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We report a new three and four coupled nonlinear partial differential-difference equations each
admits Lax representation, possess infinitely many generalized (nonpoint) symmetries, conserved
quantities and a recursion operator. Hence they are completely integrable both in the sense of Lax
and Liouville.
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1. Introduction

In recent years, searching for new integrable discrete systems governed by nonlinear partial
differential-difference equations (PDAEs) is an important and interesting task in nonlin-
ear systems([3, 4, 14, 16, 19, 22, 23, 28, 30, 31]. A variety of analytical techniques have
been devised toward this goal both for nonlinear partial differential equations (PDEs) and
PDAESs [1, 8, 15, 18, 20, 25, 27, 29]. As a result, considerable number of completely inte-
grable nonlinear scalar PDAEs with polynomial forms with (1+1) dimensions have been
identified. More often these integrable equations exhibit rich mathematical structures such
as Lax representation|1, 5, 9, 16, 22, 23, 31|, an infinitely many generalized symmetries, con-
served densities [10-13, 15, 25] and master symmetries[8, 11, 20], etc.[7, 17, 21, 32] which
are common properties of completely integrable systems. However only a limited number
of integrable coupled nonlinear PDAEs with (141) dimensions exist in the literature. Also,
if one introduces more components to a known scalar nonlinear PDAESs possessing mathe-
matical structures related with integrability, the resulting equation may not preserve all the
characteristics of original equation and hence it is important to investigate further towards
their integrability. Thus it is interesting to identify integrable coupled nonlinear PDAEs.
With this aim, in this article we report a new integrable three and four coupled nonlinear
partial differential-difference equations (PDAES).
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More specifically we consider a 3- and 4-coupled PDAESs, respectively given by

ou 1
Hn_ P (1.1a)
ot Up  UptlUn
ov UpPrn— 1
S _ _Unbnl 2 (1.1b)
ot UnpUn—-1Un—1 Un,
o 2
ot UpUn  UpUplUnt]
and
0 1
Unp, _ - Adn - UnPn , (12&)
ot Un Un+1Un Un+1Un
0 _ 1
Pn_ Y1 - 4 P (1.2b)
ot UnpUn—-1Un—1 Un, Un4-1
0 _
OPn _ Pndn—1 . Pndn : (12C)
ot Up—1Un—1Un UnUnUn4-1
% _ w4y PnGn-i | (1.24)
ot UnUn, UpUnUn+1 Up—1Un—1

where u, = u(n,t),v, = v(n,t),p, = p(n,t),qn = q(n,t),up—1 = uln — 1,t),up41 =
u(n+1,t) and show that both of them are Hamiltonian ones and admit Lax representation
with (2x2) Lax matrices and possess infinitely many generalized (nonpoint) symmetries,
conserved quantities and recursion operator. Hence (1.1) and (1.2) are completely integrable
in the sense of Lax and Liouville.

Different research groups have been engaged in this direction and reported a limited
number of integrable coupled equations with both polynomial and rational terms with
(1+1) dimensions [26, 30, 31]. It is appropriate to mention that (1.1) and (1.2) reduce into
the following integrable 2-coupled nonlinear PDAE [26]

Oun _ 1 un (1.3a)
ot Un  Upy1Up '
vy, Un 1

— = - 1.3b
ot UpUp—1  Up ( )

when p, = u, in (1.1) and p, = 0 and ¢, = u, in (1.2). We would like to mention that
Blaszak and Marciniak [6] have reported three and four component nonlinear integrable
PDAEs. Furthermore the authors of reference [33, 34] have shown that the Blaszak and
Marciniak system arises from the Lax representation with (3x3) and (4x4) Lax matrices.
Also (1.1) and (1.2) cannot be deduced from the Blaszak and Marciniak systems [6] and
hence to the best of our knowledge (1.1) and (1.2) are new multicomponent integrable
equations.

The plan of the paper is as follows: In Sec. 2, we show that (1.1) and (1.2) admit
Lax representation indicating that they are integrable in the sense of Lax. In Sec. 3, we
establish that both (1.1) and (1.2) are Hamiltonian ones. In Sec. 4, we show explicitly
that both 3-coupled and 4-coupled nonlinear PDAEs possess an infinitely many generalized
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(nonpoint) symmetries and conserved quantities and hence they are integrable in the sense
of Liouville. In Sec. 5, we derive the recursion operator for coupled system (1.1) and (1.2)
separately. In Sec. 6, we give summary of our results.

2. Lax Representation of Differential-Difference Equations

A nonlinear (autonomous) PDAE with two independent variables (one continuous + one
discrete) is an equation of the form

ou,,

ot

where u,, and F are vector valued functions. Consider a linear system

=F(..,up_1,upy,up41,...), (2.1)

@n+1(t> )‘) = Ln(t> )‘)(I)n(ta /\)a (I)n(t> )‘) =M, (ta /\)q)n(t> )\)7 (2'2)

dt
where L n(t,A) and M, (t,\) are nonsingular square matrices. When the Lax matrices
L,.(=Ly,(t,A)) and M,,(= M, (¢, \)) are (2x2) square matrices then (2.2) reads

¢1n+1(t’ A)_ B -Llln(t,)\) L12n(t, A)] [gbln(t?)\)] (2 33)
oni1 (BN [Lata(t ) Loaa(t, )] [62,(t 0] '
; ]

N A B, A)] B1n(t, ) 23b)
%(ﬁgn(t, A)_ _Cn(t>)\) D ( ) ¢2n(t )

where A is the spectral parameter and L;j, (t, X), A, (t, N), By (t, ), Cy (t, X) and Dy, (t, A) are
functions of u,, and their shifts. The compatibility of the linear system, (2.2) gives

%Ln +L,M, - M, 1L, =0 (2.4)

and the compatibility of (2.3) yields

%Llln + LiinAn + L12,Cn — Apt1L11n — Bpy1Lor, =0, (2.5a)
%len + L11,Bn + Li2n Dy — Anq1Ligy, — Bng1Lag, =0, (2.5b)
%Lmn + Lo1nAn + L22n,Cr — Cny1Li1n — Dyg1Loi, =0, (2.5¢)
%LQQn + Lo1nBpn + Lo2nDn — Cny1Li2p — Dyg1 Loz, = 0. (2.5d)

The explicit form of the Lax matrices L, and M, can be derived by extending a well
known procedure devised by Ablowitz, Kaup, Newell and Segur (AKNS) for nonlinear
partial differential equations[2]. More precisely for a given suitable matrix L, the entries
of the matrix M,, can be derived by expanding its entries as a polynomial in the spectral
parameter \ satisfying the Lax Eq. (2.4).
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2.1. Laz representation of (1.1) and (1.2)
To start with, we consider the discrete spectral problem (2.2) for (1.1) with L,, and M,, as

0 )\pn An B,
L, = , M, = . (2.6)

—“vp, 14+ Nu, v, C, D,

Then the compatibility condition (2.4) gives the following
Cnpn + Bn-&—l“n = Oa
B Chu C D D
- 2 n nUn n+1Pn n+1 n

Unt = Unfdn = Atun”Cn = tin D + PRy Avy, * v, N, @7

C
Unt = Dn+1vn — v Ay + Tn + A Crunvy,

Bn+1

Pnt = An+1pn — pnDp + + A Bpp1unvy.

In order to find the entries of the associated matrix M, we expand each of them as a
quadratic polynomial in the spectral parameter A, that is

2 2
— B/ _ Dy _ 1)y _ DEY
Ay =Y "aN, By =>" bPN, = PN, D, =) dDN,
1=0 1=0 1=0 1=0

where ag ), bg ), (:7(1[) and dg ) are unknown functions to be determined. Substituting the above

expansions into (2.7) and then equating the like powers of A to zero we obtain a system of
equations along with evolution equations and solving them consistently yields the explicit
form of A,, By, C,, and D,,. As a result the matrix M, for (1.1) reads

_ﬁ_ Pn—-1 )\pn—l
M, — 2 UpUn—-1Un—1 Upn—1Un—1 . (28)
A A2
Up, 2

Proceeding in a similar manner we find that (1.2) arises from the compatibility condition
(2.4) with Lax matrices L,, and M,, as

_)\_2 - gn—1 dn—1 A
Pn Adn 2 Up Uy —1Vpy— Up—1UVp—
Ln _ , Mn _ nUn—1Un—1 n—1Un—1
—Av, 1+ )\QUn Un, _i)\ )‘_2
Up, 2

satisfying (2.4). Thus 3- and 4-coupled systems given in (1.1) and (1.2) are integrable in
the sense of Lax.

3. Hamiltonian Structure of (1.1) and (1.2)

Let us recall some of the basics related with Hamiltonian system governed by nonlinear
partial differential and differential-difference equations [20]. Let H : £9 — L7 be a linear
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operator and Vg be a formal evolutionary vector field with characteristic is the g-tuple,
q
(He)a = Z Haﬁeﬁ (3'1)
B=1

of vertical uni-vector. Then the prolongation of the vector field is given by

0
PrVig =) B’ | > Hapt” | 5o, (3:2)
a,J 5] n

where E' is a shift operator defined by Ef(n) = f(n+ 1).

Definition 3.1. A linear operator H is said to be a Hamiltonian operator of (2.1) if it is
skew symmetric and satisfies Jacobi’s identity [21].

Definition 3.2. A system of coupled nonlinear PDAES is said to be a Hamiltonian system

if it can be written as
ou,, OH
—=H 3.3
ot <5un> ’ (3:3)

where H is a Hamiltonian operator and H is the appropriate Hamiltonian functional.

In order to prove that the skew symmetric operator H be Hamiltonian it remains to
prove that it satisfies the Jacobi’s identity. For clarity, we mention the following theorem

for a system of nonlinear partial differential equations % = K(u) due to Olver[21].

Theorem. Let D be a skew-adjoint g x q matrixz differential operator of the system of partial
differential equations, %_1; = K(u) and © = 1 [{© A DO}dz, the corresponding functional
bi-vector. Then D is Hamiltonian if and only if

Pr Vpg(©) = 0. (3.4)

Here 0 = 0(x,t, u).

Recent investigations by Sanders and Wang[24] suggest that the above result holds for
nonlinear PDAESs as well. For nonlinear PDAES, the prolongation of the vector field takes
the form given in (3.2).

We now establish the Hamiltonian structure of (1.1) and (1.2) through the definitions
and theorems stated above. The 3-coupled system (1.1) can be written as

5_H Pn Pn—1 1
oup, 2 2 )
- n

Unt 0 Uy, VU, 0 UpUnUnt1  UpUn—1Un—1  UpUp
oH Pn 1

v | =H | — | = | upvn 0 Un Pn 5 - 5
dvy, UpViUp41  UpUs

DPnt SH 0 —Upn Pn 0 1
5pn UnpUnUn+1
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Similarly 4-coupled system (1.2) can be written as

OH

oty
Unt OH 0 —Up Up —Up Pn uZ pp
Unt _ m _ Uy, Un 0 UnPrn —Up Un Dn + Un G
Dt oH Un, Pn —Un Pn 0 P qn
Ut Opn —U2Pp UnVnPn— VnGn  —Pndn 0

oH

Odn

dn qn—1 1
2 T3 T2
UZVpUnt1  UsUp—1Up—1  USVUn
qn _ 1
X UpViUny1  UpVE . (3.6)
0
1
B UpUpUn+1

Theorem 3.1. The operator H given in (3.5) is a Hamiltonian operator for the 3-coupled
system (1.1).

Proof. Let § = (61,62,05)". Then

0, —Up, Vo oy
HO=H |05 | = |upvp01 +v,pnfs| = | $o|. (37)
03 —Vp, Prb2 o3

Next, define a bi-vector © of H by

1
@H:52[91/\@14—92/\@2—1—93/\@3],

Using the property of wedge product 61 A 61 = 0,05 A = 0,03 AO3 = 0,00 N0 =
—01 ANOy,03 N0 = —01 N\ O3,03 N Oy = —05 A O3, we have,

On = [~unvnby A b + vypnba A b3 (3.8)

and further calculation shows that
PrVye(©n) =0 (3.9)
and hence the skew symmetric operator H is Hamiltonian of (1.1). O

Theorem 3.2. The operator J given in (3.6) is a Hamiltonian operator for the 4-coupled
system (1.2).
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Proof. The proof is similar to that of Theorem 3.1 and hence omitted. U

Thus the 3-coupled system (1.1) and 4-coupled system (1.2) are Hamiltonian systems.

4. Generalized Symmetries and Conserved Densities
4.1. Generalized symmetries: 3-coupled system (1.1)

In this subsection, we present the computational details of the derivation of generalized
symmetries for the 3-coupled system (1.1). Obviously (1.1) is invariant under the scaling
(dilation) symmetry

(ta Unp, Unapn) - (5_2t7 5_1un7 5_1Un7 5_1pn)7 (4'1)

where s is an arbitrary parameter. Let us assume that (1.1) is invariant under a continuous
non-point transformations

nf=n, tr=t, ul=u,+eG(n)+0(2), vl =uv,+ eGP (n)+0(e?),

(3) (4.2)
ph=pn+€G(n)+0(?), i=12,...,

-y Pn—1,Un—1,Un—1,Un, Un, Pn, Un+1, Un+1,Pn+1,---),

5 : )
G§2) (n) = G§2)( « sy Pn—1,Un—1, Un—1,Un, Un,y Pn, Un+1, Un+1, Pn+1, - - -)7
: : )

« 3y Pn—1yUn—1,Un—1,Un, UnyPn; Un+1, Un+1,Pn+1s---)s

provided w,, v, and p, satisfy (1.1). For clarity, we denote G;(n) = (Ggl)(n),Gz(-Q) (n),
(3) T . . . .

G,;”’(n))" and the subscript ¢ represents the ith order generalized symmetry. Consequently,

we obtain the following invariant equations

GGEI)(n) 'UnpnGl('l) (n + 1) + un-‘rlpnG@) (n) - un+1anl('3) (n) . G?) (n)

ot u? 43 v2 (4.38)
0GP ) GVm) P et + GV (n - D,
= +
ot u? UnUn—1Vn—1

_vnpn_l(un_lvn_ngl) (n) + unvn_ngl) (n—1)+ unun_le(-Q) (n—1))

2,,2 2 )
UnUp 1V

(4.3b)
9G () _ unwnG (0) = wipu G (0) = vap G (n) 206G ()
8t - u%v% UnpUn+1Un
9 o 2 ~(1) 1 2 a®?

| vaphtnn Gy <n>+unvnpg i 2<n+ )+ unpiun 1 Gy (n). (4.3¢)

unvnun—i-l

The invariant equations (4.3) can be solved for the generalized symmetry G;(n) =
(Gm(n), ng) (n), Ggg) (n))T in more than one ways[7, 15, 18, 21, 25]. We show below how

)
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to derive the generalized symmetries of (1.1) through the algorithmic procedure developed
by Hereman and his co-workers[15]. Basically, Hereman’s algorithmic procedure is based on
the concept of weights and ranks. To start with, we briefly explain the concept of weights
and ranks. The weight, w, of a variable is defined as the exponent in the scaling parameter
s which multiplies the variable. Similarly the rank of a monomial is defined as the total
weight of the monomial. An expression is uniform in rank if all its terms have the same
rank.
We set w(4) = 2. From (1.1) we see

w (%) W) = ~w(0n) = W(pn) = (1) — w(vn),

w (%) +w(vy) = w(vy) + w(pn-1) — wluy) — W(Up—1) — W(Vvp—1) = —w(uy),

w (%) + w(pp) = w(pn) — w(un) — w(vy) = 2w(py) — w(ty) — wW(tnrr) — w(vy)

and so
w(uy) = -1, wv,)=-1, wp,) =-1,

and hence (1.1a)-(1.1c) are of rank 1, 1 and 1, respectively. We wish to mention that
Hereman and his collaborators[12, 13, 15] have developed a Mathematical software pack-
age (known as INVARIANTSSYMMETRIES.M) in Mathematica for finding higher-order
symmetries and conservation laws for nonlinear PDEs and nonlinear PDAEs with two
independent variables provided the weight of the dependent variable is positive. Since the
weights of the dependent variables associated with (1.1) are negative, the software package
is not applicable. However we demonstrate that one can derive higher-order generalized
symmetries for (1.1) and (1.2) by exploiting their ideas. In this article, we have computed
the generalized symmetries and conserved densities manually. Hereafter, we use the more
compact notation

Upn =U, Up =70V, Pp=PpP Up—-1=U Up—1=1Y, Pn-1=D0,
Up—2 = ga Un—2 = ga Pn—2 = Ba un—i—l - ﬂa Un—i-l - 67
Dn+1 =D, Unt2 =T, Upt2 =71, DPni2 =D, etc.

Note that the trivial generalized symmetry is of rank (1, 1, 1), then the next nontriv-
ial generalized symmetry Ga(n) = (Ggl)(n),Gg) (n),G?) (n))T must have rank (3, 3, 3).

With this in mind, we first form monomial in u,v and p of rank (3, 3, 3) that leads to
aset L= fuopt Ll L1 1 1 1 1111111 111
) ) 9

u’v’p’u2l v’ p2> uv’up’vp’ ud’ v3’p3’ wv2? up2’ ulv? u2p’ vp2’ 1)2]2’ uvpd”
Then the necessary partial derivatives with respect to ¢ in each monomial of £ along

with (1.1) and leads to an another set M involving w,v,p and its backward and for-
ward shifts. Note that each monomial in M is of rank 3. The linear combination of
the monomials in M gives the most general form of the nontrivial generalized symme-
try Ga(n) = (Ggl)(n), ng) (n), Ggg) (n))T. Substituting the above linear combination in the
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invariant equations along with (1.1), leads to a system of linear equations and solving them
consistently gives the first nontrivial generalized symmetry with rank (3,3,3) as

p 1 p pp pD p° 2p
G n) = C - _ - 4.4a
2 (7) vu?r  wv?  wvuwv  wvuwuv  vuvu  wviu?  uwviu’ (4.42)
1 2p pp vp vp? vpp P
& S e 4.4b
2 (n) w?v  wluy  vPuvu wuv?  wPu?w?  wuvuy  wvu’ ( )
2
G (n) = P> p’p 2p? p? p’p . pp P
2 wou?r  wvuvu  uv?uw w?20?2u?  u?vuvu  uvuv  u?e?
(4.4c)
Proceeding as above, we obtain the next generalized symmetry Gs(n) =
(G (), G (n), G (n))T with rank (5, 5, 5), where
G(l)(n) _ 1 p p3 bp . pl—)]:) - p
3 w203 w?2vuv?  w203ud  wvulvuv wvtdu?vuy  uvuy?
P pDD pp pp2 ppD
T T35 2 —o—= " 2,27 =2 7275707
VUV VUTT DT UvuTvCU sty UVUVUCOU
pp D pp?® 2pp 2pP
+ 2, + pp—z— B e 2]—)12) =+ —f—pzz
uvufvuY  gylpu o ufvuviu uvuvu VUV U
2% 2p o tp o 2pt 2p 0 3p?
wvu?tu  wv2w?v w20?2uiuv  uwv?wv uvuv uw?e3u?
3 dpp
2p3 2,2 (4.5a)
w03y uvmwuv
2 3
p 1 p-p vp pp vp
G (n) = T 5 — + 3,
3 (n) wou?c  udv?  wdvwvu?  wdudvd  uw2wvum wudvd
L veer A re_ vpp’
wulvulvuy  wtW? | uwluloupd ulue’W | wulvu’u’
. vee L_PPP PP 2p 2p
wu?vu?v?  wluwvu?wu  w?uvu  uw?u??  wdvim
20p?p 2upp 2pp? 2pp 20 p?
+ = =4 == __ _~=
w?utvluy  wwlvluy | uwlule’n  uwlwlvuy | uludud
3p 3p? 4pp
T Pour  wun?  wiviun’ (4.5b)
wdvuy  wduv?  wdvuuv
2 2
(3) p PP PP p°p p* pp
Gy'(n)= 35+ 55—+ —m T 5 =5 3., 8773 51 2010 202
u3v uZvuZv?2u  w?vwvu?w  woeuvuv  udvdu u2vuv
pp? ppp p?p? p’pp p’pp
b=+ e = _ =
wdvuv?  uwvueouv  uwdvu®m wlowvuvu wouu?v
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2-2 2 2-= 3 2—
. pp I ~__ p°pPp n 2p 2p°p
woT3T2W2  wvusv? L uu2ouon YT wvustiu
_ _ 3
N 2p?p 2p°3p 2p°p 2pp 2p2
w?20?2w?20u  uw?20w?2w3vu  udviuvu?  udviuv  uw0?2uv
2
3p3 3p? N 4p°p
udv3uw?  wdvduw  udviuvu

(4.5¢)

In a similar manner, we have checked that 3-coupled system (1.1) admits a sequence of

higher-order generalized symmetries G;(n) with ranks (2i — 1,20 — 1,2 — 1), = 4

5, ...

which involve a huge number of terms and hence we refrain from presenting it here. We have
checked that the obtained generalized symmetries are commutable, that is, the generalized

symmetries satisfies the following relations

[Gi(n), Gi(n)] = Gi(n) [Gi(n)] — Gi(n)'[Gr(n)] =0, 1,k=1,2,...,

where Gi(n) [G(n)] = %Gk(un +eGy (n))‘ezo is the Frechet derivative of Gy (n) along the

direction of G(n).

4.2. Generalized symmetries: 4-coupled system (1.2)

Proceeding as above, we have checked that 4-coupled system (1.2) admits a sequence of
generalized symmetries G;(n) with rank (2i — 1,24 — 1,2i,2¢ — 1), ¢ = 1,2,.... The first

two members of the sequence of generalized symmetries are as follows:

I qg up
v uUv  uv
1 1
i (n) va 1 p Gy (n)
& (n) wuv u @ @ (n)
Gy7(n) = — Gy (n)
UUYV  UVU
G\ (n) ) 65" (n)
e ¢ P4
uv  UvU  uv
where
Wy = L1 2¢ ¢ 499 P4, a4 _ P
2 v wv?  wv?m o wvW?  wvuwvuw  vuvuw VUMW vuTw
qq q up upq upp pq
- _:+ + 92— —_= = 2—9"
vuvu  uwvuv  vuw  vuvu vuvuw v
1 q p 2¢ qq vg? pyq
ECYRE S Y q a g
2 (n) u?v  uw2vu  uvw u2gg_+u2gyﬂ_+u2_2g2+_ugyﬂ
vg q P vaq vpyq
- B PP P == ==
uuv u?v  uwvu uwvu uvu wuvuy  uuvuY
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- - 2
q qp q q q 4q
By - o . N o
2 (M) =p wvu?v  wvuvw uwvuvu  uw0?u?  uww?u  uvuv
2
q q 99 rg
T T ————
w?u?v?  wu?v?  wulvuv unvuv
Gy = 94 ¢ 2 e q® P2’ g
2 u2ouv  w?20?  wZv?2u  wvuv  wvwiv  uuv?  uw?e?y?
PP pg 4P q%q Pag 7*q rag
B + 202 wouvu wu@Tu  uvTuv  uZoTuv  uouu

Here again we have checked that the obtained generalized symmetries {G;(n)} are
commutable.

4.3. Conserved densities and flures: 3-coupled system (1.1)

A scalar function p,(u,) is a conserved density of (2.1) if there exists a scalar function
Jn(uy,) called the flux, such that

0pn
o +AJ, =0 (4.7)
is satisfied on the solutions of (2.1). Here AJ, = (F — I)J, = Jpt+1 — Jn.

To derive a conserved density with different ranks, we use the algorithmic procedure of
Hereman and his co-workers [12, 13]. For rank 2 as usual we form monomials of u,v and p
which give a list £1 = {u, v, p, %, %, %, %, v%, z%’ ﬁ, uip, #} Introducing then the necessary
t derivatives in each monomial of £; leads to an another set Mj involving u,v,p and its
backward and forward shifts. Note that each monomial in M is of rank 2. The linear
combination of the monomials in M gives the most general form of the conserved density
pg) of rank 2. Substituting the above linear combination in the (4.7) along with (1.1), leads
to a system of linear equations and solving them consistently gives the conserved density

pnl) with rank 2 as

1 p
“n - - £ 4.8
M= T wae (4.8)
and the associated fluxes Jél) is
pp P
J = == - 4.9
" quQgg—i_uuQvQ (4.9)

(4.10)

)@ — 1 P’ pp  p P
n u v

C 2u2 02 + 2u2_g222 + u
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and the associated fluxes JT(L2) are

o P pp pp p pp ppp
n W33 | w2oul?T | wlvwdvuy  wivule?  wludviuv uloulv

In a similar manner we have checked that the 3-coupled system (1.1) admits a sequence
of conserved densities pgf) with rank 2¢,4 = 3,4,5,... along with the flux JT(f) of rank
2(i+1),7 = 3,4,5,..., respectively, which involves lengthy expressions and so the details

are omitted here.

4.4. Conserved densities and fluzes: 4-coupled system (1.2)

Proceeding as above, we have checked that 4-coupled system (1.2) admits a sequence of

conserved densities pg) with rank 2i,s = 1,2,... and fluxes Jr(f) with rank 2(i 4+ 1),7 =
1,2,.... The first two members of the sequence of conserved quantities are as follows:
pmo L4
" uv  uuv
a9 rgq q
JV=—F=—+ —= 4 =
wulvuy  wuvuv  wulv
and
2
2 _ 1 ¢ 99 | rd ¢ 4
Pr 2u2v?  2u2u?v?  wlvuwvu o wvuwvw  uwivlw wivuv’
@ ¢ aq a4 pyq Py q
Iy = e 3,200 T 3.2 + 3,25 3 2012 12
u? ud v wroutviu o wrovvtvuy  wvu?v?v o wfvuvuy  urvutu

5. Recursion Operator: PDAEs
An operator valued function R is said to be a recursion operator of Eq. (2.1) if it connects
symmetries into symmetries, that is,

Gryi(n) = RGy(n) VEk, (5.1)

where Gg(n) and Ggy1(n) are consecutive generalized symmetries. Note that there exist
different methods to construct recursion operator R for PDAE [15, 20, 24, 25]. We show
below how to derive R through the algorithmic procedure developed by Hereman and his
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collaborators. For 3-component systems, (5.1) becomes

1 1

i (n) ¢V [Ru Re Rl [6V0)

G2 )| =R|GP ()| = |Ra Ra Ras| |GP(n)], (5.2)
Gl(i)-l(n) G,(:’)(n) R31 R3» Rss G](cg)(n)

where Gy,(n) = (G (n), G (n), GP (n))T and Gypa(n) = (GY),(n),GE (n), G (n))T

are the generalized symmetries. The entries I2;; of R involve dependent variables along with
their shifts and its inverse, difference operators and inverse difference operators, that is,[15]

Rij = Uij(u,)O(A™Y, E71 1, E)Vij(uy),

where u,, = (un,vn,pn),Uij and V;; are functions of the potentials w,,v,,p, and their
shifts, E=1f(n) = f(n — 1), If(n) = f(n), Ef(n) = f(n + 1) and A is difference operator
defined by

Afn) =(E—=1)f(n) = fn+1) = f(n)

and A~! is inverse difference operator defined as

1 00
AT ) =2 | S [ 142k) — fn+2k) = S [fn— 1+ 2Kk) — f(n— 2+ 2k)] .

2
k=—o0 k=1

5.1. Recursion operator: 3-coupled system (1.1)

The construction of the recursion operator R for the 3-coupled system (1.1) is as follows:
For k = 2, (5.2) becomes

G () Rui Riz Riz] [GS) ()
G (n)| = | Rt Raz Ras | |G (n) | (5.3)
¥ (n) Rs1 Rsz Rz | | G{Y (n)

where (Ggl)(n), Gg) (n), Ggg) (n))T and (Ggl) (n), G:(f) (n), Gég) (n))T are consecutive general-
ized symmetries of rank (3, 3, 3) and (5, 5, 5) given in (4.4) and (4.5), respectively. From
(5.3) it is clear that the entries Ri1, Ri2, R13, Ra1, Ra2, Ros, R31, R3a andRs3 of the matrix
operator R must be of rank 2 which can be determined from the following relations,
rank Ggl)(n) = rank Rq; + rank Ggl n) = rank Rjs + rank ng) (n)
= rank Ri3 + rank G§3 n),
rank G:(f) (n) = rank Ry; + rank Gél n

(
(
(
= rank Ry3 + rank Gé3) (n
(
(

)
)
) = rank Rgy + rank Gg) (n) (5.4)
);
)
)

rank Gég) (n) = rank R3; + rank Gél n) = rank Rsy + rank Gg2) (n)

= rank R33 + rank G§3 n



514 R. Sahadevan € S. Balakrishnan

With this goal, we expand R;j;, i,j = 1,2,3 as the functions of dependent variable along
with their shifts, difference operator and inverse difference operator, with rank 2, that is,

Rij = Uij(n,)O(A™Y, E7Y 1, E) Vij(uy,) (5.5)
with the following relations
rank R;; = rank U;j(u,) + rankVj;(u,). (5.6)

After a tedious calculation, we find that (5.3) along with (5.4) satisfies for the following
forms of R;j, i,j = 1,2,3 reads as

uvy Uuv uUv u“v uv v u
1
+uA~? Zp_ + - > , (5.7a)
wvu  vwZuv vl
1 1 1 1
Ris = <_% - —2) I+ <_ﬁ - —> AT punT! < b__ —2> , (5.7b)
w? v v v wu  uw
1
R13 = —UA_I—_ (5.78)
uvlh
1 v v 1 v 1
Ry — P\ n P g1 L AR e
w2  wluw uuZ v U UUV i
p 1
_on L (R L _ 7d
! <u2vﬂ * Zuv u%) ’ (5.7d)
v 1 v 1 1
Ry = —2 B! ¢ <— - —]—)> AL ot <—2 - %_) , (5.7¢)
uuv U uuv v w?  wv?u
1
Ryy = ——— +vA™L—, (5.7£)
uuv uvh
2 2 2
P p P P P P 1
R31—<2 _2—__T> _2E+( =i )Al—
w2y vluv  ulv uvl uwou U u
p 1
AP =), 5.7
+p <u2vﬂ + u?uv u%) (5.7¢)
2 2 1 1
R3y = < p2_ - %) I+ <p__ - ﬁ) AT =4 pAT? < pQ_ - —2) ,  (5.7h)
wu  uw wu  uv v wu  uw
1 1
Ry3 = ——1 —pA~1—. (5.71)
uv uvh

Proceeding as above, we have checked that (5.2) holds for k = 3,4, ... with the recursion
operator given above. Thus we conclude that R with the entries R;;, i,j = 1,2,3 given in
(5.7) is a recursion operator for 3-coupled system (1.1).
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5.2. Recursion operator: 4-coupled system (1.2)

For 4-component systems, (5.1) becomes

S i} i ] )
Gl(ﬂ)—l (n) Gl(cl) (n) Ri1 Rz Riz Ru Gl(cl) (n)

Gl(f—«)—l (n) - R G](gz) (n) . R21 R22 R23 R24 Gl(f) (n) (5 8)
G,(j)_l(n) G,(f) (n) Ry; Rsy Rss Ry G](;’) (n) ) .
6w  leWw)] LEn Re R Rl |60

where Gi(n) = (GV(n), G (n), G (n), G (n))T and Grya(n) = (G, (n), G2 (n),

G,(j)_l(n), G,@_l(n))T are the generalized symmetries. For k£ = 2, (5.8) becomes

_Ggl) (n) Ry Ri2 Riz R _Gél) (n)]
GP(m)| |Ru Rm Ru Ru| |GP(n) 5o
G§3) (n) Rs1 Rz Rz Raa| |GY(n)
_G§4) (n)] Ry1 Ryo Ruz Ry _G§4) (n)]

Note that the rank of generalized symmetries (Ggl)(n), ng) (n), Ggg) (n), Ggl) (n)7T is
(3,3,4,3) while the rank of (Ggl)(n), G:(f) (n), G:(;’) (n), G:(;l) (n))T is (5,5,6,5). Thus it is clear
that, for uniformity in rank the entries R;;, i,j = 1,2, 3,4 must be of rank 2. Proceeding

as above, after a tedious calculation, we find that (5.9) satisfies for the following forms
of Ri]’,

q 2 1 41
Rn:(i_+ : __+£)1+(;Tp+%)m<_i+u___>w_

Wl UUV  UvV v v wwo v v u
q 1
AL S 5.10
o <u2vﬂ+u2gy u21)>’ (5-10)
1 1 1 1
Ro=(-L 4+ i+ (L+Z_Ja1oqpunt(—1_—— ) (510b)
w?  w? v? w o uw v v w?n  uv?
Ri3 =0, (5.10¢)
1
Ry = —ulA™'—, (5.10d)
uvl
1 vq vq _ 1 41
R21_(—2—2———_ﬁ)1+ 2E1—%E+(————§)A1—
U uU“Uv uy uu* v voou U
q 1
YN S 5.10
! (u%ﬂ - uuv u2v>’ (5-10¢)
P Y4 1 vqg p 1 (1 q
RQQZ—_—I+ E + - — — = A —+’UA —s — — ], (510f)
uv uy v? U uuv U v w?  wu

Ras =0, (5.10g)
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1
Ry = ——— +vA™ — (5.10h)
uuv wvu
|
Ryy=2Lpy ML p, M g1y (p—q_ - p_—g> AT (5.10i)
U vu uvu uus v uvUu uu v u
pq _ pq 11 .
Ryp=L 14 Z g1y (p—q_ = T—> AT (5.105)
uv-U uu v uvUu uu v v
1
Rys = — 1. (5.10k)
uv
___ D
yp—— (5.101)
uuv

1 1
+<q—+p———i>A—15+qA‘l< d +i——>, (5.10m)

v Uy UV uv v
1
A (L 2 5.10
+a <uv2ﬂ qu)’ (5-10n)
R43 = 0, (5.100)
1 1
R44:——I+£—q _1—_' (5'1Op)
uv uv UV

Also we have checked that (5.8) holds for k = 3,4,... with the recursion operator given
above. Thus we conclude that R with the entries R;;, 7,7 = 1,2,3 given in (5.10) is a
recursion operator for 4-coupled system (1.2).

6. Summary

In this article, we report a new multicomponent nonlinear PDAEs which are Hamiltonian
ones admitting Lax representation, possessing infinitely many generalized symmetries, con-
served quantities and recursion operator. Hence both of them are integrable in the sense
of Lax and Liouville. One of the characteristics of integrable nonlinear PDAEs with two
independent variables is the existence of recursion operator which connects the consecutive
members of the sequence of generalized symmetries [10].
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