
v u

+
p p

u v u 2v 2 u
− p p 2

v u 3v 2u
2 − p p p

u v u v u 2 v u

+
p p

u v u 2v u v
+

p p

v u 2v u
2
v

− p p 2

u 2 v u 2v 2u
+

2 p p

u v 2u 2v u
+

2 p p

v u 3v 2u

− 2 p 2p

u v 2u 3v u
− 2 p

u v 2u 2v
− 2 p 2 p

u 2v 2u 2u v
+

2 p 2

u v 2u 3v
− 2 p

u 2v 2u v
+

3 p 2

u 2v 3u 2

− 3 p

u 2v 3u
+

4 p p

u 2v 2uu v
, (4.5a)

G
(2)
3 (n) =

p

u2v u 2v
− 1

u 3v 2
+

p 2 p

u 3 v u v u 2
+

v p 3

u 3u 3v 3
− p p

u 2u v u 2v
+

v p

uu 3v 3

+
v p p p

uu 2 v u 2 v u v
− p 2

u 3v 2u 2
+

p p p

u 2u 2 v u v u
− p p

u 2u 2v 2u
+

v p p2

uu 3v u 2v 2

−
v p p

uu 2 v u2v 2
+

p p p

u 2u v u 2v u
− p p

u 2v u 2v u
+

2 p

u 2 u 2v 2
+

2 p

u 3v 2u

+
2 v p 2 p

u 2 u 3 v 2 u v
−

2 v p p

uu 3 v 2 u v
+

2 p p 2

u 3u 2v 2u
−

2 p p

u 2u2v u v
− 2 v p2

u 2u 3v 3

+
3 p

u 3v u v
− 3 p2

u 3u 2v 2
− 4 p p

u 3v uu v
, (4.5b)

G
(3)
3 (n) =

p

u 3v 3
+

p 2 p

u 2 v u 2v 2 u
+

p 2 p

u 2 v u v u 2v
+

p 2p

u v u 2v u 2v
− p 4

u 3v 3 u 3
− p p

u 2v u 2v 2

+
p p 2

u 3v u 2v 2
+

p p p

u 2v u 2v u v
− p 2 p 2

u 3 v u 2v 2u
− p 2 p p

u 2 v u v u 2v u
−

p 2 p p

u 2v uu 2 v u v
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− p 2p 2

u v u 3v 2u 2
− p 2

u v u 3v 2
− p 2p p

u v u 2v u 2v u
+

2 p 3

u 2v 2u 3 v
+

2 p 2p

u v u 3v 2u

+
2 p 2p

u 2v 2 u 2 v u
− 2 p 3p

u 2v 2u 3 v u
− 2 p 3 p

u 3 v 2 u v u 2
− 2 p p

u 3v 2u v
− 2 p 2

u 2v 2 u 2v

+
3 p 3

u 3v 3 u 2
− 3 p 2

u 3v 3 u
+

4 p 2 p

u 3 v 2 u v u
. (4.5c)

In a similar manner, we have checked that 3-coupled system (1.1) admits a sequence of
higher-order generalized symmetries Gi(n) with ranks (2i − 1, 2i − 1, 2i − 1), i = 4, 5, . . .
which involve a huge number of terms and hence we refrain from presenting it here. We have
checked that the obtained generalized symmetries are commutable, that is, the generalized
symmetries satisfies the following relations

[Gl(n),Gk(n)] = Gk(n)′[Gl(n)] − Gl(n)′[Gk(n)] = 0, l, k = 1, 2, . . . ,

where Gk(n)′[Gl(n)] = ∂
∂εGk(un + εGl(n))

∣∣
ε=0

is the Frechet derivative of Gk(n) along the
direction of Gl(n).

4.2. Generalized symmetries: 4-coupled system (1.2)

Proceeding as above, we have checked that 4-coupled system (1.2) admits a sequence of
generalized symmetries Gi(n) with rank (2i − 1, 2i − 1, 2i, 2i − 1), i = 1, 2, . . . . The first
two members of the sequence of generalized symmetries are as follows:

G1(n) =




G
(1)
1 (n)

G
(2)
1 (n)

G
(3)
1 (n)

G
(4)
1 (n)


 =




1
v
− q

u v
− u p

u v

v q

u u v
− 1

u
+

p

u
p q

uu v
− p q

u v u

q

u v
− q2

u v u
− p q

u v




, G2(n) =




G
(1)
2 (n)

G
(2)
2 (n)

G
(3)
2 (n)

G
(4)
2 (n)


, (4.6)

where

G
(1)
2 (n) =

p

v 2u
− 1

u v 2
+

2 q

u v 2u
− q 2

u v 2u 2
− q q

u v u v u
− p q

v u v u
+

q

v u 2v
− q p

v u v u

− q q

v u 2v u
+

q

u v u v
+

u p

v u 2v
− u p q

v u 2v u
− u p p

v u v u
− p q

v 2u 2
,

G
(2)
2 (n) =

1
u 2v

− q

u 2v u
− p

u v u
− 2 q

u 2u v
+

q q

u 2u v u
+

v q 2

u 2u 2v 2
+

p q

u u v u

− v q

u u 2v 2
− p

u 2v
+

p q

u 2v u
+

p p

u v u
+

p q

u v u 2
+

v q q

u u 2v u v
+

v p q

u u v u v
,
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G
(3)
2 (n) = p

[
q

u v u 2v
− q p

u v u v u
− q q

u v u 2v u
− q 2

u 2v 2 u 2
+

q

u 2v 2 u
− q

u 2v u v

+
q 2

u 2u 2v 2
− q

u u 2v 2
+

q q

u u2 v u v
+

p q

u u v u v

]
,

G
(4)
2 (n) =

q q

u 2v u v
− q

u 2v 2
+

2 q 2

u 2v 2 u
+

p q

u v u v
+

q 2

u v u2 v
− p q 2

uu 2v 2
− q 3

u 2v 2 u2

−
p p q

u v u v
+

p q

u 2v 2
− q 2 p

u v u v u
− q 2q

u v u2 v u
− p q q

u v uu v
− q 2 q

u 2v uu v
−

p q q

u 2v u v
.

Here again we have checked that the obtained generalized symmetries {Gi(n)} are
commutable.

4.3. Conserved densities and fluxes: 3-coupled system (1.1)

A scalar function ρn(un) is a conserved density of (2.1) if there exists a scalar function
Jn(un) called the flux, such that

∂ρn

∂t
+ ∆Jn = 0 (4.7)

is satisfied on the solutions of (2.1). Here ∆Jn = (E − I)Jn = Jn+1 − Jn.

To derive a conserved density with different ranks, we use the algorithmic procedure of
Hereman and his co-workers [12, 13]. For rank 2 as usual we form monomials of u, v and p

which give a list L1 = {u, v, p, 1
u , 1

v , 1
p , 1

u2 , 1
v2 , 1

p2 , 1
u v , 1

u p , 1
v p}. Introducing then the necessary

t derivatives in each monomial of L1 leads to an another set M1 involving u, v, p and its
backward and forward shifts. Note that each monomial in M1 is of rank 2. The linear
combination of the monomials in M1 gives the most general form of the conserved density
ρ

(1)
n of rank 2. Substituting the above linear combination in the (4.7) along with (1.1), leads

to a system of linear equations and solving them consistently gives the conserved density
ρ

(1)
n with rank 2 as

ρ(1)
n =

1
u v

− p

uu v
(4.8)

and the associated fluxes J
(1)
n is

J (1)
n =

p p

uu2 v u v
+

p

uu2 v2
. (4.9)

Proceeding as above, we obtain the next conserved densities ρ
(2)
n with rank 4

ρ(2)
n =

1
2u2 v2

+
p2

2u2 u2 v2
+

p p

u2 v u v u
− p

u2 v2 u
− p

u2 v u v
(4.10)
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and the associated fluxes J
(2)
n are

J (2)
n =

p2

u2 u3 v3
+

p p

u2 v u2 v2 u
+

p p

u2 v u2 v u v
− p

u2 v u2 v2
−

p2 p

u2 u3 v2 u v
−

p p p

u2 v u2 v u v u
.

(4.11)

In a similar manner we have checked that the 3-coupled system (1.1) admits a sequence
of conserved densities ρ

(i)
n with rank 2i, i = 3, 4, 5, . . . along with the flux J

(i)
n of rank

2(i + 1), i = 3, 4, 5, . . . , respectively, which involves lengthy expressions and so the details
are omitted here.

4.4. Conserved densities and fluxes: 4-coupled system (1.2)

Proceeding as above, we have checked that 4-coupled system (1.2) admits a sequence of
conserved densities ρ

(i)
n with rank 2i, i = 1, 2, . . . and fluxes J

(i)
n with rank 2(i + 1), i =

1, 2, . . . . The first two members of the sequence of conserved quantities are as follows:

ρ(1)
n =

1
u v

− q

u u v
,

J (1)
n =

q q

u u2 v u v
+

p q

u u v u v
+

q

u u2 v2

and

ρ(2)
n =

1
2u2 v2

+
q2

2u2 u2 v2
+

q q

u2 v u v u
+

p q

u v u v u
− q

u2 v2 u
− q

u2 v u v
,

J (2)
n =

q2

u2 u3 v3
+

q q

u2 v u2 v2 u
+

q q

u2 v u2 v u v
+

p q

u v u2 v2 v
+

p q

u2 v u v u v
− q

u2 v u2 v2

−
q2 q

u2 u3 v2 u v
−

q q q

u2 v u2 v u v u
−

p p q

u v u v u v u
−

p q q

u2 u2 v2 u v
−

p q q

u v u2 v u v u

−
p q q

u2 v u v u v u
.

5. Recursion Operator: PD∆Es

An operator valued function R is said to be a recursion operator of Eq. (2.1) if it connects
symmetries into symmetries, that is,

Gk+1(n) = RGk(n) ∀ k, (5.1)

where Gk(n) and Gk+1(n) are consecutive generalized symmetries. Note that there exist
different methods to construct recursion operator R for PD∆E [15, 20, 24, 25]. We show
below how to derive R through the algorithmic procedure developed by Hereman and his
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collaborators. For 3-component systems, (5.1) becomes


G
(1)
k+1(n)

G
(2)
k+1(n)

G
(3)
k+1(n)


 = R




G
(1)
k (n)

G
(2)
k (n)

G
(3)
k (n)


 =



R11 R12 R13

R21 R22 R23

R31 R32 R33







G
(1)
k (n)

G
(2)
k (n)

G
(3)
k (n)


, (5.2)

where Gk(n) = (G(1)
k (n), G(2)

k (n), G(3)
k (n))T and Gk+1(n) = (G(1)

k+1(n), G(2)
k+1(n), G(3)

k+1(n))T

are the generalized symmetries. The entries Rij of R involve dependent variables along with
their shifts and its inverse, difference operators and inverse difference operators, that is,[15]

Rij = Uij(un)O(�−1, E−1, I, E)Vij(un),

where un = (un, vn, pn), Uij and Vij are functions of the potentials un, vn, pn and their
shifts, E−1f(n) = f(n − 1), If(n) = f(n), Ef(n) = f(n + 1) and � is difference operator
defined by

�f(n) = (E − I)f(n) = f(n + 1) − f(n)

and �−1 is inverse difference operator defined as

�−1f(n) =
1
2

[ −1∑
k=−∞

[f(n + 1 + 2k) − f(n + 2k)] −
∞∑

k=1

[f(n − 1 + 2k) − f(n − 2 + 2k)]

]
.

5.1. Recursion operator: 3-coupled system (1.1)

The construction of the recursion operator R for the 3-coupled system (1.1) is as follows:
For k = 2, (5.2) becomes 


G

(1)
3 (n)

G
(2)
3 (n)

G
(3)
3 (n)


 =




R11 R12 R13

R21 R22 R23

R31 R32 R33






G

(1)
2 (n)

G
(2)
2 (n)

G
(3)
2 (n)


, (5.3)

where (G(1)
2 (n), G(2)

2 (n), G(3)
2 (n))T and (G(1)

3 (n), G(2)
3 (n), G(3)

3 (n))T are consecutive general-
ized symmetries of rank (3, 3, 3) and (5, 5, 5) given in (4.4) and (4.5), respectively. From
(5.3) it is clear that the entries R11, R12, R13, R21, R22, R23, R31, R32 andR33 of the matrix
operator R must be of rank 2 which can be determined from the following relations,

rank G
(1)
3 (n) = rankR11 + rankG

(1)
2 (n) = rankR12 + rankG

(2)
2 (n)

= rankR13 + rankG
(3)
2 (n),

rank G
(2)
3 (n) = rankR21 + rankG

(1)
2 (n) = rankR22 + rankG

(2)
2 (n)

= rankR23 + rankG
(3)
2 (n),

rank G
(3)
3 (n) = rankR31 + rankG

(1)
2 (n) = rankR32 + rankG

(2)
2 (n)

= rankR33 + rankG
(3)
2 (n).

(5.4)
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With this goal, we expand Rij, i, j = 1, 2, 3 as the functions of dependent variable along
with their shifts, difference operator and inverse difference operator, with rank 2, that is,

Rij = Uij(un)O(�−1, E−1, I, E) Vij(un) (5.5)

with the following relations

rankRij = rankUij(un) + rankVij(un). (5.6)

After a tedious calculation, we find that (5.3) along with (5.4) satisfies for the following
forms of Rij , i, j = 1, 2, 3 reads as

R11 =
(

p

uvu
+

p

uu v
− 2

u v

)
I +

p

u2v
E +

(
p

uv
− 1

v

)
�−1 1

u

+ u�−1

(
p

u2vu
+

p

u2 u v
− 1

u2 v

)
, (5.7a)

R12 =
(

p

uv2
− 1

v2

)
I +

(
p

uv
− 1

v

)
�−1 1

v
+ u�−1

(
p

uv2u
− 1

u v2

)
, (5.7b)

R13 = −u�−1 1
uvu

, (5.7c)

R21 =
(

1
u2

− vp

u2u v

)
I +

vp

uu2 v
E−1 +

(
1
u
− vp

uu v

)
�−1 1

u

− v�−1

(
p

u2vu
+

p

u2u v
− 1

u2v

)
, (5.7d)

R22 =
vp

uu v2
E−1 +

(
1
u
− vp

uu v

)
�−1 1

v
+ v�−1

(
1

uv2
− p

uv2u

)
, (5.7e)

R23 = − v

uu v
+ v�−1 1

uvu
, (5.7f)

R31 =
(

p2

u2vu
− pp

u2u v
− p

u2v

)
I +

p2

uvu2 E +
(

p2

uvu
− p

uv

)
�−1 1

u

+ p�−1

(
p

u2vu
+

p

u2uv
− 1

u2v

)
, (5.7g)

R32 =
(

p2

uv2u
− p

uv2

)
I +

(
p2

uvu
− p

uv

)
�−1 1

v
+ p�−1

(
p

uv2u
− 1

uv2

)
, (5.7h)

R33 = − 1
uv

I − p�−1 1
uvu

. (5.7i)

Proceeding as above, we have checked that (5.2) holds for k = 3, 4, . . . with the recursion
operator given above. Thus we conclude that R with the entries Rij, i, j = 1, 2, 3 given in
(5.7) is a recursion operator for 3-coupled system (1.1).
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5.2. Recursion operator: 4-coupled system (1.2)

For 4-component systems, (5.1) becomes




G
(1)
k+1(n)

G
(2)
k+1(n)

G
(3)
k+1(n)

G
(4)
k+1(n)


 = R




G
(1)
k (n)

G
(2)
k (n)

G
(3)
k (n)

G
(4)
k (n)


 =




R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44







G
(1)
k (n)

G
(2)
k (n)

G
(3)
k (n)

G
(4)
k (n)


, (5.8)

where Gk(n) = (G(1)
k (n), G(2)

k (n), G(3)
k (n), G(4)

k (n))T and Gk+1(n) = (G(1)
k+1(n), G(2)

k+1(n),

G
(3)
k+1(n), G(4)

k+1(n))T are the generalized symmetries. For k = 2, (5.8) becomes




G
(1)
3 (n)

G
(2)
3 (n)

G
(3)
3 (n)

G
(4)
3 (n)


 =




R11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44







G
(1)
2 (n)

G
(2)
2 (n)

G
(3)
2 (n)

G
(4)
2 (n)


. (5.9)

Note that the rank of generalized symmetries (G(1)
2 (n), G(2)

2 (n), G(3)
2 (n), G(4)

2 (n))T is
(3,3,4,3) while the rank of (G(1)

3 (n), G(2)
3 (n), G(3)

3 (n), G(4)
3 (n))T is (5,5,6,5). Thus it is clear

that, for uniformity in rank the entries Rij, i, j = 1, 2, 3, 4 must be of rank 2. Proceeding
as above, after a tedious calculation, we find that (5.9) satisfies for the following forms
of Rij ,

R11 =
(

q

uvu
+

q

u u v
− 2

u v
+

p

uv

)
I +

( up

u2v
+

q

u2v

)
E +

(
q

uv
+

up

uv
− 1

v

)
�−1 1

u

+ u�−1

(
q

u2vu
+

q

u2 u v
− 1

u2 v

)
, (5.10a)

R12 =
(

q

uv2
+

up

uv2
− 1

v2

)
I +

(
q

uv
+

up

uv
− 1

v

)
�−1 1

v
+ u�−1

(
q

uv2u
− 1

u v2

)
, (5.10b)

R13 = 0, (5.10c)

R14 = −u�−1 1
uvu

, (5.10d)

R21 =
(

1
u2

− vq

u2u v
− p

uu

)
I +

vq

uu2 v
E−1 − p

u2 E +
(

1
u
− vq

uu v
− p

u

)
�−1 1

u

− v�−1

(
q

u2vu
+

q

u2u v
− 1

u2v

)
, (5.10e)

R22 = − p

uv
I +

vq

uu v2
E−1 +

(
1
u
− vq

uu v
− p

u

)
�−1 1

v
+ v�−1

(
1

uv2
− q

uv2u

)
, (5.10f)

R23 = 0, (5.10g)
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R24 = − v

uu v
+ v�−1 1

uvu
, (5.10h)

R31 =
pq

u2vu
I +

pq

uvu2 E +
pq

uu2 v
E−1 +

(
pq

uvu
− pq

uu v

)
�−1 1

u
, (5.10i)

R32 =
pq

uv2u
I +

pq

uu v2
E−1 +

(
pq

uvu
− pq

uu v

)
�−1 1

v
, (5.10j)

R33 = − 1
uv

I, (5.10k)

R34 = − p

uu v
E−1, (5.10l)

R41 =
(

q2

u2vu
− qq

u2u v
− q

u2v

)
I − pq

u2 v
E−1 +

q2

uvu2 E

+
(

q2

uvu
+

pq

u v
− q

uv

)
�−1 1

u
+ q�−1

(
q

u2vu
+

q

u2uv
− 1

u2v

)
, (5.10m)

R42 =
(

q2

uv2u
− q

uv2

)
I − pq

u v2
E−1 +

(
q2

uvu
+

pq

u v
− q

uv

)
�−1 1

v

+ q�−1

(
q

uv2u
− 1

uv2

)
, (5.10n)

R43 = 0, (5.10o)

R44 = − 1
uv

I +
p

u v
− q�−1 1

uvu
. (5.10p)

Also we have checked that (5.8) holds for k = 3, 4, . . . with the recursion operator given
above. Thus we conclude that R with the entries Rij , i, j = 1, 2, 3 given in (5.10) is a
recursion operator for 4-coupled system (1.2).

6. Summary

In this article, we report a new multicomponent nonlinear PD∆Es which are Hamiltonian
ones admitting Lax representation, possessing infinitely many generalized symmetries, con-
served quantities and recursion operator. Hence both of them are integrable in the sense
of Lax and Liouville. One of the characteristics of integrable nonlinear PD∆Es with two
independent variables is the existence of recursion operator which connects the consecutive
members of the sequence of generalized symmetries [10].
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